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Abstract: Multi-modal feature fusion and effectively exploiting high-level semantic information
are critical in salient object detection (SOD). However, the depth maps complementing RGB image
fusion strategies cannot supply effective semantic information when the object is not salient in the
depth maps. Furthermore, most existing (UNet-based) methods cannot fully exploit high-level
abstract features to guide low-level features in a coarse-to-fine fashion. In this paper, we propose a
compensated attention feature fusion and hierarchical multiplication decoder network (CAF-HMNet)
for RGB-D SOD. Specifically, we first propose a compensated attention feature fusion module to
fuse multi-modal features based on the complementarity between depth and RGB features. Then,
we propose a hierarchical multiplication decoder to refine the multi-level features from top down.
Additionally, a contour-aware module is applied to enhance object contour. Experimental results
show that our model achieves satisfactory performance on five challenging SOD datasets, including
NJU2K, NLPR, STERE, DES, and SIP, which verifies the effectiveness of the proposed CAF-HMNet.

Keywords: hierarchical multiplication decoder; multi-modal feature fusion; RGB-D saliency detection

1. Introduction

Salient object detection refers to detecting and segmenting most visually distinctive
regions or objects from general scenes [1]. As a fundamental pre-processing technique, SOD
is significant for many visual media processing tasks, such as object detection [2], image
retrieval [3], visual tracking [4], remote sensing image segmentation [5,6], and semantic
segmentation [7].

Previous traditional SOD methods mostly segment salient objects based on hand-crafted
features [8,9]. Recently, Convolutional Neural Network (CNN)-based methods [10,11] have
exhibited significant advancements in salient object detection (SOD) owing to their powerful
feature representation capabilities, as well as the utilization of transfer learning in segmenta-
tion tasks such as medical imaging segmentation of unsupervised domain adaptation [12–15].
In the SOD field, visible and depth images provide different sights of the same scene. They are
expected to be complementary when used for SOD. Visible images aim to supply objects’ ap-
pearance and color information, while depth maps are responsive to their spatial information.
The complementary characteristics of visible and depth images are very helpful in different
light conditions, such as dim light, nighttime, and so on [16]. Hence, it is necessary to explore
how to fuse multi-modal features effectively.

However, it is a hot potato to effectively blend depth and RGB features when the
object region is not salient in the depth maps. As shown in Figure 1, it is hard to find out
the object region from depth maps, since the object and the background are located on the
same depth level. It may lead to error-prone fusion and bring some negative influences
when the depth maps lack clear object semantic information. Existing approaches mainly
focus on three kinds of fusion strategies to effectively fuse RGB and depth images: early
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fusion, middle fusion, and late fusion. Some methods [17–19] view depth maps as the
fourth channel of RGB and encode them together (early fusion). This strategy seems simple
but ignores modality-specific characteristics of the RGB and depth images. Thus, it cannot
effectively dig out the multi-modal information and cannot achieve comparable results.
Moreover, to effectively learn the salient feature from the RGB and depth modalities, some
methods [8,20,21] first apply a two-stream backbone network to predict saliency results.
Then, the yielding results are fused as the final prediction (late fusion). Given that the
depth and RGB information may positively influence each other, other algorithms [22–24]
fuse depth and RGB features (middle fusion). Currently, the feature fusion strategy (middle
fusion) is widely adopted since it can take more comprehensively the characteristics of
multi-modal features into account.

RGB Depth GT

Figure 1. The objects are not salient in the depth maps. The 1st, 2nd, and 3rd columns denote RGB,
depth, and ground truth images, respectively.

Depth maps can provide complementary information for SOD. However, depth maps
with poor quality may bring some negative influences by randomly distributed erroneous
or missing regions on the depth maps [25,26]. Consequently, it is critical to explore the
efficient multi-modal feature fusion strategy. Researchers have proposed many kinds of
solutions to tackle the purifying issues of poor-quality depth maps. For example, D3Net [25]
adopts a gate mechanism to eliminate poor-quality depth maps. SSF [26] discriminatively
selects helpful cues from RGB and depth data by designing a complementary interaction
module that takes account of global location and local detail complementarities from two
modalities. EF-Net [27] adopts a color hint map to enhance the depth maps. HDFNet [28]
applies densely connected structures to collect different modal features. DQSD [29] embeds
a depth quality-aware module into a two-stream framework, assigning the weight of depth
features before performing the fusion. JL-DCF [18] proposed a joint learning strategy to
learn the robust RGB and depth features simultaneously. BTS-Net [30] devised a bi-direction
transfer-and-selection block for cross-modal reference and fusion. HAINet [31] proposed an
alternate interaction module to filter out distractors in depth features and then applied the
resulting purified depth features to enhance the corresponding RGB features. BBSNet [32]
proposed a depth enhanced block to mine the depth cues and boost the compatibility of
cross-modal feature fusion. However, the methods mentioned above ignore many depth
maps without sufficient salient object information.

