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Abstract: Image fusion is the process of combining multiple input images from single or multiple
imaging modalities into a fused image, which is expected to be more informative for human or
machine perception as compared to any of the input images. In this paper, we propose a novel
method based on deep learning for fusing infrared images and visible images, named the local binary
pattern (LBP)-based proportional input generative adversarial network (LPGAN). In the image
fusion task, the preservation of structural similarity and image gradient information is contradictory,
and it is difficult for both to achieve good performance at the same time. To solve this problem,
we innovatively introduce LBP into GANs, enabling the network to have stronger texture feature
extraction and utilization capabilities, as well as anti-interference capabilities. In the feature extraction
stage, we introduce a pseudo-Siamese network for the generator to extract the detailed features and
the contrast features. At the same time, considering the characteristic distribution of different modal
images, we propose a 1:4 scale input mode. Extensive experiments on the publicly available TNO
dataset and CVC14 dataset show that the proposed method achieves the state-of-the-art performance.
We also test the universality of LPGAN by fusing RGB and infrared images on the RoadScene dataset
and medical images. In addition, LPGAN is applied to multi-spectral remote sensing image fusion.
Both qualitative and quantitative experiments demonstrate that our LPGAN can not only achieve
good structural similarity, but also retain richly detailed information.

Keywords: image fusion; generative adversarial network (GAN); local binary patterns (LBP);
multi-modal images

1. Introduction

Image fusion aims to merge or combine images captured with different sensors or
camera settings to generate a greater quality composite images [1]. It is crucial for many
applications in image processing [2–4], computer vision [5,6], remote sensing [7,8], and med-
ical image analysis [9].

In the image processing field, visible images and infrared images are generated by
sensors with different sensitivities to light in different wavelength bands. The images of
different bands contain different information. Each kind of image can only focus on a
given operating range and environmental condition, and it is difficult to receive all the
necessary information for object detection or scene classification [10]. Due to the strong
complementarity between them, it is a feasible way to improve visual understanding by
fusing them. The fused image can combine the characteristics of different modal images
to generate an image with rich details and significant contrast, an example is shown in
Figure 1. Therefore, for the full exploitation of multi-modal data, advanced image fusion
has been developed rapidly in the last few years.

The key to multi-modal image fusion is effective image information extraction and ap-
propriate fusion principles [11]. Traditional research has focused on multi-scale transform-
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based methods [12,13], sparse representation-based methods [14,15], subspace-based meth-
ods [16], saliency-based methods [17,18], hybrid methods [19,20], and other fusion meth-
ods [21–23]. However, the performance improvement of manually designed feature extrac-
tion and fusion rules is limited.

Infrared Image Visible Image Fused Image

Figure 1. An example of image fusion.

With the widespread application of deep learning, deep learning-based fusion methods
have achieved rapid progress, showing advantages over conventional methods and leading
to state-of-the-art results [24,25]. Although these algorithms have achieved positive results
under most conditions, there are still some shortcomings that need to be improved:

• The extraction of source image feature information is incomplete. Most image fusion
algorithms cannot achieve good structural similarity while retaining richly detailed
features at the same time due to the incomplete extraction of feature information [26].
Specifically, when the algorithm performs better on SSIM and PSNR metrics, its
performance on SD, AG, and SF metrics will be worse, such as DenseFuse [27]; the
reverse is also true, such as in the cases of FusionGAN [28] and DDcGAN [29].

• The mission objectives and network structure do not match. The same network is
employed to extract features while ignoring the feature distribution characteristics
of different modal images, resulting in the loss of meaningful information. Infrared
images and visible images have different imaging characteristics and mechanisms,
and using the same feature extraction network cannot fully extract the features of
different modal images, such as DenseFuse and U2Fusion [30].

• Improper loss function leads to missing features. In the previous methods, only
the gradient is used as a loss to supervise the extraction of detailed features, while
neglecting the extraction of lower level texture features in the source images. This
makes it difficult for the network to fully utilize the feature information in the source
images during the fusion process, such as FusionGAN and DDcGAN.

To overcome the above challenges, a completely deep learning-based image fusion
method, the local binary patterns (LBP)-based proportional input generative adversarial
network (LPGAN), is proposed. Firstly, we innovatively introduce LBP into the network
and design a special loss function based on LBP [31]. LBP can accurately describe the
local texture features of an image, improving the network’s ability to extract low-level
features from the source image, effectively balancing structural similarity and detail features.
Moreover, due to its strong robustness to light, the introduction of LBP enables the network
to have strong anti-interference capabilities. Secondly, we introduce a pseudo-Siamese
network for the generator, which, due to its unique design with the same structure and
different parameters, not only enables the network to extract different feature information
from two modal images, but also avoids the problem of extracting features from different
domains. It is worth mentioning that the improved generator inputs infrared and visible
images at different ratios. In some works [32,33], the source image is concatenated in a 1:2
ratio as the input of the network, but we found through experiments that a ratio of 1:4 can
enhance the network’s feature extraction ability and achieve better experimental results.
Extensive experiments on the publicly available TNO dataset and CVC14 dataset [34]
show that the proposed method achieves the state-of-the-art performance. We also test the
universality of LPGAN through the fusion of RGB and infrared images on the RoadScene
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dataset [30] and the Harvard medical dataset. Finally, the proposed method can also be
applied to multi-spectral remote sensing image fusion, and the expansion experiment
reveals the advantages of our LPGAN compared to other methods.

The contributions of our work are as three-fold:

(1) We introduce LBP into the network for the first time and design a new loss for the
generator, which enables the model to make full use of different types of features in a
balanced way and reduce image distortion.

(2) We design a pseudo-Siamese network to extract feature information from source
images. It fully considers the differences in the imaging mechanism and image
features of the different source images, encouraging the generator to preserve more
features in source images.

(3) We propose a high-performance image fusion method (LPGAN), achieving the state-
of-the-art on the TNO dataset and CVC14 dataset.

