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Abstract: Several transformer-based methods for change detection (CD) in remote sensing images
have been proposed, with Siamese-based methods showing promising results due to their two-stream
feature extraction structure. However, these methods ignore the potential of the cross-attention
mechanism to improve change feature discrimination and thus, may limit the final performance.
Additionally, using either high-frequency-like fast change or low-frequency-like slow change alone
may not effectively represent complex bi-temporal features. Given these limitations, we have de-
veloped a new approach that utilizes the dual cross-attention-transformer (DCAT) method. This
method mimics the visual change observation procedure of human beings and interacts with and
merges bi-temporal features. Unlike traditional Siamese-based CD frameworks, the proposed method
extracts multi-scale features and models patch-wise change relationships by connecting a series
of hierarchically structured dual cross-attention blocks (DCAB). DCAB is based on a hybrid dual
branch mixer that combines convolution and transformer to extract and fuse local and global features.
It calculates two types of cross-attention features to effectively learn comprehensive cues with both
low- and high-frequency information input from paired CD images. This helps enhance discrimina-
tion between the changed and unchanged regions during feature extraction. The feature pyramid
fusion network is more lightweight than the encoder and produces powerful multi-scale change
representations by aggregating features from different layers. Experiments on four CD datasets
demonstrate the advantages of DCAT architecture over other state-of-the-art methods.

Keywords: change detection; transformer; dual cross-attention; remote sensing

1. Introduction

Change detection (CD) is a critical task that aims to identify changes between images
captured at different times and it has numerous applications in fields such as land cover
change analysis, ecosystem monitoring, city management, and damage assessment [1–6].
In recent years, the rapid development of imaging equipment has led to the acquisi-
tion of very-high-resolution (VHR) remote sensing images and aerial images with ease.
Xing et al. [7] proposed a spectrally enhanced multi-feature fusion method with change
magnitude map integration for effective CD. Du et al. [8] proposed a novel tri-temporal
logic-verified change vector analysis approach which can identify the errors of change
vector analysis through logical reasoning and judgment with an additional temporal image
assistance. Lv et al. [9] utilized a multi-feature probabilistic ensemble conditional random
field model to perform the task of CD for VHR remote sensing imagery. However, tradi-
tional CD methods face challenges in effectively extracting features and learning high-level
information, limiting their practical applications.
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Nowadays, deep learning-based methods have achieved remarkable success and
become the de facto standard of VHR image change detection [10]. In the literature, a
large number of attempts have been made to solve CD problems using deep learning
techniques [11–14]. Among these, convolutional neural network (CNN) has emerged as
the most commonly used architecture due to its ability to preserve fine detail. To extract
discriminative features, many CNN-based methods [15–17] use Siamese architecture [18]
and it is often accompanied by stacked convolution layers [10,19], dilated convolutions [19],
spatial pyramid pooling layers, and various attention mechanisms (e.g., channel and
spatial attention) [20–23] are utilized to increase the receptive field, which is essential to
capture long-range contextual information within the spatial and temporal scope. This
type of approach is straightforward, and the introduction of an attention-based mecha-
nism is effective in capturing global details. However, these methods use attention to
re-weigh the bi-temporal features from Siamese-based CNN architecture to relate long-
range spatio-temporal information [21–24], where more attention is paid to balance and
integrate high-level semantic features, and the interactions between low-level details are
usually ignored. The tremendous advancements and successes of transformers in natural
language processing (NLP) [25] have led to their widespread adoption and development
for use in vision tasks, such as ViT [26], Swin Transformer [27] and SETR [28].

The self-attention mechanism is an important component of transformers, which ex-
plicitly models the interactions between all entities of a sequence. It capture the interaction
among n entities by encoding each one with global contextual information. In detail, by
using learnable weight matrics WQ, WK, and WV , the input X is first projected onto three
weight matrices to get Q = XWQ, K = XWK, and V = XWV , respectively. Then, attention
scores are obtained by computing the dot-product of the queries with all keys, which can
be seen as a query-matching process with all values. Due to the token structure, ViT and
its variants have a larger receptive field and capture low frequencies, mainly about the
global shape and structure. In contrast, CNN extracts features by pixel-wise convolution,
and it has a smaller receptive field and captures high frequencies (such as local details
and textures). According to the findings presented in [29], the multi-head self-attentions
(MSAs) utilized in ViT and CNN exhibit contrasting behaviors. Specifically, while MSAs
function as low-pass filters, CNN are more akin to high-pass filters. This is because self-
attention is a global operation that exchanges information between patch tokens, and it
is better at capturing global information (low frequencies) than local information (high
frequencies). Therefore, high-frequency information by CNN should be combined with
low-frequency information by ViT, which is especially important for pixel-level segmenta-
tion task, e.g., (fine-grained) change detection. However, most methods focus on image
classification [26,30,31], object detection [32,33], semantic segmentation [28,31], and very
few works on transformers for CD have been reported in the literature [34–36].

We note that traditional Siamese-based CD methods split two-stream branches to
separately extract features and they ignore information fusion between bi-temporal images.
Transformers utilize queries and keys to calculate self-attention weights, which contains
the routine of comparing and querying implicitly. In terms of CD, it is natural to utilize the
mechanism based on a transformer to extract change features and enhance the information
interaction between bi-temporal images along the spatio-temporal dimension. In fact,
global information, such as smooth regions, mainly contains low-frequency components,
while high-frequency components contain local detail information such as object bound-
aries [37]. The human visual system, from different frequencies, realizes the classification
and identification of object semantics by extracting these visual features’ representation.
Some scholars have been trying to explore the high-frequency and low-frequency informa-
tion extraction capabilities of the network from the perspective of frequency and combine
them, and they have achieved competitive results in various visual tasks [38,39]. Therefore,
the development and application of a new vision architecture are imperative to capture the
semantic change information in pairs of CD images from high-frequency and low-frequency
perspectives. In light of these requirements, a specially well-designed, novel cross-attention-
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based transformer framework is proposed for CD, which is efficient, accurate, and robust.
We base our approach on the intuition that CD is an alternative process of comparing image
patches, which is similar to visual change observation of human beings with respect to
patch-scanning and comparison [40,41]. Traditional Siamese-based CD methods, which
extract features separately from each stream, fail to incorporate information fusion between
bi-temporal images. In contrast, joint information fusion and feature extraction at different
scales are more intuitive as they better capture the complex bi-temporal features of interest.
More importantly, transformer and CNN are complementary in feature representation with
respect to high-frequency-like fast change and low-frequency-like slow change [29], and the
pure usage of either type may be limited in representing complex bi-temporal features [39].
To this end, a new dual cross-attention mechanism block is proposed to combine CNN’s
outstanding high-frequency capture ability with transformer’s global attention on low
frequencies. Our proposed framework is not only efficient and accurate, but also robust
to changes in remote sensing imagery. The key novelties of our work lie in the following
aspects:

• A novel dual cross-attention-based module is introduced into the transformer encoder
block. This module features a dual branch structure that enables the extraction of high-
and low-frequency information, resulting in a more powerful semantic association
modeling between bi-temporal patches;

• A hierarchical transformer encoder is presented to extract and merge multi-scale
features simultaneously, and a feature pyramid fusion network decoder is aimed
to yield discriminable feature difference representation that alleviates the problems
caused by naive context aggregation;

• Extensive experiments on four CD datasets demonstrate that our proposed method
outperforms previous state-of-the-art methods in terms of accuracy and robustness.

The structure of this paper is as follows: Section 2 provides a review on deep-learning-
based CD methods. In Section 3, we present our proposed methodology in detail, outlining
the advantages of the dual cross-attention-based transformer (DCAT) framework. Section 4
presents comprehensive comparisons between DCAT and other SOTA methods, providing
a thorough evaluation of its effectiveness in Section 5.Finally, Section 6 concludes the paper,
summarizing the contributions of our work and discussing future directions for research in
the field of CD.

2. Related Work

In recent years, the literature has seen a growing number of deep-learning-based
change detection approaches due to their powerful multi-level feature representation ability
and effective end-to-end feature learning [1,10]. This section presents a comprehensive
review of deep-learning-based CD methods, categorized into two main groups for ease of
analysis. By surveying the current deep-learning-based CD methods, we aim to provide
researchers with a thorough understanding of the latest advancements and foster further
research in this important area of remote sensing.

2.1. CNN-Based Change Detection

CNN-based change detection approaches learn the mapping from bi-temporal images
to a change probability map [42]. Assigning a change score to each pixel in an image is
a common approach for detecting changes in remote sensing CD tasks. In this method,
each pixel is assigned a score based on the magnitude of change observed between the two
input images. Higher scores indicate more significant changes, while lower scores indicate
regions where no or minimal changes have occurred. Peng et al. [43] proposed an effective
encoder-decoder CD architecture, where an improved UNet++ [44] is utilized for semantic
segmentation. To generate the change mask, the architecture employs a multilateral fusion
strategy. Daudt et al. [15] explored three different U-Net-based variants, namely, FC-EF,
FC-Siam-Conc, and FC-Siam-Diff, by comparing two CNN architectures: early fusion (EF)
and Siamese (Siam). In addition, two Siamese extensions, concatenation and difference,
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are also explored. Chen et al. [45] proposed CDNet which utilizes a deep Siamese FCN
to extract rich semantic features and a shallow FCN to classify feature differences. Due
to the exceptional feature extraction capabilities of CNNs, many CD methods have been
developed that incorporate some advanced techniques, such as atrous spatial pyramid
pooling [46], depth-wise convolution [47], and attention mechanisms (including channel
and spatial attention) [20]. However, these methods are the extensions of the semantic
segmentation task without considering the essence of CD difficulties.