From our careful inspection, we found that, with depth maps complementing RGB
image fusion strategies such as BBSNet [32], it is hard to acquire helpful depth channel
attention to enhance depth features when there is little clear object information in them.
These strategies may fail to excavate the depth semantic information in such a condition,
as they only apply depth channel attention to enhance the depth features.
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As a result, we propose a RGB Compensated Depth Attention (RCDA) module, which
combines RGB channel attention and depth channel attention, to fully excavate depth
semantic information. Concretely, the depth channel attention may not effectively reflect
the importance of each layer of depth features when the salient object is not obvious in the
depth map. In this case, we employ RGB channel attention to compensate depth channel
attention, as RGB feature maps contain rich semantic information. Thus, our RCDA module
can exploit the complementarity between depth and RGB features to excavate the depth
information when the objects is not salient in the depth map. Compared with the depth
enhanced module proposed in BBSNet [32], the major highlight of our RCDA module is
that it takes into account negative impacts caused by poor-quality depth maps lacking
salient object information. In the depth maps complementing RGB image fusion strategies,
we endeavor to excavate helpful depth semantic information to fuse multi-modal features.

Moreover, multi-level feature aggregation is one of the most important parts in U-
shape structure. It can restore the semantic features back to the input size by deconvolution
or up-sampling operation. Generally, the multi-level features are categorized into two kinds:
low-level and high-level semantic features. The high-level semantic features carry rich
long-range contextual information and the low-level features include more fine-grained in-
formation. Therefore, it is essential to design an effective decoder to boost the performance
of SOD.

To this end, DSS [33] proposes a top-down method to integrate multi-level features,
achieving significantly improved SOD performance. Chen et al. [34] progressively cas-
cade the blended features and add level-wise dense supervision from deep to shallow
for decoding. TANet [35] proposes a cross-modal distillation stream by introducing an
attention-aware cross-modal fusion structure in the decoder. SSRCNN [19] applies a depth
recurrent CNN to features at each stage for rendering salient objects and deep supervision
is applied in the decoding strategy. DMRA [36] introduces a recurrent attention strategy
that can model the internal semantic relation of the blended features and can progressively
refine local details with memory-oriented scene understanding, to generate saliency re-
sults. TriTransNet [37] designs a three-stream decoding structure to process the semantic
features that are generated from three transformer-based encoders with shared weights.
ICNet [38] proposes an information conversion module in the decoder stream to inter-
actively collect high-level depth and RGB features. BASNet [39] designs a multi-scale
residual refinement module to optimize the initial saliency maps via learning the residuals
between outputted saliency maps and ground truth. CIRNet [40] proposes a convergence
collection architecture which flows the depth and RGB features into the corresponding
RGB-D decoding branches through a gated fusion mechanism. To obtain salient objects
with clear boundaries, MobileSal [41] proposes a compact pyramid refinement module to
aggregate multi-level features.

Nevertheless, the high-level semantic information tends to be weakened progressively
while aggregating multi-level features from top down [42]. It is significant to exploit abstract
high-level semantic features to guide low-level features effectively [42–44]. Most existing
multi-level feature aggregate strategies cannot fully exploit high-level semantic features
to guide low-level detailed features. Specifically, most multi-level feature aggregation
strategies cannot effectively suppress background distractors and highlight object regions.
As shown in Figure 2, we can observe that the ‘Level-3’ features focus more on object
regions (as shown in the yellow circle). However, the background distractors cannot be
effectively suppressed (as shown in the red rectangle), and the object region is blurred in
‘Level-2’ and ‘Level-1’ features (as shown in the blue circle). Therefore, it is essential to
explore an effective multi-level feature aggregate strategy.