We organized the remainder of this paper as follows. We first briefly review some
work related to our method in Section 2. Then, we provide the overall framework, network
architecture, and loss function of the proposed LPGAN in Section 3. In Section 4, we
show and analyze the experimental results of the proposed method and the competitors.
In Section 5, we provide a discussion about our method. Finally, we make a conclusion of
this paper in Section 6.

2. Related Work

Image fusion tasks can be divided into five types, infrared-visible image fusion [35],
multi-focus image fusion, multi-exposure image fusion, remote sensing image fusion,
and medical image fusion. In this section, we briefly introduce several existing deep
learning-based image fusion methods and some basic theories of cGAN and LBP.

2.1. Deep Learning-Based Image Fusion

Many deep learning-based image fusion methods have been proposed in the last five
years and have achieved promising performances. In some methods, the framework of deep
learning is combined with traditional methods to solve image fusion tasks. Representatively,
Liu et al. [36] proposed a fusion method based on convolutional sparse representation
(CSR). The method employs CSR to extract multi-layer features and uses the features
to reconstruct the image. Later, they proposed a convolutional neural network (CNN)-
based method for multi-focus image fusion tasks [37]. They use image patches containing
different features as input to train the network and obtain a decision map, and then directly
use the map to guide the image fusion. Deep learning is also used by some algorithms
to diversify the extraction of image features. In [38], a model based on the multi-layer
fusion strategy of the VGG-19 model was proposed. The method decomposes the source
image into two parts; one part contains the low-frequency information of the image and
the other part contains the high-frequency information with detailed features. This strategy
can retain the deep features of the detailed information. In addition, to make the generated
images more realistic, PSGAN [39] handles the remote sensing image fusion task by using
a GAN to fit the distribution of high-resolution multi-spectral images; however, it still
requires manually constructing the ground-truth to train the model.

The above methods only apply the deep learning framework in some parts of the
fusion process. In other methods, the entire image fusion process uses a deep learning
framework. For instance, Prabhakar et al. [40] proposed an unsupervised model for multi-
exposure image fusion named DeepFuse in 2017. The model consists of an encoder, a fusion
layer, and a decoder. The parameter sharing strategy is adopted to ensure that the feature
types extracted from the source images are the same, which facilitates subsequent fusion
operations and reduces the parameters of the model. Based on DeepFuse, Li et al. [27]
improved the method by applying dense blocks and proposed a new image fusion method
called DenseFuse. They utilize no-reference metrics as the loss function to train the network
and achieve high-quality performance. Since image fusion tasks usually lack ground-truth
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and are generative tasks, Ma et al. [28] proposed a GAN-based method to fuse infrared
and visual images. The network uses a generator to fuse images and a discriminator
to distinguish the generated image from the visible image, achieving a state-of-the-art
performance; however, it is easy to lose infrared image information. To avoid the above
problem, Ma et al. [29] used dual discriminators to encourage the generator, and the method
achieved a better performance. Analogously, Ma et al. [41] applied a dual-discriminator
architecture in remote sensing image fusion and proposed an unsupervised method based
on GAN, termed PanGAN. The method establishes adversarial games to preserve the
rich spectral information of multi-spectral images and the spatial information of panchro-
matic images. By considering the different characteristics of different image fusion tasks,
Xu et al. [30] performed continual learning to solve multiple fusion tasks for the first time
and proposed a unified unsupervised image fusion network named U2Fusion, which
could be applied to a variety of image fusion tasks, including multi-modal, multi-exposure,
and multi-focus cases.

However, the above-mentioned works still have three drawbacks:

• Due to the lack of ground-truth, the existing methods usually supervise the work of
the model by adopting no-reference metrics as the loss function. However, only the
gradient is used as the loss to supervise the extraction of the detailed features, and the
texture information is always ignored.

• They ignore the information distribution of the source images, i.e., the visible image
has more detailed information and the infrared image has more contrast information.

• These methods all use only one network to extract features from infrared images and
visible images, ignoring the difference in imaging mechanisms between these two
kinds of images.

To address these problems, a new content loss function is designed using LBP to
effectively utilize the texture information of the source images, which also improves the
anti-interference ability of our method. Then, according to the distribution characteristics
of the feature information of the source images, we concatenate the source images in
fixed proportions in the feature extraction stage. Finally, considering the characteristics of
infrared image and visible image, we design a pseudo-Siamese network to extract detailed
features and contrast features, respectively.

2.2. Generative Adversarial Networks

GAN is a framework for unsupervised distribution estimation via an adversarial
process, proposed by Goodfellow [42] in 2014. The GAN simultaneously trains two models,
a generative model G that captures the data distribution and a discriminative model D
that estimates the probability that a sample comes from the training data rather than
G. The GAN establishes an adversarial game between a discriminator and a generator,
the generator tries to continuously generate new samples to fool the discriminator, and the
discriminator aims to judge whether a sample is real or fake. Finally, the discriminator can
no longer distinguish the generated sample. Assuming that the real data obey the specific
distribution Pdata, the generator is dedicated to estimating the distribution of real data and
producing the fake distribution PG that approaches the real distribution Pdata. D and G play
the following two-player minimax game with value function V(G, D):

min
G

max
D

VGAN(G, D) = Ex∼Pdata [log D(x)]

+Ex∼PG [log(1− D(x))].
(1)

E is the average operation. Due to the adversarial relationship, the generator and the
discriminator promote each other in continuous iterative training, and the capabilities of
the two are continuously improved. The sample distribution generated by the generator
approaches the distribution of the real data. When the similarity between the two is high
enough, the discriminator cannot distinguish between the real data and the fake data,
and the training of the generator is successful.
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GANs can be extended to a cGAN if we add some extra information that could be
any kind of auxiliary information as a part of the input. We can perform conditioning by
feeding the extra information as an additional input layer, and this model is defined as a
cGAN [43]. The formulation between G and D of cGAN is as follows:

min
G

max
D

VGAN(G, D) = Ex∼Pdata [log D(x|y )]

+Ex∼PG [log(1− D(x|y ))].
(2)

Standard GANs consist of a single generator and only one discriminator. In order
to generate higher quality samples in fewer iterations, Durugkar et al. [44] proposed the
Generative Multi-Adversarial Network (GMAN), a framework that extends GANs to
multiple discriminators. Inspired by GMAN, the structure of multi-adversarial network is
applied for dealing with different tasks, such as PS2MAN [45], FakeGAN [46], etc. PS2MAN
considered the photo-sketch synthesis task as an image-to-image translation problem and
explored the multi-adversarial network (MAN) to generate high-quality realistic images.
Novelly, FakeGAN first adopted GAN for a text classification task. The network provided
the generator with two discriminators, which avoided the mod collapse issue and provided
the network with high stability. One discriminator is trained to guide the generator to
produce samples similar to deceptive views, and the other one aims to distinguish deceptive
views from data.