Considering the low overall discrimination between change features, metric learning is
used to learn a parameterized embedding space, which is usually implemented by Siamese,
and symmetric Siamese architecture are often utilized by most CD approaches [24,48,49].
Siamese FCN contains two identical networks, which share the same weights. Shi et al. [50]
introduced a metric module for the deeply supervised attention metric-based network
(DSAMNet) to enable change map learning through deep metric learning. The spatio-
temporal attention-based network (STANet) [17] utilizes a spatial and temporal attention
mechanism to learn spatial and temporal features for CD. By employing metric learning,
the network obtains change maps. Bai et al. [16] proposed an edge-guided recurrent convo-
lutional neural network (EGRCNN) that utilizes prior knowledge, such as edge structure
information. EGRCNN integrates discriminative information and edge structure priors
into a single framework to enhance change detection performance, with a particular focus
on generating more precise building boundaries. Liu et al. [20] introduced a dual-task
constrained deep Siamese convolutional network (DTCDSCN) with a dual attention mod-
ule that consists of three subnetworks: a change detection network and two semantic
segmentation networks. By performing CD and semantic segmentation tasks simultane-
ously, DTCDSCN can learn more discriminative object-level features and produce a more
informative change detection map. Chen et al. [51] presented a dual attentive fully con-
volutional Siamese network (DASNet) along with a weighted double-margin contrastive
loss to enhance the robustness against pseudo-changes. Zheng et al. [52] suggested a
single-temporal supervised object change detection approach to address the challenge of
obtaining paired labeled images. By utilizing object change between unpaired images as
supervisory signals, this approach fundamentally mitigates the difficulties of collecting
paired labeled images. Several loss functions have been investigated to restrict the data
representations. For instance, Zhang et al. introduced an enhanced triplet loss function [19],
while Zhan et al. suggested a weighted contrastive loss function [53] for cross-domain
optical and aerial images.

While the aforementioned methods have contributed to improving the performance
of CD, they are limited by the inherent locality of convolution operations in CNN-based
methods. Specifically, these methods have difficulties in effectively extracting long-term
global features and exploiting the inner relationships between bi-temporal image inputs,
thus limiting the ability of the CD network. As a result, there is a need for a more effec-
tive change representation mechanism that can provide more robust CD results. Such a
mechanism should be able to capture long-term dependencies and contextual information
across the bi-temporal inputs, allowing for a more comprehensive and informative feature
representation. By addressing these limitations, it may be possible to further enhance the
accuracy and robustness of CD models, thereby enabling their deployment in a wider range
of real-world applications.

2.2. Transformer-Based Change Detection

The impressive performance of transformers in natural language processing (NLP) [54]
has inspired researchers to utilize transformers in different computer vision tasks. ViT [26]
treats each image as a sequence of tokens for image classification. PVT, as introduced
in [55], was the first work to incorporate a pyramid structure into a transformer, showcasing
the capabilities of a transformer-based backbone for dense prediction tasks. SETR [28],
proposed by Zheng et al., utilizes ViT as a backbone to extract features for semantic
segmentation. Xie et al. introduce SegFormer [56], a highly effective and straightforward
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semantic segmentation framework that unifies transformer with lightweight multilayer
perceptron decoders. SegFormer features a hierarchically structured encoder for multiscale
feature extraction while avoiding the need for complex decoders. Given the powerful
representational capabilities of transformer-based models, their performance has shown
promise across various tasks, including object detection [32,33], super-resolution [57], and
image generation [58].

Recently, researchers attempted to adapt transformer for remote sensing CD. To this
end, BIT [34] is proposed that effectively models contexts within the spatial-temporal do-
main and employs a Siamese tokenizer that extracts compact semantic tokens from feature
maps obtained from a CNN backbone. Despite the promising improvements by trans-
former, it extracts features by a Siamese CNN backbone before transformer blocks, and the
CD performance depends heavily on the feature extraction ability of CNN. Li et al. [35] pro-
posed TransUNetCD, a hybrid encoding–decoding transformer model for CD that combines
the strengths of both transformer and UNet. Zhang et al. [36] designed a pure transformer
architecture with a Siamese U-shaped structure. In addition, Wang et al. [59] investigated
the impact of remote sensing pretraining on downstream tasks and utilized ViTAE for
higher performance improvement. However, these methods overlook the significance of
integrating and comparing joint information during feature extraction, leading to the loss
of critical semantic details. In other words, compared with the improvements by trans-
former in NLP, more efforts should be focused on mining transformers and cross-attention
mechanisms specific to CD problem.

Based on the aforementioned analysis, it is evident that traditional approaches tend to
emphasize either CNN or transformer features independently. Nonetheless, the significance
of complementary feature combinations is often overlooked. To address this issue, a dual-
branch frequency mixer is proposed, which synergistically integrates the CNN’s robust
capacity for extracting high-frequency representations with the transformer’s strengths.
Furthermore, to cater to the diverse scale of objects across various regions, a hierarchical
architecture is adopted, deviating from a pure Siamese structure.

3. Materials and Methods

In this section, the overall architecture of DCAT is briefly described, and key compo-
nents of the proposed approach are then elaborated, including overlap patch embedding
module (OPEM) and dual cross-attention block (DCAB). Next, the feature pyramid fusion
network and loss function are introduced.

3.1. Overall Architecture

The general process of our CD model based on DCAT is presented in Figure 1a.
Our model comprises two main modules: a hierarchical encoder and a feature pyramid
fusion network (FPFN). The hierarchical encoder is designed to capture fine-grained fea-
tures that preserve high-resolution remote sensing image details, making it an essential
component for CD tasks. By leveraging a hierarchical feature encoder, the network can
effectively capture semantic details at different scales, allowing for a more comprehensive
and informative feature representation. In addition, our proposed method employs a pyra-
mid decoder to gradually aggregate multi-scale features, thereby obtaining more reliable
CD maps. This approach enhances the network’s ability to capture and exploit multi-scale
information, leading to more accurate and robust change detection results. Overall, our
DCAT-based CD model offers a promising solution for the challenging task of CD in remote
sensing imagery. Code and models can be found at https://github.com/zhouyy314/DCAT,
accessed on 24 March 2023.

https://github.com/zhouyy314/DCAT
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Figure 1. The overall architecture of DCAT-based CD framework. (a) The pipeline of DCAT; (b) Dual
cross-attention mixer; (c) Cross-attention mechanism. DCAT is divided into two main components:
an encoder and a decoder. The encoder is the dual cross-attention mixer, which extracts hierar-
chical features using a combination of CNN and transformer. The decoder is the feature pyramid
fusion network, which progressively merges multi-level features to generate the semantic change
segmentation map. The novelty and rationale of DCAT lie in dual cross-attention, cross-attention
aims at enhancing change features by interactive attention between bi-temporal images, and the dual
structure is able to combine complementary high-frequency features by CNN and low-frequency
features by transformer. To the best of our knowledge, there are no other methods in the literature
that explore dual cross-attention for change detection tasks.

Each stage of the model includes an overlapping patch embedding layer that down-
samples the feature maps, as well as a set of dual cross-attention blocks that leverage both
transformer and convolutional operations in parallel. The last block of each stage is the
DCAB, which contains a low- and high-frequency cross-attention mixer. It is worth noting
that local contextual change features captured by a cross-attention mechanism help avoid
the split in the two-stream network. Furthermore, low- and high-frequency information
communication of bi-temporal patches within each window are achieved by cross-attention,
and it behaves like the process of information query and comparison. The low- and high-
frequency mixers employ dual cross-attention mechanisms twice to enhance the interaction
between bi-temporal feature tokens. Moreover, the joint feature fusion and comparison
are implemented at all stages, rather than sequential comparison after feature extraction.
To elaborate, pairs of patches are input into the hierarchical encoder, which gradually
reduces the spatial resolution and doubles the channel dimension at each stage. After that,
multi-level feature maps [F1

1 , F1
2 , F1

3 , F1
4 ] and [F2

1 , F2
2 , F2

3 , F2
4 ] with resolutions 1/4, 1/8, 1/16

and 1/32 of the original bi-temporal images are obtained, respectively. Finally, four-level
features with different resolutions are fed into the FPFN to obtain the final CD mask with
the size of H ×W.

The central idea behind DCAT is to leverage dual cross-attention to effectively capture and
incorporate the global context that accounts for multi-level semantic differences. By combining
the exceptional local modeling capability of CNN with the powerful global dependency percep-
tion of transformer, high- and low-frequency information can be extracted, respectively. These
two branches correspond to the mixer, as detailed in Section 3.3. For ease of reference in the
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following section, we use the terms “high-frequency features” and “low-frequency features” to
refer to the CNN features and transformer features, respectively.

3.2. Overlapped Patch Embedding Module

In visual tasks, multi-level and multi-scale feature representation is helpful to aggre-
gate semantic context information and spatial details [27,55,60]. In consequence, to improve
the dense-pixel-prediction performance, it is important to introduce a hierarchical structure
which is adequate in mixing low- and high-level features.