To address the issues mentioned above, we propose a Hierarchical Multiplication
Decoder (HMD) that can better exploit high-level semantic information to guide low-level
features. The proposed HMD can progressively aggregate high-level semantic information
to refine the low-level features by hierarchical multiplication strategy from top down. Our
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hierarchical multiplication mechanism can effectively suppress background distractors and
enhance salient object regions.

RGB Depth GT

Level-3 Level-2 Level-1

Raw
image

Feature
map

Figure 2. The illustration of features generated from a U-shape structure decoder. ‘RGB’, ‘Depth’,
and ‘GT’ are the raw image. ‘Level-3’, ‘Level-2’, and ‘Level-1’ denote the 3rd, 2nd, and 1st level
features generated from a U-shape structure decoder, in a coarse-to-fine fashion. In the low-level
features, the background distractors cannot be effectively suppressed and the object region cannot
be highlighted.

In addition, a contour-aware module (CAM) is applied to tackle the dilemma of coarse
object boundaries. We design the CAM as an independent sub-task rather than a part of the
HMD, to improve the scalability of our model. Experiments on five challenging RGB-D SOD
datasets with four metrics demonstrated that CAF-HMNet achieves satisfactory results.

In general, our main contributions can be summarized as follows:

• We propose a hierarchical multiplication decoder to effectively suppress background
distractors and enhance the salient object regions, based only on a simple multiplica-
tion operation in a hierarchical manner.

• To fully capture the depth cues when the object information is not salient in depth
maps, we introduce an RGB Compensated Depth Attention module, which addition-
ally introduces RGB to enhance the depth channel attention to highlight objects.

• Due to the advantages of the proposed CAF-HMNet, it pushes the performance of
RGB-D SOD to a new level, achieving satisfactory performance on five public datasets.

2. Materials and Methods
2.1. Overview

The overall framework of the proposed CAF-HMNet is shown in Figure 3. It con-
sists of three modules: a compensated attention feature fusion encoder (CAF encoder),
a hierarchical multiplication decoder (HMD), and a contour-aware module (CAM). We
adopt ResNet-50 [45] as the backbone. For convenience, RGB, depth, and fused features
can be denoted as {xrgb

0 , xrgb
1 , xrgb

2 , xrgb
3 , xrgb

4 }, {xd
0 , xd

1 , xd
2 , xd

3 , xd
4}, and {E0, E1, E2, E3, E4},

respectively.
We firstly introduce the RCDA module to enhance the depth features for the encoder.

Then, an HMD is designed to better exploit high-level semantic information. It can more
fully exploit global contextual information of high-level semantic features to guide low-
level features, refining multi-level features from coarse to fine. There are two flows in the
HMD: multiplication flow and concatenation flow. On the one hand, the high-level semantic
features can guide their next-level features via hierarchical element-wise multiplication
operation. The hierarchical multiplication strategy can boost the representative capability
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of multi-level features. On the other hand, the high-level semantic information can be
preserved by concatenation operation. Additionally, the CAM is applied to deal with the
dearth issue of contour information. Then, the semantic and contour information is fused
in the end, to further improve the performance of SOD.
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Figure 3. The overall framework of the proposed CAF-HMNet. It is an encoder–decoder architecture.
The proposed RCDA is embedded in the decoder which is used for multi-modal feature fusion.
The HMD decoder is used to aggregate the multi-level features.

2.2. RGB Compensated Depth Attention Module

Visible and depth images, as different expressive forms of the same scene, are expected
to be complementary when used for SOD. However, in the depth maps complementing
RGB image fusion strategies, previous methods may bring some negative influences and
lead to an error-prone fusion when the object cues are not clear in the depth maps.

To solve the problems, we introduce an RCDA module to enhance depth features using
an attention mechanism. RCDA module consists of RGB compensated channel attention
and spatial attention, as shown in Figure 4. It fuses RGB channel attention and depth
channel attention via addition operation. RCDA module is attached before every side-out
from the RGB and depth branch to fuse two kinds of features. Such a strategy can enhance
the saliency representation of depth features.

Moreover, our channel attention scheme is different from BBSNet [32] and CBAM [46].
We consider the negative effect caused by poor-quality depth maps which lacks clear object
semantic information. We propose using RGB compensated depth channel attention to
enhance depth maps, as the object information may not be salient in depth maps but can
be clear in RGB images. Compared with BBSNet [32] and CBAM [46] that use maximum
pooling or both maximum pooling and average pooling to enhance feature maps, we only
adopt average pooling to obtain the compensated depth channel attention from both depth
and RGB modalities. More specifically, we propose using the spatial statistics of RGB
features to complement the spatial statistics of depth features, as average pooling has been
commonly utilized to learn the extent of the target object effectively [47] and compute
spatial statistics [48]. Thus, compensated channel attention can be used to mine effective
depth semantic information.
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Figure 4. Architecture of the RGB compensated depth channel attention module.