Image fusion is a generating task that integrates two images of different characteristics.
GAN is a network suitable for unsupervised generative tasks. Therefore, we adopt GAN as
the framework of our method. To preserve detailed information and contrast information
of two source images completely, we employ dual discriminators to improve the quality of
our fusion results.

2.3. Local Binary Patterns

LBP is an operator used to describe the local texture features of images, which is
gray-scale invariant and can be easily calculated by comparing the center value with its
3× 3 neighbors [31]. Although the original LBP can effectively extract the texture features
of the image and has strong robustness to illumination, it cannot cope with the scaling
and rotation of the image. To address this problem, Ojala et al. [47], in 2002, proposed an
improved LBP with scale invariance and rotation invariance. The improved LBP compares
the center pixel with pixels on a fixed radius, which changes as the image is scaled, thus
achieving scale invariance of LBP features. At the same time, the minimum value of the
encoded binary number is taken to achieve the rotation invariance of the LBP feature. LBP
is used in many fields of machine learning. In [48], Zhao et al. applied it to recognize
the dynamic textures and extend their approach to deal with specific dynamic events,
such as facial expression recognition. Maturana et al. [49] also proposed a LBP-based
face recognition algorithm. LBP has also been applied in the field of gender recognition
and was once the most effective method in this field. Tapia et al. [50] extracted the iris
features of human eyes through the effective texture feature extraction capability of LBP,
and perform gender recognition based on the extracted features, achieving the state-of-the-
art performance of gender recognition at that time.

Although LBP was widely used in the past, it has rarely been mentioned in recent
years. Since image fusion has high requirements on the detailed features and structural
similarity of the fused image, the existing algorithms cannot achieve the above two points
simultaneously. We believe that LBP can help the network to extract lower-level detailed
features while keeping the fused image with a high structural similarity to the source
images. Because the source images for image fusion are highly registered, there is no need
to consider the rotation and scaling of the image, so we use the original LBP to extract the
texture features of the source images.
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3. Proposed Method

In this section, we introduce the proposed LPGAN in detail. Firstly, we describe
the overall framework of LPGAN, and then we provide the network architectures of the
generator and the discriminators. Finally, the loss function is designed.

3.1. Overall Framework

The overall framework of the proposed LPGAN is sketched in Figure 2. It is a dual-
discriminator cGAN. Visible images have richly detailed information that is saved through
gradient and texture, and infrared images save significant contrast information through
pixel intensity. The goal of the infrared-visible image fusion task is to generate a new image
with richly detailed information and significant contrast information, which is essentially
an unsupervised generation task. GANs have significant advantages in dealing with such
problems, but it is easy to fall into the trap of a single mode in the training process. Therefore,
in order to improve the stability of training, this paper uses the network structure of cGAN
to constrain it. Given a visible image Ivis and an infrared image Iir, the goal of GAN applied
to image fusion is to train a generator G to produce a fused image I f , and then I f is realistic
enough to fool the discriminator. Due to the different feature distributions between infrared
and visible images, using a single discriminator structure cannot accurately determine
the probability that the image belongs to real visible and infrared images. Therefore,
we adopted a dual discriminator structure to indirectly improve the performance of the
generator by improving the performance of the discriminator.

Visible Image

Infrared Image

“real”

“real”

“fake”

“fake”

If

Pvis

Pir

Concat

LBP

LBP

lossLBP

lossLBP

Generator

(G)

Discriminaor

(Dvis)

Discriminaor

(Dir)

1:4

4:1

Figure 2. Overall fusion framework of our LPGAN.

As mentioned in the introduction, infrared images and visible images have different
imaging characteristics and feature distributions, and using the same network cannot
fully extract the features of different modal images. However, if a completely different
network is used, it cannot guarantee that the extracted features belong to the same domain,
which affects the fusion between subsequent features. Therefore, we design a pseudo-
Siamese network with the same structure but no parameter sharing to extract features from
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two source images. Considering that visible images still have some contrast information,
infrared images also have some detailed information, we design different input ratios
for different encoders to concatenate the visible image Ivis and infrared image Iir in the
channel dimension. Specifically, the ratio of the detailed feature extraction path and the
contrast feature extraction path is set to 4:1 (Ivis:Iir) and 1:4 (Ivis:Iir), respectively. Then,
the concatenated images are fed into the generator G, and the output of G is a fused image
I f . After that, LBP distributions of source images and I f are calculated and the loss of
LBP used to supervise G to extract texture features is obtained. Simultaneously, we design
two adversarial discriminators, Dvis and Dir. Dvis and Dir generate scalars based on the
input image to distinguish the generated image and real data. Dvis is trained to generate
the probability that the image is a real visible image, while Dir is trained to estimate the
probability of the image belonging to the real infrared images.

3.2. Network Architecture
3.2.1. Generator Architecture

The generator consists of a feature extraction network and a feature reconstruction
network, as shown in Figure 3. The feature extraction network takes the form of a pseudo-
Siamese network, which is divided into gradient path and intensity path for information
extraction. The process of feature reconstruction is performed in a decoder, and the output
is the fused image, which has the same resolution as the source images.

EncoderA

EncoderB

Decoder

...

...