An overlapping patch merging process is used to preserve the local continuity and
make full use of the local context information around small-size patches, OPEM shrinks
hierarchical feature Fi from the i-th stage of resolution H

2i × W
2i × Ci to the (i + 1)-th stage of

resolution H
2i+1 × W

2i+1 × Ci+1 by convolution, where i ∈ {1, 2, 3}, Ci < Ci+1. As the network
goes deeper, the number of tokens is reduced and the receptive field is increased thanks to
the progressive downsampling applied by the model.

3.3. Dual Cross-Attention Transformer Block

Vision Transformers (ViTs) are widely used in visual tasks, in which many change
detection approaches use the classic idea of self-attention. The vanilla vision transformer
consists of a multi-head self-attention (MSA) module and a feed-forward network (FFN).
However, MSA computes dependencies between all patch tokens, resulting in a strong
emphasis on aggregating global information across all layers. This approach inevitably
leads to a significant increase in computational complexity, which scales quadratically with
the number of input tokens.

Although certain approaches such as PVT [55] and SegFormer [56] attempt to decrease
the spatial scale of keys and values prior to the self-attention operation, using a single
branch such as convolution can lead to the loss of small object details and the degradation of
high-frequency information (e.g., local textures). As a result, the ViTs’ modeling capability
can be weakened. That is to say, high-frequency details are easily ignored by ViTs, yet CNN
has outstanding local modeling ability. In fact, in visual tasks, high-frequency information
is very important. Therefore, we propose a low- and high-frequency cross-attention mixer
to aggregate global and local information, respectively.

As shown in Figure 1b, the mixer consists of two sub-mixer, the low-frequency mixer
and the high-frequency mixer, both of which employ a cross-attention mechanism to interact
with features from another phase. For simplicity, the residual connection and FFN are
omitted. It is worth noting that we transplanted the effective high-frequency representation
extraction ability of CNNs to transformer block and adopted a multi-branch structure in
high-frequency mixer, which was inspired by Inception [61]. Rather than directly inputting
image tokens into the low- and high-frequency mixer, the mixer introduced in this study
separates the input feature along the channel dimension using a pre-defined ramp division
strategy. The separated components are subsequently fed into the high- and low-frequency
mixer, respectively. In contrast to the conventional self-attention mixer, our novel mixer
employs a hybrid architecture that integrates the strengths of CNN and transformer models.
The novelty of our approach lies in its ability to perform attention calculation twice while
maintaining a smaller number of parameters.

Specifically, the input feature map F ∈ RN×C is first partitioned into two components
along the channel dimension: Fl ∈ RN×Cl and Fh ∈ RN×Ch , where Cl + Ch = C. Then, Fl
and Fh are fed into low-frequency mixer (LFM) and high-frequency mixer (HFM) to com-
pute the cross-attention feature F

′
l and F

′
h, respectively. Finally, F

′
l and F

′
h are concatenated



Remote Sens. 2023, 15, 2395 8 of 30

together, and the final feature output Fo is obtained through a convolutional layer with the
kernel size 3× 3. It can be defined as:

F
′
l = LFM(LN(Fl)), (1)

F
′
h = HFM(LN(Fh)), (2)

Fo = Conv3×3([F
′
l ; F

′
h]), (3)

where LN is layer normalization, [;] denotes concatenation.
In many transformer-based methods [26,27,54,56], a traditional self-attention mecha-

nism is only applicable to a single input sequence. The attention function maps a query
and a set of key-value pairs to an output that is a weighted sum of values. In order to
adapt to the dual input situation in CD, a novel cross-attention is presented to model
the inner connection and information interaction between token pairs. To compute the
cross-attention scores between queries and keys and obtain the weighted sum of values, we
first compute the dot product of each query q1

i with all keys k2
i that belong to another token.

As is done in many transformer-based methods, we divide the dot products by
√

dk before
applying the SoftMax function to obtain the weights on the values v1

i . For computational
convenience, we pack the queries, keys, and values into matrices Q, K, and V, respectively.
Taking the cross-attention in the high-frequency mixer as an example, the above calculation
process is described by the following formulas

CAh1(Qh1
i , Kh2

i , Vh1
i ) = SoftMax(

Qh1
i (Kh2

i )T
√

dk
)Vh1

i , (4)

CAh2(Qh2
i , Kh1

i , Vh2
i ) = SoftMax(

Qh2
i (Kh1

i )T
√

dk
)Vh2

i , (5)

where CAh1(Qh1
i , Kh2

i , Vh1
i ) and CAh2(Qh2

i , Kh1
i , Vh2

i ) denote cross-attention feature maps
for bi-temporal tokens at the i-th (i = 1, 2, 3, 4) stage in the high-frequency mixer. The
cross-attention calculation process in the low-frequency mixer is similar.

Finally, our DCAT is also equipped with a feed-forward network (FFN), and the
difference is that it incorporates the above LFM and HFM; LayerNorm (LN) and residual
concatenation are also applied. Therefore, the proposed DCAT is formally defined as

F
′
= F + Fo, (6)

F̂ = F
′
+ FFN(LN(F

′
)). (7)

3.3.1. High-Frequency Cross-Attention Mixer

Considering the sensitivity of the convolution operation to high-frequency detail
information and the parameter optimization, we adopt three different parallel branches to
capture high-frequency components and depth convolution for spatial reduction before
cross-attention operation.

In detail, Fh is convolved twice in the first branch, using a depth-wise convolution
(DWConv) with kernel size 1× R and then R× 1. Similarly, the second branch utilizes a
DWConv operation with the kernel size of R× R. Here, R is a reduction ratio and maintains
different reduction ratios at different stages, which is achieved by convolution with a step
size of R. The third branch utilizes max pool operation before 3× 3 DWConv. After the
previous operation, three feature maps after space reduction are concatenated together as
the input of cross-attention. It can be formulated as:

C1 = DWConv1×R(DWConvR×1(Fh)), (8)

C2 = DWConvR×R(Fh), (9)

C3 = DWConv3×3(MaxPool(Fh)), (10)
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where C1, C2, C3 denote the outputs of three branches, respectively, DWConvk1×k2(·) is
depth-wise convolution with the kernel size k1 × k2. Then, C1, C2, C3 are concatenated
together and flattened following layer normalization to obtain X.

Obviously, the obtained token sequence X is shorter than the flattened input feature Fh.
Referring to the Q, K, and V design in the vanilla self-attention mechanism, we obtain new
Qh, Kh, Vh in the high-frequency mixer by: Qh = FhWQ

h , Kh = XWK
h , and Vh = XWV

h . Here,
WQ

h , WK
h , and WV

h are learnable matrices to generate query, key, and value, respectively.
Then, according to the definition of Equation (4) and (5), the cross-attention feature map F

′
h

of bi-temporal tokens input in the high-frequency mixer is obtained, respectively.

3.3.2. Low-Frequency Cross-Attention Mixer

We use cross-attention again in thte low-frequency mixer to communicate semantic
information between tokens from different phases. Although the attention mechanism has
a stronger ability to learn global representation, it also inevitably introduces a significant
computational burden, particularly for shallow layers of the network when the feature
resolution is relatively large. To address this issue, we adopt a simple approach of using
an average pooling (AvePool) layer to reduce the feature resolution of Fl before the cross-
attention operation. Then, an upsample operation is utilized to recover spatial resolution.
The low-frequency mixer can be defined as:

F
′
l = Up(CAl(AvePool(Fl))), (11)

where CAl(·) is the cross-attention operation and F
′
l is the output in LFM, respectively.

In this way, the computational overhead of the low-frequency branch is reduced, meanwhile,
global information embedding and communicating are enhanced.

3.3.3. Frequency Ramp Structure

From the perspective of signal processing, the high-frequency component corresponds
to the part of the image that changes violently, that is, the edge (contour) or noise of
the image, while the low-frequency component represents the area in the image where
the brightness or gray value changes slowly, describes the main part of the image, and
is a comprehensive measure of the entire image strength. Therefore, in many visual
frameworks, bottom layers play more roles in capturing high-frequency details while deep
layers do so more in modeling low-frequency global information. By capturing the details
in high-frequency components, lower layers can capture visual elementary features, and
also gradually gather local information to achieve a global understanding of the input. We
designed a frequency ramp structure which gradually splits more channel dimensions from
lower to higher layers to a low-frequency mixer and thus leaves fewer channel dimensions
to the high-frequency mixer. In many visual frameworks, the lower layers are typically
responsible for capturing high-frequency details, while the deeper layers are more focused
on modeling low-frequency global information. This is because the lower layers are better
suited for capturing visual elementary features and gradually gathering local information
to achieve a global understanding of the input. To take advantage of this characteristic, we
propose a frequency ramp structure that gradually splits more channel dimensions to the
higher layers. Specifically, more channel dimensions are allocated to the high-frequency
mixer in the lower layers while fewer channel dimensions are allocated to that in the higher
layers. This approach enables our network to effectively capture both high-frequency
details and low-frequency global information and facilitates the efficient processing of
visual inputs across different frequencies.

Figure 1 illustrates our proposed DCAT architecture, which comprises four stages
with varying feature sizes and channel dimensions. For each DCAB, we pre-define a simple
channel split strategy to divide low- and high-frequency mix with Cl and Ch channels,
respectively. Assuming that the total channel number of the input feature map is C and
Cl + Ch = C, Ch

C gradually decreases from shallow to deep layers, while Cl
C reverses.
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By employing the ramp division strategy, DCAT is able to effectively balance high- and
low-frequency components across all layers. Different channel division methods will be
discussed in the ablation study.

In short, the advantages of the proposed dual cross-attention block lie in the following aspects:

(1) We introduce a high- and low-frequency mixer that combines the strengths of convo-
lution and transformer to enhance the perception capability of cross-attention from
frequency viewpoint. By capturing both high- and low-frequency information from
bi-temporal inputs, the mixer aims to improve the modeling ability of the network
for high-frequency information while leveraging the sensitivity of transformer to
low-frequency information. This approach enhances the richness and diversity of
feature representation, leading to more accurate and robust change detection results;

(2) The cross-attention mechanism is utilized twice to query and compare semantic in-
formation between bi-temporal features. This enables the network to capture more
complex and subtle changes between the input images, leading to a more comprehen-
sive and informative feature representation.

3.4. Feature Pyramid Fusion Network

The feature pyramid fusion network (FPFN) aims to aggregate multi-scale bi-temporal
feature input and predict distinguishable change maps. Our proposed FPFN restores the
original resolution by the progressive up-sampling and merging the early-stage information.

As shown in Figure 2, the proposed FPFN consists of four layers. We get bi-temporal
feature maps F1

i and F2
i (i = 1, 2, 3, 4) from encoder, then a bi-temporal feature fusion

module (BFF) is applied to merge different temporal features to obtain fused feature
Fi, followed by upsampling and concatenation layers, which aggregates both shallow
and deep context information. The BFF fuses semantic change information by further
enhancing the difference and consistency of bi-temporal features which correspond to
the difference enhancement module (DEM) and the consistency selection module (CSM),
respectively. Finally, the representation is fused and restored through a linear layer and
two deconvolution layers. The final per-pixel change result CM0 is obtained by a 1× 1
convolutional layer.

Figure 2. Illustration of feature pyramid fusion network.

The above procedure can be formalized as:

Fi = BFF(F1
i ; F2

i ), (12)

F̂i = Conv([Fi; Up(Fi+1)], (13)

CMi = Conv(F̂i), (14)

CM0 = Conv([F̂1; Up(F̂2); Up(F̂3); Up(F̂4)]). (15)

Here, BFF is the bi-temporal feature fusion module. In Equation (13), i = 1, 2, 3, F̂4 is
obtained by convolution operation on F4. It is worth noting that before concatenation in
Equation (15), F̂i(i = 2, 3, 4) are upsampled to maintain the same resolution with F̂1.

Generally, the fusion of bi-temporal features in CD task can be accomplished through
direct subtraction followed by the calculation of the absolute value or by concatenating
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the features in the channel dimension. However, these simple extraction schemes fail to
distinguish between the changed and unchanged classes during the feature extraction
process, and they have limited effectiveness in mining and combining mixed features.
To overcome this limitation, we emphasize the difference and consistency between different
temporal features to further explore and enhance the fusion feature representation.

As shown in Figure 3, F1
i and F2

i are added separately to obtain the input features
of the next stage after parallel DEM and CSM. When extracting cross-temporal features,
the model learns not only the differences between changed and unchanged regions but
also their consistency. In other words, the most effective and important channel features
from different phases are extracted by the common feature , which may mean unchanged
regions or ground objects because they have similar texture patterns. Whereas, difference
features are obtained by DEM, which corresponds to the changed regions. In this way,
differences and consistencies between bi-temporal features have been further enhanced
and distinguished, while the information useful for change detection is separated from
the mixed features. After the refinement, a more informative and robust feature map is
generated, then a change map is obtained by fusing gradually layer by layer.

Figure 3. Illustration of bi-temporal feature fusion module (BFF). (a) Consistency selection module
(CSM); (b) Difference enhancement module (DEM).

3.4.1. Consistency Selection Module

The goal of the Consistency Selection Module (CSM) is to select bi-temporal chan-
nel features in an adaptive manner, based on the common-modality feature that cor-
responds to regions that remain unchanged over time. Figure 3a illustrates how CSM
dynamically selects features using a SoftMax attention mechanism that is guided by in-
formation from different temporal branches. Firstly, the common-attribute feature maps
FC ∈ RC×H×W are extracted by directly summing input bi-temporal features F 1

i ∈
RC×H×W and F 2

i ∈ RC×H×W . Secondly, the feature maps C1 ∈ RC×1×1 and C2 ∈ RC×1×1

are obtained through two two-layer fully connected networks. Finally, FC1
i and FC2

i
are obtained by multiplying the attention maps of bi-temporal features with their inputs,
respectively. The above process can be formulated as:

FC = F 1
i +F 2

i , (16)

V avg = AvePool(FC), (17)

C1 = FC1(V avg), (18)

C2 = FC2(V avg), (19)

FC1
i = F 1

i ⊗ S(C1), (20)

FC2
i = F 2

i ⊗ S(C2). (21)

Here, V avg ∈ RC×1×1, C1 ∈ RC×1×1 and C2 ∈ RC×1×1 are three intermediate variables;
AvePool is an average pooling layer; FC1 and FC2 refer to two two-layer fully connected
networks while they have the same weight at the first layer to reduce parameters; S and ⊗
represent the SoftMax opertation and element-wise multiplication, respectively.
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3.4.2. Difference Enhancement Module

The difference enhancement module (DEM) aims at enhancing the difference of
changed regions. As illustrated in Figure 3b, this module leverages the channel-wise
attention weighting mechanism to enhance temporal-related difference. Firstly, we ob-
tain the differential feature FD ∈ RC×H×W by directly substracting F 1

i ∈ RC×H×W and
F 2

i ∈ RC×H×W . Secondly, DEM infers attention maps Z ∈ RC×1×1 based on differential
feature maps FD. The attention maps are then multiplied with each input feature map to re-
fine the features adaptively. Finally, the refined feature maps are added to the input feature
maps to obtain enhanced differential feature maps FD1

i ∈ RC×H×W and FD2
i ∈ RC×H×W .

The above procedure can be formulated as:

Dmax = MLP(MaxPool(FD)), (22)

Davg = MLP(AvePool(FD)), (23)

Z = σ(Dmax + Davg), (24)

FD1
i = F 1

i ⊗ (1 + Z), (25)

FD2
i = F 2

i ⊗ (1 + Z). (26)

Here, MaxPool and AvePool refer to global max pooling and global average pool-
ing, respectively; Dmax and Davg are intermediate variables; MLP is a simple two-layer
1× 1 CNN; the element-wise multiplication operation is denoted by ⊗, and the sigmoid
function is represented by σ.

After extracting the consistency features and difference features, interaction and
aggregation of the overall information during extraction process are completed by the
direct summation. It can be formulated as

F̂1
i = FD1

i +FC1
i , (27)

F̂2
i = FD2

i +FC2
i , (28)

Fi = F̂1
i + F̂2

i , (29)

where Fi is the output feature after BFF at the i-th stage.
The proposed FPFN offers several advantages, which can be summarized in the

following three aspects.

(1) FPFN employs a pyramid architecture to fuse features layer by layer, incorporat-
ing both early coarse features and deep fine features. This approach enhances the
network’s ability to capture complex and multi-scale information;

(2) The network utilizes CSM to select similarities and takes advantage of the SoftMax
function’s normalization to reassign weights to feature channels, which allows for
the screening of bi-temporal unchanged features. This adaptive selection of channel
features from two input features minimizes the introduction of redundant features,
allowing the network to focus on the most reliable common features;

(3) The proposed DEM enhances changed attributes by utilizing direct subtraction to
obtain the difference representation of input features. By doing so, the network
improves the feature separability between changed regions and unchanged regions,
leading to more accurate change detection results.

3.5. Loss Function

The binary cross-entropy loss is a commonly used loss function for CD tasks. Since
pixel-wise CD can be considered as a binary classification task, we use the following binary
cross-entropy loss function as the loss function of DCAT:

L=− 1
N
[

∑
yn=1

yn log(pn)+ ∑
yn=0

(1−yn) log(1−pn)
]
, (30)
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where N is the number of image pixels; yn is the true label of the n-th pixel, yn = 1
represents the changed class, and yn = 0 represents the unchanged class; pn denotes
the change possibility in the predicted map. Technically, four change maps CMi with
different resolutions calculate the binary cross-entropy loss Li with the scaled ground truth,
respectively. Meanwhile, the final change map CM0 also calculates the binary cross-entropy
loss L0 with ground truth. Then, all losses are weighted and summed to get the overall loss
L. It can be formulated as:

L =
4

∑
i=0

wiLi, (31)

where wi is a trade-off parameter, Li is binary cross-entropy defined by Equation (30).

4. Results

In this section, we provide a comprehensive evaluation and comparison of our method
with other state-of-the-art change detection methods.

4.1. Data Sets

The proposed DCAT was evaluated on the following four change detection data sets,
details are described in Table 1.

• LEVIR-CD: LEVIR-CD is a building change detection data set, which consists of
637 very high-resolution image pairs with the resolution of 1024 × 1024 pixels [17].
Following the default configuration, the input images are partitioned into small
patches with a size of 256× 256 pixels. We used a total of 7120 image pairs for training,
1024 for validation, and 2048 for testing.