... ...concat

4VIS + IR

4IR + VIS

concat

Encoder Decoder

Feature Extraction Feature Reconstruction

3
x
3
 C

o
n

v

3
x
3
 C

o
n

v

3
x
3
 C

o
n

v

3
x
3
 C

o
n

v

B
N

 +
 R

e
L

U

B
N

 +
 R

e
L

U

B
N

 +
 R

e
L

U

B
N

 +
 t
a

n
h

n64s1 n32s1 n16s1 n1s1

3
x
3
 C

o
n

v

B
N

 +
 R

e
L

U

3
x
3
 C

o
n

v

3
x
3
 C

o
n

v

3
x
3
 C

o
n

v

B
N

 +
 R

e
L

U

B
N

 +
 R

e
L

U

B
N

 +
 R

e
L

U

Figure 3. Network architecture of the generator.

In the feature extraction stage, we propose a pseudo-Siamese network with two en-
coders. Inspired by DenseNet [51], to mitigate the vanish of gradient, remedy feature loss
and reuse previously computed features, both encoders are densely connected and have the
same network structure, but the parameters of them are different. In each path of feature
extraction, the encoder consists of four convolutional layers. The 3× 3 convolutional kernel
is adopted in each layer, and all strides are set to 1 with a batch normalization (BN) and
a ReLU activation function to speed up the convergence and avoid gradient sparsity [52].
To fully extract the information, we concatenate four visible images and one infrared image
as input in the gradient path, as well as four infrared images and one visible image as
input in the intensity path. After that, the outputs of the two paths are concatenated in
the channel dimension. The final fusion result is generated by a decoder. The decoder is a
four-layer CNN, and the parameter settings of each layer are shown in the bottom right
sub-figure of Figure 3.
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3.2.2. Discriminator Architecture

The architecture of discriminator Dvis and discriminator Dir adopt the same structure.
The discriminator is a simple four-layer convolution neural network, which is shown in
Figure 4. In the first three layers, the 3× 3 filter is adopted in each convolution layer,
and the stride is set to 2. BN and ReLU activation function are followed in each convolution
layer. In the last layer, the full connection and the tanh activation function are employed to
generate the probability of the input image belonging to the real data.
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Figure 4. Network architecture of the discriminator.

3.3. Loss Function

We adopt two types of loss, loss LG, and loss LD, to guide the parameter optimization
of G and D.

3.3.1. Loss Function of Generator

The loss function of G consists of two parts, i.e., the content loss Lcon and the adversar-
ial loss Ladv,

LG = µLcon + Ladv, (3)

where LG is the total loss and µ is a parameter to strike a balance between Lcon and Ladv.
As the thermal radiation and texture details are mainly characterized by pixel intensities
and gradient variation [21], we design four loss functions to guide G to preserve the
gradient and texture information contained in the visible image and contrast information
of the infrared image and reduce image distortion. We employ the L1 norm to constrain
the fused image to retain similar gradient variation with the visible image. The calculation
of gradient loss is as follows,

Lgradient =
∥∥∥∇I f −∇Ivis

∥∥∥
1
, (4)

where ∇ is the unification of the horizontal and vertical gradients of the image. It is
calculated as

∇ =

√
[I(i + 1, j)− I(i− 1, j)]2 + [I(i, j + 1)− I(i, j− 1)]2, (5)

where I(i, j) represents the pixel value of the image at (i, j). Contrast information is mainly
saved by the pixel intensities of the image. Therefore, the Frobenius norm is applied to
encourage the fused image to exhibit pixel intensities similar to those of the infrared image,
and the contrast loss is calculated as

Lintensity =
1

WH

∥∥∥I f − Iir

∥∥∥2

F
, (6)

where W and H are the width and height of the image.
To prevent image distortion, we use a structural similarity loss LSSIM to constrain the

fusion of the generator. The loss LSSIM is obtained by the equation

LSSIM =
1
2

[
(1− SSIM(I f , Ivis)) + (1− SSIM(I f , Iir))

]
(7)
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where SSIM(·) reflects the structural similarity of two images [53]. Visible images have
richly detailed and texture information, which greatly improves the efficiency of tasks,
such as target detection. In the previous algorithms, only the gradient is used as a loss to
supervise the extraction of texture features. In this paper, we innovatively introduce LBP
into the loss function to improve the extraction of texture features.

The formulation of LLBP is shown as follows,

LLBP=
1
L
(
∥∥∥LBP(I f )− LBP(Ivis)

∥∥∥
1
), (8)

where LBP(·) represents the operation of calculating the LBP features of the image, and L
is the feature vector length of LBP(·). The calculation of LBP(·) is defined as follows,

LBP(I) = concat[lbp(cell1), . . . , lbp(cell36)], (9)

where celli is a 21× 21 image patch, and there are 16 cells in image I, as shown in Figure 5.
lbp(celli) aims to calculate the LBP feature of celli. To obtain lbp(celli), we first calculate the
LBP value of each pixel in celli according to the method proposed in [31]. After calculating
the LBP value of each pixel, a 256-dimensional vector is used to represent the LBP feature
of the cell, which is the final result of lbp(·). As shown in Figure 5, the result of LBP(·) is
the concatenation of lbp(celli), (i = 1, . . . , 16), and L in Equation (9) is 4096 here.

...

image cells vectors of all cells vector of the entire image

cell1 cell4

cell16cell13

lbp(cell1) lbp(cell4)

lbp(cell13) lbp(cell16)

lbp(cell1) lbp(cell16)

……

……

……

……

……

Figure 5. The calculation process of the LBP distribution of the image. The image is divided into
16 cells, and the LBP distribution is calculated for each cell separately; in total, 16 256-dimensional
vectors are obtained. Finally, all of the vectors are concatenated to obtain a 4096-dimensional vector,
which is the LBP distribution of the entire image.