• LEVIR-CD+: LEVIR-CD+ is based on LEVIR-CD, which contains 985 image pairs [62].
However, the LEVIR-CD+ dataset mainly focuses on urban areas. Similar to LEVIR-
CD, each image was divided into 256×256 pixel patches, 65% of image pairs are used
for training and the remaining 35% for testing.

• WHU: The WHU building change detection data set consists of bi-temporal aerial
images obtained in 2012 and 2016 [63]. The image resolution of this dataset is be-
tween 32,507 and 15,354 pixels. The large-size images are split into non-overlapping
256 × 256 slices and are randomly divided into three parts, including 6096, 762, and
762 images for training, validation, and testing, respectively.

• SYSU-CD: The SYSU-CD dataset contains 20,000 pairs of 256 × 256 aerial images
patches, the images were taken over Hong Kong in 2007 and 2014 [50]. Followed by
the default configuration by the authors, the sample numbers for training, validation,
and test are 12,000, 4000, and 4000, respectively.

Table 1. Description of change detection datesets.

Dataset Pairs Image Size Resolution(m/pixel) Training Set Validation Set Test Set

LEVIR-CD 637 1024 × 1024 0.3 7120 1024 2048
LEVIR-CD+ 985 1024 × 1024 0.5 10,192 - 5568

WHU 1 32,507× 15,354 0.2 6096 762 762
SYSU-CD 20,000 256 × 256 0.5 12,000 4000 4000

4.2. Comparative Methods

To evaluate the effectiveness of the proposed method, the following SOTA CD methods
are used for comparison:

• FC-EF: FC-EF is based on the U-Net architecture [64], in which the bi-temporal images
are concatenated and fed into a fully convolutional network [15]. Skip connections are
employed to improve the border accuracy of the changed regions.
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• FC-Siam-Conc: FC-Siam-Conc is a variant of the FC-EF model and it concatenates
two skip connections during the decoding step, which comes from the corresponding
encoding stream [15].

• FC-Siam-Diff: FC-Siam-Diff is another variant of the FC-EF model, FC-Siam-Diff uses
the absolute value of the feature difference to merge the bi-temporal information [15].

• DSAMNet: DSAMNet is a deeply supervised attention metric-based network, which
integrates convolutional block attention modules for extracting features along the
spatial-wise and channel-wise dimension [50].

• STANet: STANet is based on Siamese spatio-temporal attention, which integrates
a change detection self-attention module to enhance the spatial-temporal relation-
ship [17].

• DTCDSCN: DTCDSCN is a multi-scale Siamese network, which utilizes channel
attention and spatial attention to exploit the interdependence between channel and
spatial position [20]. It is noteworthy that the original method contains a change
detection network and two semantic segmentation networks, and we just use the
change detection network for a fair comparison.

• BIT: BIT is a transformer-based method, and it consists of a Siamese semantic tokenizer
to generate a compact set of semantic tokens from the bi-temporal input. It utilizes a
Siamese transformer decoder to project the corresponding semantic tokens back into
the feature maps [34].

4.3. Evaluation Metrics

For different approaches, precision, recall, and F1-score are used for performance
evaluation. The above metrics are defined as follows:

Precision =
TP

TP + FP
, (32)

Recall =
TP

TP + FN
, (33)

F1 =
2

Recall−1 + Precision−1 , (34)

where true positive (TP) is the number of changed pixels detected correctly, false positive
(FP) is the number of changed pixels wrongly predicted, true negative (TN) is the number
of unchanged pixels detected correctly, and false negative (FN) is the number of unchanged
pixels wrongly predicted.

4.4. Experimental Settings

All experiments were conducted using the PyTorch library on two NVIDIA GeForce
RTX 3090 GPUs. For other approaches, the parameters were set to the default values as
described in the original papers. Our model was trained using the AdamW optimizer with
an initial learning rate of 0.0004 and a weight decay of 0.05. The batch size was set to 24, the
trade-off parameter wi was chosen to be [0.5, 0.5, 0.6, 0.8, 1.0], and the model was trained
for 600 epochs.

To increase the diversity of samples, we utilized various augmentation techniques,
including:

(1) Image flipping: The bi-temporal image pairs were randomly flipped horizontally
and vertically.

(2) Image blurring: A Gaussian blur filter was applied to the bi-temporal images with a
randomly chosen radius.

(3) Image cropping: The bi-temporal images were randomly cropped with a scaling factor
chosen from the range [1, 1.2].

(4) Color jitting: A variety of color adjustments were randomly applied to the bi-temporal
images, including contrast, brightness, saturation, and hue.
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4.5. Performance Comparison

The proposed approach is comprehensively compared with other CD methods on four
data sets. All parameter settings of compared methods follow the original paper. If no extra
specifications are described, our DCAT model is trained from scratch and does not use any
external pretraining weights or other datasets. Below, performance comparisons will be
described one by one.

4.5.1. LEVIR-CD

Table 2 summarizes the performances of different approaches on the LEVIR-CD dataset.
As shown in the table, FC-Siam-Diff achieved the lowest recall of 76.77%, followed by FC-EF,
which achieved a recall of 80.17% and the lowest F1 score of 83.40%. In contrast, FC-Siam-
Conc achieved an F1 score of 86.31% and a recall score of 83.31%. These results suggest that
concatenation can preserve more useful information than difference for change detection.

Table 2. Performance comparison on LEVIR-CD.

Method Precision Recall F1 Params(M) FLOPs(G) FPS

FC-EF 86.91 80.17 83.40 1.4 3.6 57.9
FC-Siam-Conc 89.53 83.31 86.31 1.6 5.3 59.2
FC-Siam-Diff 91.99 76.77 83.69 1.4 4.7 62.8
DTCDSCN 88.53 86.83 87.67 31.3 13.2 57.6

BIT 89.24 89.37 89.31 3.6 4.4 55.0
DSAMNet 84.27 87.79 86.00 17.0 75.4 29.5

STANet 83.81 91.00 87.26 13.2 16.9 4.7
TransUNetCD 92.43 89.82 91.11 95.5 27.2 -

ChangeStar - - 91.25 52.6 39.5 -
DCAT 92.84 90.00 91.40 23.3 24.6 49.2

DTCDSCN obtains a higher F1 value and recall than FC-type methods: 87.67% and
86.83%, respectively. DSAMNet has lower precision than FC-EF and its variants, but it
achieves a higher recall value of 87.79%. One possible reason for the lower performance
of FC-EF compared with FC-Siam-Diff and FC-Siam-Conc is that the FC-EF network uses
convolutional kernels with a smaller depth, which may not be sufficient to capture rich
features. On the other hand, both FC-Siam-Diff and FC-Siam-Conc use a Siamese structure
in the encoder, which helps to enhance feature separability. STANet obtains the lowest
precision of 83.81% but the highest recall of 91.00%. In addition, as a transformer-based
method, BIT obtains promising precision, recall, and F1, i.e., 89.24%, 89.37%, 89.31%, respec-
tively. More than that, we also compared two advanced methods, TransUNetCD [35] and
ChangeStar [52]. TransUNetCD is an end-to-end encoding–decoding hybrid transformer
model for CD and is the first attempt to combine the transformer and UNet in the CD field.
ChangeStar proposes single-temporal supervised learning for CD from a new perspective of
exploiting object changes in unpaired images as supervisory signals. TransUNetCD further
improves the performance, and the precision, recall, and F1 scores are 92.43%, 89.82%, and
91.11%, respectively. ChangeStar achieves the second-highest F1 score of 91.25%. Moreover,
our method DCAT outperforms all the compared methods on the LEVIR-CD dataset and it
achieves the highest precision and F1 score of 92.84% and 91.40%, respectively.

To further demonstrate the effectiveness of our proposed method, we present visual
results from different approaches on four typical test areas in Figure 4. These areas include
changes in isolated regions, dense regions, small objects, large objects, and complex ground
objects. The results clearly show the superiority of our method over the other approaches.

Specifically, Figure 4(1,2) illustrate that our method is powerful in capturing small tar-
gets and isolated areas, especially within the angular boundaries and fine details. Compared
with the ground truth of Figure 4(6), Figure 4(m6) is more consistent than Figure 4(d6,e6,f6)
with respect to the large area border in complex scene. From Figure 4(2), it can be learned
that some methods (e.g., FC-EF, FC-Siam-Conc, DSAMNet, and STANet) suffer from false
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changes, while DCAT approaches the ground truth with high confidence. Moreover, our
method outperforms other approaches in detecting changes in dense areas and it can
accurately identify building boundaries. As shown in Figure 4(3,4), the space gaps between
adjacent buildings in DCAT are clearer than others. The above comparisons show that
DCAT achieved excellent performance on the LEVIR-CD dataset, and its advantages mainly
lie in clear boundaries, sharp edges and corners, and sensitivity to small targets.

Figure 4. Results comparison on LEVIR-CD. (1–6): Different image pairs; (a) Image T1; (b) Image
T2; (c) Ground truth; (d) FC-EF; (e) FC-Siam-Conc; (f) FC-Siam-Diff; (g) DSAMNet; (h) STANet;
(i) DTCDSCN; (j) BIT; (k) TransUNetCD; (l) ChangeStar; (m) DCAT.

4.5.2. LEVIR-CD+

Performances of different methods on LEVIR-CD+ are listed in Table 3. BIT yields
precision score 82.74%, recall score 82.85%, and F1 score 82.80%, while DCAT boosts the
performance to precision score 84.72% and F1 score to 84.02%, respectively, which are the
highest scores among other methods. Some results are shown in Figure 5.

Figure 5. Results comparison on LEVIR-CD+. (1–6): Different image pairs; (a) Image T1; (b) Image
T2; (c) Ground truth; (d) FC-EF; (e) FC-Siam-Conc; (f) FC-Siam-Diff; (g) DSAMNet; (h) STANet;
(i) DTCDSCN; (j) BIT; (k) DCAT.
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The first row of Figure 5 suggests that all methods except DCAT incorrectly detect
changes in buildings. The reason behind this is that DCAT is capable of reducing the impact
of misregistration. In reality, the corresponding buildings in the bi-temporal images are not
perfectly aligned, particularly in the border regions of buildings. Figure 6 demonstrates
the misregistration errors where the buildings in the image strips are not being stitched
together smoothly.

Table 3. Performance comparison on LEVIR-CD+.

Method Precision Recall F1 Params(M) FLOPs(G) FPS

FC-EF 61.30 72.61 66.48 1.4 3.6 57.9
FC-Siam-Conc 66.24 81.22 72.97 1.6 5.3 59.2
FC-Siam-Diff 74.97 72.04 73.48 1.4 4.7 62.8
DTCDSCN 80.36 75.03 77.60 31.3 13.2 57.6

BIT 82.74 82.85 82.80 3.6 4.4 55.0
DSAMNet 69.76 80.31 74.66 17.0 75.4 29.5

STANet 74.62 84.54 79.31 13.2 16.9 4.7
DCAT 84.72 83.34 84.02 23.3 24.6 49.2

Figure 6. Illustration of registration error on LEVIR-CD+. To illustrate the registration error on LEVIR-
CD+, we have stitched together two images to better visualize the misregistration. Misregistration
areas are highlighted using red circles.

For single target and dense area, our method presents better performance, and it is
adaptable to the changed region size. In the third and fifth rows of Figure 5, the detection
results by other methods are dilated or eroded. In contrast, the boundaries between houses
obtained by DCAT are clear and sharply contoured. Furthermore, as shown in row 6
of Figure 5, our method demonstrates greater robustness to large changes in the size of
regions.

4.5.3. WHU

The performances regarding the precision, recall and F1 by different methods are
summarized in Table 4. As can be deduced from Table 4, the proposed method outperforms
other methods on WHU, achieving the highest F1 score of 88.19% with a significant margin.
Despite the highest recall of 93.15%, STANet has a very low precision score, which is similar
to that in LEVIR-CD and LEVIR-CD+ data sets.
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In contrast to the results on the LEVIR-CD+ dataset, the baseline method did not
exhibit significant advantages. The second-ranked approach, DTCDSCN, outperformed
BIT with precision, recall, and F1 scores of 89.55%, 84.10%, and 86.74%, respectively.

Figure 7 displays change maps generated by various approaches for several typical
scenarios, which include changes in small areas, large areas, and areas with complex
boundaries. Columns 4–6 of Figure 7 indicate that FC-based methods are less effective
in identifying changes in building structures of varying sizes when compared with other
approaches. In terms of CD on large-size buildings, DSAMNet, DTCDSCN, and BIT
have relatively poor performance in the last row of Figure 7. DSAMNet and DTCDSCN
extract small region changes at row 4 but show low separability at the boundary of dense
regions. On the contrary, the proposed approach completely captured changed areas in the
complex and irregular boundary scenarios (rows 2 and 3 in Figure 7) and is powerful in
detecting changes of the building scale (rows 5 and 6 in Figure 7). Similar to the results of
LEVIR-CD and LEVIR-CD+, DCAT achieved promising performance on WHU, especially
in preserving boundary information of changed regions.

Table 4. Performance comparison on WHU.

Method Precision Recall F1 Params(M) FLOPs(G) FPS

FC-EF 90.76 29.13 44.10 1.4 3.6 57.9
FC-Siam-Conc 74.62 55.17 63.44 1.6 5.3 59.2
FC-Siam-Diff 70.26 52.47 60.08 1.4 4.7 62.8
DTCDSCN 89.55 84.10 86.74 31.3 13.2 57.6

BIT 79.08 72.44 75.61 3.6 4.4 55.0
DSAMNet 67.04 92.91 77.89 17.0 75.4 29.5

STANet 68.84 93.15 79.17 13.2 16.9 4.7
DCAT 91.53 85.09 88.19 23.3 24.6 49.2

Figure 7. Results comparison on WHU. (1–6): Different image pairs; (a) Image T1; (b) Image
T2; (c) Ground truth; (d) FC-EF; (e) FC-Siam-Conc; (f) FC-Siam-Diff; (g) DSAMNet; (h) STANet;
(i) DTCDSCN; (j) BIT; (k) DCAT.

4.5.4. SYSU-CD

To further verify the effectiveness and versatility of DCAT, we conducted experiments
on the SYSU-CD dataset and we present the quantitative results in Table 5. The results
demonstrate that our proposed approach outperforms other methods in terms of F1 score,
confirming its superior performance. DSAMNet scores 81.86% in terms of recall but has
the second highest F1 score with 78.18%. FC-Siam-Conc performs better than FC-Siam-Diff,
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this may be attribute to the fact that feature difference excessively filtered out useful change
information and many omissions were caused in relatively complex and irregular scenarios
of SYSU-CD dataset. Furthermore, our method has an obvious advantage with the highest
F1 score of 79.63%, followed by DSAMNet.

SYSU-CD includes complex scene changes, and three representative scenes were
selected for visualization, featuring variations in buildings, boats, and bare land. As can
be learned from Figure 8, DSAMNet made some false detections (rows 2, 3 and 5), which
is consistent with its high recall and low precision in Table 5. In contrast, there are many
omissions in the results by FC-Siam-Diff, which is consistent with its high precision and
low recall. Figure 8 shows that DSAMNet produced some false detections (rows 2, 3, and 5),
which is in line with its low precision and high recall values reported in Table 5. On the
other hand, FC-Siam-Diff had many omissions in its results, which is consistent with its
high precision and low recall. Specifically, STANet is powerful in extracting major changes
in most cases but less robust to small-size changes, such as the changes in Figure 8(3). From
Figure 8, CD performances of FC-EF and its variants for small objects are not satisfactory,
which is similar to the conclusion from the previous data sets.

Table 5. Performance comparison on SYSU-CD.

Method Precision Recall F1 Params(M) FLOPs(G) FPS

FC-EF 77.29 67.84 72.26 1.4 3.6 57.9
FC-Siam-Conc 83.02 70.41 76.19 1.6 5.3 59.2
FC-Siam-Diff 89.13 61.21 72.57 1.4 4.7 62.8
DTCDSCN 81.08 69.86 75.06 31.3 13.2 57.6

BIT 78.94 64.50 70.99 3.6 4.4 55.0
DSAMNet 74.81 81.86 78.18 17.0 75.4 29.5

STANet 74.28 81.13 77.56 13.2 16.9 4.7
DCAT 87.00 73.41 79.63 23.3 24.6 49.2

Figure 8. Results comparison on SYSU-CD. (1–6): Different image pairs; (a) Image T1; (b) Image
T2; (c) Ground truth; (d) FC-EF; (e) FC-Siam-Conc; (f) FC-Siam-Diff; (g) DSAMNet; (h) STANet;
(i) DTCDSCN; (j) BIT; (k) DCAT.

In consequence, it is evident that DCAT successfully recognizes scale-varied changes with
finer boundaries and achieves excellent performance in detail preservation of small objects.
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5. Discussion

To provide a detailed analysis, we present ablation experiments on the LEVIR-CD
dataset in this section. By performing ablation experiments on our proposed method, we
aim to identify the contribution of each component to the overall performance and provide
insights into the effectiveness of our approach.

5.1. Ablation Study on Cross-Attention

Within the transformer framework, our proposed approach introduces a cross-attention
mechanism, which is the core idea and key innovation of DCAT. As shown in Figure 1c,
DCAB starts to compute the dot products of the query q1

i from the patch p1 with all keys
k2

i that belong to the corresponding patch p2 on the image T2, which is consistent with
human visual change observation. However, frequent cross-attention calculation during
feature extraction may lead to the unnecessary feature confusion, and it will be more
difficult to distinguish similarity from inconsistency. To investigate how the cross-attention
mechanism works well, ablation experiments were conducted on LEVIR-CD data set.

As shown in Table 6, DCAT (with cross-attention) uses a cross-attention mechanism in
backbone during feature extraction. In contrast, other variants do not use cross-attention
in all transformer blocks but self-attention. In other words, DCAT (with self-attention)
focuses on self-attention instead of cross-attention, i.e., dot products are performed not on
q1

i and k2
i , but on q1

i and k1
i . In addition, our proposed method that utilizes cross-attention

mechanism only in the last DCAB at each stage was also compared.

Table 6. Performance comparison with different attention mechanisms on LEVIR-CD.