To summarize, the proposed Lcon consists of four parts as shown in Equation (10)

Lcon = αLgradient + βLintensity + γLSSIM + λLLBP, (10)

where α, β, γ, and λ are parameters used to control the trade-off between four terms.
The adversarial loss Ladv in Equation (3) denotes the sum of two adversarial losses

between the generator G and two discriminators, which can be formulated as

Ladv = E
[
− log

(
1− Dvis

(
I f

))]
+E

[
− log

(
1− Dir

(
I f

))]
, (11)

where I f denotes the fused image, Dvis

(
I f

)
denotes the probability that I f belongs to the

real visible image, and Dir

(
I f

)
denotes the probability that I f is an infrared image.

3.3.2. Loss Function of Discriminators

The visible and infrared images contain rich texture details and contrast information.
We establish an adversarial game between a generator and two discriminators for the result
of the generator to match more with the distribution of the real data. Formally, the loss
functions of discriminators are defined as follows:
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LDvis = E[− log Dvis(Ivis)] +E
[
− log

(
1− Dvis

(
I f

))]
, (12)

LDir = E[− log Dir(Iir)] +E
[
− log

(
1− Dir

(
I f

))]
. (13)

4. Experiments

In this section, we evaluate our method on many famous publicly available datasets.
First, we provide the detailed experimental configurations. Then, we compare the results
of our methods with four state-of-the-art methods, FusionGAN [28], DenseFuse [27],
DDcGAN [29], and U2Fusion [30] on the TNO dataset and the CVC14 dataset. We
also verify the improvement of the network performance by LBP and 1:4 ratio input
through ablation experiment. Third, we test the universality of LPGAN by fusing RGB and
infrared images on the RoadScene dataset and the Harvard medical dataset. Finally, we
apply our method to multi-spectral remote sensing images and compare it with the above
four algorithms.

4.1. Implementation
4.1.1. Dataset

The TNO dataset is the most commonly used infrared and visible image dataset. It
contains multi-spectral images of different scenarios registered with different multi-band
camera systems [54].

The CVC14 dataset is committed to promoting the development of autonomous
driving technologies [55,56]. It consists of two sets of sequences, the day set and night set.
The day set includes 8821 images, the night set includes 9589 images, and all images have a
640× 471 resolution.

The RoadScene dataset is a new image fusion dataset that has 221 infrared and visible
image pairs. The images of the dataset are all collected from naturalistic driving videos,
including roads, pedestrians, vehicles, and other road scenes.

The Harvard medical dataset collects medical images of human head features, consist-
ing of 127 pairs of 256× 256 resolution PET and MRI image pairs. We selected five pairs of
image pairs to test our LPGAN.

The multi-spectral remote sensing images used in this paper are recorded under the
USA Airborne Multisensor Pod System (AMPS) program and include a large number of
industrial, urban and natural scenes from a number of geographical locations captured by
two hyper-spectral airborne scanners [57].

In the training stage, we adopt the overlapping cropping strategy to expand the
dataset. In total, 36 infrared and visible image pairs of TNO are cropped into 22,912 patch
pairs with 84× 84 pixels. The 84× 84 visible and infrared image patches are used as source
images to train the generator G and as labels to encourage the discriminators. For testing,
we select 14, 26, 5, 5, and 29 image pairs from the TNO, CVC14, RoadScene, Harvard
medical datasets, and multi-spectral images, respectively.

4.1.2. Training Details

As mentioned in Section 3, parameters µ, α, β, γ, and λ are used to control the balance
of loss functions. All parameters are determined by a large number of experiments. We
set µ = 0.6, α = 0.2, β = 0.03, γ = 500, and λ = 0.5. The initial learning rate and decay
rate are set to 0.0002 and 0.75 to train the model, and RMSprop and SGD are adopted
as the optimizers of the generator and discriminators, respectively. All experiments are
conducted on a desktop with 2.30 GHz Intel Xeon CPU E5-2697 v4, NVIDIA Titan Xp,
and 12 GB memory.
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4.1.3. Metrics

An image fusion qualitative assessment mainly starts from the human visual system
and judges the fusion effect according to the task goal. The goal of infrared-visible image
fusion is to preserve the detailed and texture features of visible images and the contrast
features of infrared images as much as possible. Conversely, quantitative evaluation
comprehensively reflects the effect of image fusion through a variety of evaluation metrics.

In this paper, we select eight metrics to use to evaluate our LPGAN and four other
state-of-the-art methods. The metrics are standard deviation (SD) [58], average gradient
(AG) [59], spatial frequency (SF) [58], mutual information (MI) [60], entropy (EN) [61], peak
signal-to-noise ratio (PSNR), structural similarity index measure (SSIM) [62], and visual
information fidelity (VIF) [63].SD reflects the distribution of pixel values and contrast
information. The larger the SD is, the higher the contrast and the better the visual effect.
AG quantifies the gradient information of an image and reflects the amount of image
details and textures. The larger AG is, the more detailed information the image contains
and the better the fusion effect. SF is a gradient-based metric that can measure the gradient
distribution effectively and reveal the details and texture of an image. The larger SF is,
the richer edges and texture details are preserved. MI is a quality index that measures
the amount of information that is transferred from source images to the fused image [60].
A larger MI represents more information that is transferred from source images to the fused
image, which means better fusion performance. EN is a metric to measure the amount of
information contained in the image, and the larger the EN value is, the more informative.
PSNR is a metric reflecting the distortion and anti-interference ability by the ratio of peak
value power and noise power [29]. A large PSNR indicates that little distortion occurred
and there is a strong anti-interference ability. SSIM is used to measure the structural
similarity between two images and consists of three components, loss of correlation, loss of
luminance, and contrast distortion. The product of the three components is the assessment
result of the fused image [11]. We calculate the average SSIM between the fused image and
two source images as the final result. A larger value of SSIM indicates that more structural
information is maintained. VIF is consistent with the human visual system and is applied
to measure information fidelity. The larger VIF is, the better the visual effect and the less
distortion there is between the fused image and source images.

4.2. Results on the TNO Dataset
4.2.1. Qualitative Comparison

We provide six image pairs to report some intuitive results on the fusion performance,
as shown in the Figure 6. Compared with other methods, our LPGAN has three advantages.
First, the proposed method maintains the high-contrast characteristics of infrared images,
as shown in the third and fourth examples, which proves to be effective for automatic
target detection and location. Taking the third result as an example, only our LPGAN and
FusionGAN can clearly distinguish the front and top of the pipeline and clearly see the
edges of it. However, other methods rely too much on the information of visible image,
resulting in the loss of local thermal information in the infrared image. Second, our LPGAN
can preserve rich texture details of visible images, which is beneficial for accurate target
recognition. As shown in the first example, since LPGAN introduces LBP into the algorithm,
it significantly improves the ability of extracting details and texture features. Therefore,
only LPGAN’s results can distinguish between ground details and texture features. Finally,
our results all have rich pixel intensity distribution, which means that our results are more
consistent with human visual system. Taking the second set of experimental results as
an example, only the LPGAN fusion image can clearly show the details of the chimney,
the contours of the characters, and the thermal information in the infrared image.
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Figure 6. Qualitative results on the TNO dataset. From top to bottom: infrared image, visible image,
fusion results of FusionGAN, DenseFuse, U2Fusion, DDcGAN, and our LPGAN.

4.2.2. Quantitative Comparison

Figure 7 shows the results of all of the examined methods on 14 test image pairs of
the TNO dataset. Our LPGAN can generate the largest average values on SD, AG, SF,
and MI and the second largest values on EN, as shown in Figure 7a–e. In particular, our
LPGAN achieves the best values of SD, SF, MI, and EN on 6, 6, 7, and 6 image pairs,
respectively. For PSNR, SSIM, and VIF, our method ranks third, but the gaps with the
top-ranked methods are very small, as shown in Figure 7f–h. These results demonstrate that
our method is able to preserve the best edges and texture details and contains the highest
contrast information. Our results also contain rich information. The value on EN is only
less than DDcGAN, but our performance on MI is better, meaning that DDcGAN has more
false information than our method. In addition, our method can reduce noise interference
very well and has a strong correlation with the source images. Finally, although DenseFuse
and U2Fusion have larger values of SSIM, our method achieves a better balance between
feature information and the visual effect. From Figure 7h, it can be seen that the results of
our method have a good visual effect.
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Figure 7. Quantitative comparison with four state-of-the-art methods on the TNO dataset. The values
of SD, AG, SF, MI, EN, PSNR, SSIM and VIF for different methods on each test image pairs are shown
in (a–h), respectively. The means of every metric for different methods are shown in the legends.

4.3. Results on the CVC14 Dataset

To evaluate the effectiveness of the proposed method, we conduct experiments on the
CVC14 dataset. In total, 26 image pairs are selected from different scenes for evaluation.

4.3.1. Qualitative Comparison

We perform a qualitative comparison on five typical image pairs, as shown in the
first two rows of Figure 8, to demonstrate the characteristics of our method. The different
light and dark changes in the results indicate that only DDcGAN and our LPGAN have
high-contrast information. For example, in the first and second images, the pixel intensity
distributions of the cars, buildings, roads, and people in the results of these two methods
are abundant, but the results of other methods are not as obvious. Nevertheless, our
results preserve more light information, as shown in the last group of results, meaning that
LPGAN can extract more features from the source images. In terms of detail information
preservation and visual effects, DDcGAN has more artifacts in the image due to the pursuit
of high contrast, while the results of DenseFuse and U2Fusion have poor image visual
effects due to less contrast. In contrast, our method can retain rich edges and texture details,
while avoiding blurring and recognition difficulties due to darker colors, as shown in the
third group.

4.3.2. Quantitative Comparison

As shown in Figure 9, 26 test image pairs of the CVC14 dataset are selected to further
display quantitative comparisons of our LPGAN and the other examined methods. Our
LPGAN still achieves the largest mean values on AG, SF, and MI, as shown in Figure 9b–d.
In particular, our LPGAN achieves the largest values of SF, AG, and MI on 21, 15, and
15 image pairs. On SF and MI, our results are 8.3% and 7.0% higher than the second place,
respectively. For the metric SD and EN, our LPGAN can also achieve comparable results
and only follows behind DDcGAN, as shown in Figure 9a,e. However, the lower values
of MI and PSNR indicate that there is more noise and fake information in the DDcGAN
results. For PSNR, SSIM, and VIF, all algorithms performed very well, with small gaps,
as shown in Figure 9f–h. The results demonstrate that LPGAN can not only extract richly
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detailed information from visible images but also retain important contrast information
from infrared images.
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Figure 8. Qualitative results on the CVC14 dataset. From top to bottom: infrared image, visible
image, fusion results of FusionGAN, DenseFuse, U2Fusion, DDcGAN, and our LPGAN.

4.4. Ablation Study

Because images of different modalities have different information distributions, we
adopt a 1:4 ratio input to improve the ability of network feature extraction. At the same
time, in order to ensure that the fused images have rich details and high structural similarity,
we introduce LBP into the loss function to guide the optimization of the network. In order
to evaluate the effect of a 1:4 ratio input and LBP, we train six models with exactly the same
parameter settings on the TNO dataset according to the ratio of the input and whether
LBP is used. In Figure 10, we give out a set of experimental results to show the differences
between the six models.

4.4.1. The Effect of LBP

We use an ablative comparison by removing the LBP. As shown in Figure 10, given
the same ratio of inputs, the fusion results of LPGAN trained with LLBP contain more
detailed information and are more in line with human-visible systems. In the second row
of the figure, the images generated by LPGAN trained with LLBP obviously have sharper
outlines, and there is more detailed background information. In addition, without using
LLBP, the results have less contrast and more distortion. Through Table 1, we can find
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that after adding LBP, the performance of all models are improved in almost all evaluation
metrics, especially in SD, AG, and SF. This shows that after adding LBP, the ability of the
model to extract detailed features are indeed enhanced.
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Figure 9. Quantitative comparison with four state-of-the-art methods on the CVC14 dataset. The
values of SD, AG, SF, MI, EN, PSNR, SSIM and VIF for different methods on each test image pairs
are shown in (a–h), respectively. The means of each metric for different methods are shown in
the legends.