Model Precision (%) Recall (%) F1 (%)

DCAT (w/ self-attention) 93.40 89.02 91.16
DCAT (w/ cross-attention) 93.08 89.46 91.23

DCAT (Ours) 92.84 90.00 91.40

From Table 6, DCAT based on the self-attention mechanism achieves the lowest
F1 score of 91.16%. Meanwhile, when all the DATBs adopt the cross-attention mecha-
nism, F1 score is pushed to 91.23%. The performance differences indicate that it is the
cross-attention mechanism that improves the CD performance, i.e., similarities should
be measured between a query on one image and the keys on the other image. By taking
advantage of the novel interactive query calculation, DCAT imitates the visual principle of
the human eyes in perceiving changes. In contrast, DCAT (with self-attention) computes
self-attention independently, and there is no information interaction between two indepen-
dent branches. The lack of short-term memory makes the changed features extracted is
less representative and fails in compensating the misregistration, and the performances
are thus being degraded. Furthermore, compared with the previous two methods, our
proposed DCAT only uses cross-attention mechanism in the last DCAB of each stage and
self-attention mechanism in other blocks, and it further improves the F1 to 91.40%. The im-
provements tell us that using a separation-aggregation architecture is helpful for the model
to grasp the commonness and characteristics between changed regions and unchanged
regions in feature extraction. Our cross-attention mechanism aggregates and analyzes the
context information at the end of each stage of backbone, which alleviates the difficulty
in distinguishing mixed bi-temporal features in feature extraction and provides a reliable
input for the following bi-temporal feature fusion in FPFN.

5.2. Ablation Study on Mixer

As an important component of DCAB, the mixer uses a pre-defined channel division
strategy to calculate the cross-attention of high-frequency and low-frequency respectively.
This strategy enhances the perception capability of the transformer in the frequency spec-
trum. As demonstrated in previous research [65], the lower layers of the transformer
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require more local information, while the higher layers require more global information.
Therefore, the mixer’s channel division strategy complements the transformer’s hierarchi-
cal structure and optimizes the information flow through the network. To achieve a better
trade-off between high- and low-frequency components across all layers, we pre-define a
frequency ramp structure. More specifically, the frequency ramp division structure that we
proposed involves reducing the dimension of the high-frequency branch and increasing the
dimension from lower layers to higher layers in the low-frequency branch. This approach
effectively attenuates the high-frequency noise in the input signal and emphasizes the low-
frequency components, which are often more informative for various visual recognition
tasks. Additionally, the division structure enables the mixer to better utilize the hierarchical
feature representations in the transformer, as it corresponds to the lower layers’ preference
for local details and the higher layers’ preference for global information. Therefore, this
design choice in the mixer enhances the model’s ability to capture and utilize more relevant
information from the input signal.

To assess the impact of the mixer’s components, we analyze the effects of the channel
division ratio (Cl/C and Ch/C) in Table 7. The experimental results presented in Table 7
indicate that the model with an increased channel division ratio (Cl/C ↑) and a decreased
channel division ratio (Ch/C ↓) outperforms the other four mixer structures evaluated in
this study, which is consistent with prior research. Specifically, the frequency ramp division
structure enables the mixer to effectively balance the representation of high-frequency and
low-frequency components across all layers of the network, which facilitates the learning
of more discriminative visual features. Therefore, our findings suggest that the frequency
ramp division structure is a promising method for enhancing the performance of dual
cross-attention mixer.

Table 7. Performance comparison of the different channel ramp division ratios of mixer on LEVIR-CD.

Division Strategy Precision (%) Recall (%) F1 (%)

Structure

Cl = C, Ch = 0 92.85 89.03 90.90
Ch = C, Cl = 0 91.95 90.12 91.03
Cl/C = Ch/C 93.27 89.21 91.19

Cl/C ↓, Ch/C ↑ 92.29 89.65 90.95
Cl/C ↑, Ch/C ↓* 92.84 90.00 91.40

* We use Cl/C ↑, Ch/C ↓ as default division strategy in DCAT.

5.3. Ablation Study on BFF

Change detection is a challenging visual task that involves processing bi-temporal
image inputs. Integrating features from different temporal phases is a crucial aspect of this
task. In the ablation study, we compared the impact of different strategies for combining
DEM and CSM features in BFF on change detection performance. Our study considered
both parallel and sequential arrangements for integrating DEM and CSM features, as
illustrated in Figure 9. In the sequential arrangement, we evaluated two orders: DEM-
first and CSM-first. The parallel arrangement, in this context, was found to yield better
performance than the sequential arrangement.

Figure 9. Three arrangements of CSM and DEM modules. (a) CSM-first sequential manner; (b) DEM-
first sequential manner; (c) Parallel manner.



Remote Sens. 2023, 15, 2395 22 of 30

In addition to comparing different integration strategies, we also examined two com-
mon fusion methods: absolute value subtraction and direct concatenation. Absolute value
subtraction involves subtracting the absolute difference of corresponding pixel in the two
feature maps, while direct concatenation involves concatenating the two maps along the
channel dimension. The results in Table 8 demonstrate that the performance of the two fea-
ture combination methods mentioned is significantly lower than that achieved by parallel
or sequential approaches.

Overall, our study highlights the importance of selecting appropriate integration
strategies and fusion methods in BFF for effective change detection. This indicates that
incorporating both DEM and CSM features is valuable for CD and using the parallel
arrangement strategy further improves performance.

Table 8. Performance comparison of different BFF structures on LEVIR-CD.

Method Precision (%) Recall (%) F1 (%)

DEM first 93.09 89.14 91.07
CSM first 93.05 89.19 91.08

Subtraction 93.95 84.23 88.82
Concatenation 92.31 88.48 90.35
Parallel (Ours) 92.84 90.00 91.40

5.4. Ablation Study on FPFN

Benefiting from hierarchical structure design, our encoder can extract features at
different scales from shallow to deep level. Therefore, the way in which semantic features
at different levels are mixed is crucial for the CD performance. Usually, most deep neural
networks utilize the extracted deepest features for information aggregation. FPFN fully
incorporates different layers of feature representations to enhance the change feature
separability. To verify the effectiveness of layer-by-layer feature fusion, we conducted
comparative experiments on the fusion strategy of FPFN. In detail, starting from the
deepest features F4, we respectively take different combinations to merge previous feature
maps (F1, F2, and F3).

The quantitative performances are presented in Table 9. F4 denotes the model only
mixing the deepest features F1

4 and F2
4 at stage 4 to obtain change maps, while F4 + F3 stands

for the bi-temporal features extracted at stages 3 and 4 for decoder, the rest is the same.
Obviously, the decoder incorporating multi-layer features has significant improvements,
which also illustrates that the hierarchical encoder is effective at extracting features of
different scales and adaptable to the multi-layer decoder. In Table 9, the more early features
fused by the decoder, the better the performance of CD. Our proposed multi-layer feature
fusion network, F4 + F3 + F2 + F1, achieves the highest values of precision, recall, and F1,
respectively.

Table 9. Performance comparison of different feature map fusion methods on LEVIR-CD.

Fusion Strategy Precision (%) Recall (%) F1 (%)

F4 84.43 83.01 83.71
F4 + F3 91.03 82.10 86.34

F4 + F3 + F2 91.86 86.68 89.20
F4 + F3 + F2 + F1 (Ours) 92.84 90.00 91.40

We visualized attention maps after feature fusion and corresponding prediction maps
to visually evaluate performance differences with different fusion methods. Observing the
results in the third column of Figure 10, we can see that the decoder F4 that uses only features
at stage 4 suffers from significant adhesion and misjudgment. With the integration of lower-
level features, although F4 + F3 and F4 + F3 + F2 also have the adhesion phenomenon, they
achieved higher improvements. The necessity of fusing early features can also be clarified
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by the fact that with the deepening of fusion layer, the attention maps gradually highlight
the changed area, and it is clear and less noisy. In terms of building edge recognition,
the detection results by merging multi-layer features have more sharp edges. In short,
the above comparisons of FPFN with different structures justify that the proposed fusion
network merging multi-layer features is superior to the decoder that only partially fuses
deep features in discriminating changed regions.

Figure 10. Visualization of bi-temporal difference feature maps with different decoding schemes on
LEVIR-CD. (1–3): Different image pairs; (a) Image T1 and T2; (b) Ground truth; (c–f) Attention maps
(top) and prediction maps (bottom) with different fusion strategies after a linear layer. From columns
(c–f), the fusion strategies are F4, F4 + F3, F4 + F3 + F2 and F4 + F3 + F2 + F1, respectively.

5.5. Ablation on Robustness

In the LEVIR-CD+ experiment, some misregistered samples were observed, as shown
in Figure 6. To further evaluate the generalization and robustness of DCAT against object
shifts, we conducted ablation experiments on the synthetic images and real season-varying
remote sensing images change detection dataset (SVCD) [66]. SVCD includes a sub-dataset
of synthetic images with object shifts. These shifts are in the range [−5, 5] pixels in
horizontal and vertical directions without intersections with the other objects and image
boundaries. The results presented in Table 10 demonstrate that our approach outperforms
other methods on the SVCD test set by a significant margin. This may be attributed to
the ability of our method, DCAT, to model context within a global, highly abstract, spatio-
temporal scope. Additionally, our method utilizes cross-attention for contrastive queries,
which enhances the feature representation and spatial tolerance of the model.