IR

VIS 1:4 w/ LBP

1:4 w/o LBP1:2 w/o LBP

1:2 w/ LBP

1:3 w/o LBP

1:3 w/ LBP

Figure 10. Ablation experiment on TNO dataset. From left to right: source images and fusion results
of LPGAN with different settings.

Table 1. Ablation experiment results on The TNO dataset (Red: optimal, Blue: suboptimal).

Algorithms SD AG SF MI EN PSNR SSIM VIF

1:2 w/o LBP 34.6916 7.2434 13.0421 1.6990 7.0477 14.4241 0.6287 0.8831
1:2 w/ LBP 47.8106 7.7136 14.1130 2.1066 7.3885 14.0895 0.6167 0.8744
1:3 w/o LBP 36.5414 7.7551 13.9280 1.7276 7.0850 13.8040 0.5578 0.8758
1:3 w/ LBP 37.1527 8.4237 15.2863 1.7129 7.1475 14.4447 0.6134 0.8834
1:4 w/o LBP 44.6710 7.5059 13.7169 1.9475 7.3457 14.4303 0.6035 0.8785
1:4 w/ LBP 48.6349 7.7745 14.3483 2.2591 7.4292 14.1420 0.6213 0.8777
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4.4.2. The Effect of Proportional Input

The proportional input method can enhance the ability of the network to extract the
feature information of different modal images, which is conducive to the effect of fusion.
We explore its effectiveness of different ratios of input by setting the ratio as 1:2, 1:3, and
1:4. Since the models using LBP have better performance, we compare the models using
LBP. As shown in Table 1, the last model (1:4 w/LBP) reaches the best in three of the eight
evaluation metrics, and three reaches the second best value. The other two also have a
small gap with the top value, especially in the key metrics such as SD, MI, and SSIM, which
are better than the first model (1:2 w/LBP) and the second model (1:3 w/LBP). The second
model (1:3 w/LBP) achieves the best in the four evaluation metrics, but its performance
in MI and SSIM is poor, indicating that its output results contain more false information,
and, as shown in Figure 10, the model with 1:4 scale has better visual effect compared with
the other two, so we finally choose 1:4 as the input ratio of the network.

4.5. Additional Results For RGB Images and Infrared Images

Apart from gray-scale image fusion, LPGAN can also be used in RGB-infrared image
fusion task. As shown in Figure 11, we first convert the RGB image into the YCbCr color
space. Then, we use the proposed LPGAN to fuse the luminance channel of the RGB
image and infrared image. This is because the structural information is usually saved in
the luminance channel. After that, the fused image is combined with chroma (Cb and Cr)
channels and then converted into the RGB color space. In Figure 12, we select five sets
of experimental results to show the effect of LPGAN. It can be seen from the results that
LPGAN can fully extract feature information from infrared images and visible images and
fuse them well. Taking the first image as an example, the license plate number in the visible
light image is very fuzzy, but the model accurately fuses the two based on the feature
information in the infrared image. Only DenseFusion, U2Fusion, and the output results of
our method can clearly see the license plate number of the vehicle. However, in the second
group of experimental results, only the fusion result of our method can better preserve the
color of the sky in the visible image, and only the result of our method can judge that it
is daytime.

RGB

RGB Image

IY

ICb

ICr

Infrared Image

Fusion
IF

YCbCr

Fused Image

2YCbCr 2RGB

Figure 11. The fusion framework for RGB-infrared image fusion.
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Figure 12. Fused results on the 5 image pairs in the RoadScene dataset. From top to bottom, the
infrared images, the RGB images and the fused images.

4.6. Additional Results for PET Images and MRI Images

Positron emission computed tomography (PET) images can accurately detect dense
tissues, such as human bones, but their ability to detect soft tissue structures is insufficient.
Magnetic resonance imaging (MRI) images can clearly describe the soft tissues of the
human body, with a lot of texture details. The fused image can retain the features of both
images, which is conducive to accurate image interpretation. Therefore, in this section, we
explore the application of LPGAN in medical image fusion. The fusion method is the same
as the previous section and will not be repeated here. In Figure 13, we select five sets of
experimental results to show the effect of LPGAN. From the experimental results, it can
be seen that although LPGAN is a specially designed algorithm for infrared and visible
image fusion, the principle of medical image fusion is similar to that of infrared and visible
image fusion, so LPGAN can also be well applied to medical image fusion. Moreover, due
to the powerful ability of the LPGAN network to extract detailed features, it reflects almost
all the detailed information in MRI images in the fused image. However, due to the lack
of a special network structure design for medical image fusion in LPGAN, its retention of
color information in PET images is slightly insufficient, and the overall fused image shows
white deviation. However, more information can still be obtained from the fused image
than from a single modal image.
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Figure 13. Fused results on the 5 image pairs of different (from left to right, #46, #63, #78, #85, and
#104) transaxial sections of the brain-hemispheric.

4.7. Multi-Spectral Image Fusion Expansion Experiment

In this work, we apply our method to multi-spectral remote sensing image fusion and
compare it with four state-of-the-art fusion algorithms.

We report six typical image pairs, as seen in Figure 14. The first two rows are multi-
spectral images of two different bands, and both images are taken from the same scene
and have the same resolution. The images in the first row have the same high contrast
characteristics as the infrared images, and the images in the second row have the same
feature of richly detailed information as the visible images. Thus, we follow the idea of
infrared and visible image fusion to fuse these two remote sensing images.

Detailed features are the most important information in remote sensing images.
DenseFuse, U2Fusion, and our LPGAN can preserve it well, but our method performs bet-
ter. In the third and fifth groups of results, only LPGAN exhibits subtle changes in ground
details without producing artifacts, which is very important in small target-detection tasks.
In addition, it is obvious that only DDcGAN and our method can achieve a high contrast.
For example, in the last set of results, DDcGAN and our method can clearly distinguish
roads from background information, while for the other three methods it is more difficult.
However, DDcGAN produces many artifacts in the process of image fusion, as shown in the
fourth and fifth experimental results. In contrast, the results of our method all have clear
images, no distortion or artifacts and are very consistent with the human visual system.

To evaluate the capability of LPGAN more objectively, we also conduct a quantitative
assessment. In total, 29 pairs of images are selected for testing and 8 performance metrics
are performed. For the characteristics of remote sensing images, we replace VIF with the
correlation coefficient (CC) [64]. The CC expresses the degree to which the source image
and fused image are related, and Pearson’s correlation is mostly used to measure the above-
mentioned correlation [65]. Table 2 shows the results of the quantitative comparisons. Our
LPGAN achieves the best performances on AG and SF and achieves the second largest
values in other metrics except PSNR. For PSNR, our method also shows comparable result
and generates the third largest average value. DenseFuse is slightly better than our method
in terms of SSIM, MI, and CC, but there is a large gap with our method in terms of SD, AG,
and SF, which indicates that DenseFuse is not sufficient for detailed retention. U2Fusion
and our method have a small gap in all metrics, but it only achieves better result than ours
on PSNR. The largest values of EN and SD are achieved by DDcGAN, and LPGAN all ranks
second. However, low values on SSIM, MI, and CC indicate that there is considerable fake
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information in the results of DDcGAN, and DDcGAN cannot retain structural information
from source images well.
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Figure 14. Fusion results of 6 pairs of multi-spectral remote sensing images. From top to bottom,
two kinds of remote sensing images, fusion results of FusionGAN, DenseFuse, U2Fusion, DDcGAN,
and our LPGAN.

Table 2. Evaluation of fusion results of multi-spectral remote sensing images (Red: optimal,
Blue: suboptimal).

Algorithms SD AG SF EN MI PSNR SSIM CC

FusionGAN 30.2032 5.3697 11.0368 6.4712 2.2562 15.3458 0.6251 0.6553
DenseFuse 40.3449 8.2281 16.5689 6.8515 2.5893 16.3808 0.6899 0.7651
U2Fusion 43.3423 10.7603 21.3030 6.9693 2.3393 16.5555 0.6664 0.7496
DDcGAN 52.1831 10.8181 21.0603 7.4602 2.1890 14.2005 0.5887 0.6688

Ours 43.3589 11.4636 22.6095 7.1701 2.4498 15.8229 0.6741 0.7499
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5. Discussion

In this section, we discuss a key issue of image fusion and the effectiveness of our
solution. We also introduce the limitations of our method and our future work.

For different characteristics and needs, many evaluation metrics for image fusion
have been proposed. An excellent image fusion algorithm must not only have high-quality
visual effects but also achieve good results on these metrics. During our experiments,
we found that good visual effects conflict with some metrics, such as SD, SF, and AG.
Specifically, an algorithm with a high SSIM index generally has better visual effects, but its
performance on SD, SF, and AG will be poor, such as for FusionGAN, DenseFuse, and
U2Fusion. The reverse is also the same, such as for DDcGAN. Our LPGAN successfully
avoids this problem. It not only performs well on SD, SF, and AG, but also performs well
on SSIM. We use DDcGAN as an example to analyze the causes of the previous problem.
In the process of image fusion, too much emphasis is placed on gradient intensity changes,
and the gradient direction and the texture features of the source image are ignored, leading
to poor visual effects. Based on this idea, we creatively introduce LBP into the loss function,
and, in order to preserve the spatial information of the image, we converted the calculated
LBP into 4096 dimensional vector, which enabled us to better avoid the above problems.
Firstly, since LBP can accurately describe local texture features in an image, the introduction
of LBP significantly improves the model’s ability to extract low-level features from the
source images. Secondly, depending on the LBP’s ability to improve the model’s detail
features, this paper slightly increases the weight of the loss part of structural similarity when
designing the coefficients of the loss function, thus obtaining a greater improvement in
structural similarity at the expense of less detailed features. In the experimental comparison,
LPGAN can still achieve the best performance in SD, AG, and SF indicators while ensuring
good structural similarity, indicating that LPGAN’s ability to extract detailed features is
still the strongest. As shown in the results of the ablation experiment, the introduction of
LBP can improve LPGAN in almost all aspects and successfully solve the above-mentioned
key problem.

Although LPGAN can achieve good performance on infrared-visible image fusion
and multi-spectral image fusion tasks, avoiding the above problem, its visual effects and
performance on SSIM still need to be improved. In the future, we will try to consider
image fusion from the perspective of decision-making and focus on the use of an attention
mechanism to enable the network to perform fusion operations based on the information
distribution of the source images. This is because in actual image fusion tasks, one source
image is often of low quality. Therefore, we hope to adjust the fusion parameters adaptively
by introducing an attention mechanism. Furthermore, we plan to apply our method in other
image fusion tasks, such as multi-focus image fusion and multi-exposure image fusion.

6. Conclusions

In this paper, we propose a novel GAN-based visible-infrared image fusion method,
termed as LPGAN. It is an unsupervised end-to-end model. We adopt a cGAN as the
framework and employ two discriminators, avoiding the mod collapse issue and providing
the network with high stability. Simultaneously, considering the differences of imaging
mechanisms and characteristics between visible images and infrared images, a pseudo-
Siamese network is used for a generator to extract the detailed features and contrast features.
We also set a 1:4 ratio input method according to the characteristics of different modal
images to further improve the feature extraction capability of the network. In response
to the existing problem, we innovatively introduce LBP into the loss function, which
greatly improves the texture description ability and anti-interference ability of LPGAN.
Compared with other four state-of-the-art methods on the publicly available TNO dataset,
CVC14 dataset, ROADScene dataset, and Harvard medical dataset, our method can achieve
advanced performance both qualitatively and quantitatively. The experiment on a multi-
spectral image fusion task also demonstrates that our LPGAN can achieve state-of-the-
art performance.
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