Some visualization results are presented in Figure 11. It can be seen intuitively
that the proposed approach outperformed the other methods, achieving more accurate
detection boundaries. Our model is able to better avoid false positives that may result



Remote Sens. 2023, 15, 2395 24 of 30

from the similar appearance of objects in the scene, which is a common challenge in CD
tasks. For instance, in Figure 11(1), we can observe that the FC-EF method incorrectly
recognizes a small circle as a changed target, even though there was no actual change in
the corresponding position. This is likely due to the high color similarity between the
small circle and the background, which makes it difficult for the model to distinguish
between them. In contrast, our proposed approach is able to better avoid false positives
in such scenarios. By utilizing a more comprehensive feature representation and a dual
cross-attention mechanism, our model is able to capture more contextual information and
make more informed predictions. As a result, our approach achieves more accurate and
reliable CD results, even in challenging scenarios where false positives are common.

Table 10. Performance comparison on SVCD.

Method Precision (%) Recall (%) F1 (%)

FC-EF 94.28 83.80 88.73
FC-Siam-Conc 95.26 97.63 96.43
FC-Siam-Diff 98.32 96.89 97.60
DTCDSCN 97.59 97.10 97.35

BIT 98.50 99.04 98.77
DSAMNet 92.78 98.06 95.35

STANet 96.08 99.87 97.94
DCAT 98.97 99.59 99.28

Figure 11. Results comparison on SVCD. (1–4): Different image pairs; (a) Image T1; (b) Image
T2; (c) Ground truth; (d) FC-EF; (e) FC-Siam-Conc; (f) FC-Siam-Diff; (g) DSAMNet; (h) STANet;
(i) DTCDSCN; (j) BIT; (k) DCAT.

Moreover, our DCAT approach demonstrates remarkable ability in handling small
gaps caused by close proximity. An instance of close adjacent shapes in Figure 11(3)
highlights the accuracy of our method. DCAT learns effective context within the spatio-
temporal domain, which enables it to better represent real semantic changes and obtain
non-adhesive, separable boundaries. This ability to effectively capture context and enhance
feature representation is one of the key factors contributing to the superior performance of
our approach in CD tasks. In consequence, the proposed method is qualified for the CD
task of small object shifts, which means good robustness and generalization.

5.6. Ablation Study on Pretraining

In recent years, researchers have increasingly focused on remote sensing pretraining,
leading to impressive breakthroughs in the CD field. We also explore the potential of
pretraining with DCAT in this section, Table 11 presents the performance results of several
typical pretraining methods on the LEVIR-CD test set.
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Table 11. Performance comparison on the effect of pretraining on LEVIR-CD.

Method Precision Recall F1 Params (M) FLOPs (G) FPS

SwinSUNet 90.75 89.54 90.14 56.9 21.7 43.7
ViTAEv2-S - - 91.26 19.6 16.1 61.4

DCAT 92.84 90.00 91.40 23.3 24.6 49.2
DCAT † 92.86 90.20 91.51 23.3 24.6 49.2

† Results with pretraining.

SwinSUNet [36] utilizes a pure transformer network with a Siamese U-shaped struc-
ture for change detection. The method is initialized with a Swin transformer model
pretrained on the ImageNet dataset. It achieves a significant improvement in the F1 score,
achieving a score of 90.14%. ViTAEv2-s [59] proposes an advanced ViTAE transformers-
based model pretrained on ImageNet data set, which achieves F1 score 91.26%. Neverthe-
less, it is also pretrained on a large-scale remote sensing data set MillionAID [67], which
obtains F1 score of 90.93%. The training set of MillionAID contains 10,000 images for
classification, we pretrain DCAT encoder on this set as done in most segmentation methods.
The pretraining of the DCAT encoder leads to a improvement of 0.11% in terms of F1 score
for the proposed approach. We note that our method outperforms those pretrained mod-
els even without using any pretraining weights or training on other large-scale datasets.
This suggests that pretraining helps learn extra information to improve change feature
discrimination.

5.7. Visualization of the Encoder

Our dual cross-attention transformer block plays a crucial role in capturing the se-
mantic change differences between bi-temporal features at each layer. To gain a better
understanding of the dual cross-attention transformer block, we visualize the attention
maps Fi ∈ RC×H×W at different stages. By examining the attention maps, we can observe
that our transformer block is capable of identifying regions with significant change in the
feature maps. In addition, the attention maps reveal that the dual cross-attention trans-
former block can effectively capture both high-level and low-level semantic concepts. At
the earlier stages, the attention maps are focused on capturing low-level features, while at
the later stages, the attention maps become more focused on high-level features such as
objects and scenes.

Figure 12 shows the visualization results by fusing the bi-temporal attention maps
F1

i and F2
i at the i-th stage from the LEVIR-CD datasets. We select several typical change

scenarios, including changes in isolated small areas and dense areas. Based on the visu-
alization of the attention maps, it can be seen that the features extracted by the encoder
are mainly concentrated in the regions corresponding to semantic concepts with varying
interests. Specifically, the attention maps highlight the changed areas in red, indicating
higher attention values, while the unchanged areas are marked in blue, indicating lower
attention values.

At the first stage, the encoder pays little attention to the pixels about buildings. At the
second and third stages, our proposed encoder is able to identify the changed regions
of interest. At the fourth stage, this phenomenon is more obvious. Interestingly, from
Figure 12f,g, our encoder is effective in highlighting the pixels surrounding the buildings
(e.g., shadows and trees) and larger areas have higher values of attention in Figure 12g.
The shift of learned attention towards the changed regions related to buildings with the
increase of network depth can be attributed to two main reasons. Firstly, the encoder of our
model has the ability to capture long-range spatio-temporal dependencies, which helps it to
extract more comprehensive features that are sensitive to changes in the environment. Sec-
ondly, the semantic context surrounding buildings plays a crucial role in object recognition,
making it an essential cue for identifying ground objects. As a result, the attention of the
dual cross-attention transformer block gradually shifts towards the changed regions related
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to buildings with an increase in network depth. This observation indicates that our model
is capable of learning complex representations that are highly informative and sensitive to
the context of the environment. Therefore, the attention maps become more focused on the
changed regions related to buildings in deeper layers, indicating that the proposed dual
cross-attention transformer block can effectively capture the semantic differences between
bi-temporal features and extract informative features for change detection. The visualiza-
tion results indicate that our model is powerful in capturing semantic differences from
coarse to fine and implicitly learning some extra concepts to promote change detection.

Figure 12. Visualization of attention maps at different encoding stages on LEVIR-CD. (1–4): Different
image pairs; (a) Image T1; (b) Image T2; (c) Ground truth; (d–g) Attention maps at Stage 1–4. Red
denotes higher attention values and blue denotes lower values in the changed area.

6. Conclusions

In this paper, we present a novel approach called DCAT that leverages the power of
dual cross-attention transformers for accurate change detection in remote sensing imagery.
Inspired by the visual change observation of human eyes, where changes are detected by
alternative comparisons from left to right and successive matching from back to forth [68],
we introduce a dual cross-attention mechanism that combines the transformer’s query, key,
and value to achieve alternative attention. This approach enables the capture of change-
specific feature salience and compensation for change features impacted by misregistration.

Based on dual cross-attention, we present a mixer that combines high- and low-
frequency information, replacing the traditional self-attention mixer. Two branches of cross-
attention are calculated to obtain feature representations under high- and low-frequency
mixers, respectively. DCAT utilizes a channel ramp splitting method to couple convolution-
based CNN and cross-attention-based transformer, which enables the model to expand
its perception capability and capture more diverse features from the input paired data.
The CNN and transformer modules are fused in a parallel and hierarchical manner, enabling
the efficient combination of local and global features, resulting in improved performance in
remote sensing CD tasks.

Furthermore, the encoder of DCAT has a hierarchical structure to adapt to changed
objects of various sizes. Hierarchical features extracted at different stages effectively capture
changed objects of small sizes and reduce missed alarms. In addition to the powerful dual
cross-attention-based transformer encoder, we adopt a feature pyramid fusion network to
aggregate multi-scale dual-input features. The parallel structure of BFF effectively enhances
the differences between bi-temporal features and uses consistent features to select similarity.
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Extensive experiments demonstrate that DCAT has significant advantages over other
self-attention transformers, indicating its potential as a general-purpose backbone for
change detection.

Limitation

During the ablation study, we noticed that incorporating a pretraining dataset of
10,000 images only resulted in a slight improvement in DCAT’s performance. We infer
that this could be attributed to the limited size of the pretraining dataset and the inherent
differences between the pretraining method (which involves classifying two images simul-
taneously) and the image pairs used for change detection. Consequently, there is still a hot
topic to explore and develop large-scale pretrained models in the field of remote sensing.

Another limitation of DCAT architecture is the manual definition of the channel
numbers in the frequency ramp structure, namely, Cl/C and Ch/C for the low- and high-
frequency mixer, respectively. This requires a significant amount of experience for better
performance. To address this limitation, we plan to consider using neural architecture
search to adapt the number of allocated high-frequency and low-frequency channels.

Despite the novelty of our proposed DCAT, future work will focus on its extension
to other object types, such as roads, street views, and vegetation. We also plan to explore
the use of DCAT for multi-class semantic change type identification and for pretraining
models in remote sensing, which will be our future research direction.
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