Theoretically, the ith (i ∈ 0, 1, 2, 3, 4) level depth features xd
i ∈ RC×H×W and ith

level RGB features xrgb
i ∈ RC×H×W are set as the inputs of RCDA module. Global Av-

erage Pooling (GAP) is performed on depth features and RGB features separately to
obtain channel attention for both, producing vector G(X) ∈ RC×1×1 with its kth channel
G(X) = 1

H×W ∑H
m ∑W

n Xk(m, n). The RGB compensated depth channel attention can be
defined as follows:

CAatt
i = FCd

i (G(xd
i )) + FCrgb

i (G(xrgb
i )), (1)

where FCd
i ∈ RC×C and FCrgb

i ∈ RC×C indicate weights of two linear layers and the
ReLU operator δ(·). CAatt

i denotes ith level fused channel attention. This operation in
Equation (1) can compensate the depth channel attention when the depth maps lack clear
object information, aiming to fully excavate helpful depth features. The output channel
attention vector is used to enhance xd

i :

xe_d
i = σ(CAatt

i )⊗ xd
i , (2)

where σ(·), σ(CAatt
i ), and xed

i denote the sigmoid function, importance of each channel,
and enhanced depth features, respectively. ⊗ represents the matrix multiplication. Next,
spatial attention is generated via global max pooling (GMP) operation for each pixel in the
enhanced depth features. The spatial attention is implemented as:

SAatt
i (xe_d

i ) = Conv(Rmax(xe_d
i ))⊗ xe_d

i , (3)

where Rmax(·) denotes the GMP operation for each point in the features along the channel
axis. Conv(·) represents a convolutional layer with 7× 7 filter.

To demonstrate the effectiveness of the RCDA module, we visualize some features xe_d
i

in RCDA module, as shown in Figure 5. ‘Stage0’, ‘Stage1’, and ‘Stage2’ denote the channel
attention features of RCDA module in stage 0, stage 1, and stage 2 of the CAF encoder,
respectively. Since there is rarely clear object information in depth maps, the effectiveness
of using depth channel attention to enhance depth features is poor, as shown in row ‘w/o
RGB Com.’. Considering the object is relatively clear in RGB image, we propose using RGB
channel attention to compensate for depth channel attention. From Figure 5, we can observe
that there is little difference between the features without RGB compensation and features
with RGB compensation in Stage0. However, with the further refinement, the object region
in the features with RGB compensation is more salient in Stage1 and Stage2, as shown in
row ‘w/RGB Comp.’. It verifies the effectiveness of the proposed RCDA.
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✓

✕ ✕

✓

✓

✕ ✕

✓

RGB Depth GT

Stage0 Stage1 Stage2

w/o RGB
Comp.

w/ RGB
Comp.

w/o RGB 
Comp.

w/ RGB
Comp.

Figure 5. Visual comparison of the features xe_d
i without RGB compensation (w/o RGB Comp.) and

features xe_d
i with RGB compensation (w/RGB Comp.) in the RCDA module.

2.3. Hierarchical Multiplication Decoder

Both high-level semantic features and low-level detailed features are very important
for SOD. In the process of decoding, we need to highlight the object region and suppress
the non-object region (background). However, the existing U-shape decoding strategy may
fail to effectively achieve this goal. It may lead to inaccurate locations of salient objects and
defective prediction.

To address this issue, we propose a simple and efficient multiplication-based hierarchi-
cal decoder to refine the multi-level features from coarse to fine. Meanwhile, the proposed
HMD can capture rich semantic information and global context with a larger receptive field.
The design of HMD is shown in Figure 6. There are two parts in our multiplication-based
hierarchical decoder, including the global context block (G block) and the hierarchical aggre-
gation strategy, which consists of hierarchical multiplication flow and concatenation flow.

We first embed a G block in each stage, which can provide a larger receptive field with
stronger global context [32,49]. More importantly, to effectively collect multi-level features,
we propose multiplication-based hierarchical decoding mechanism to progressively refine
the multi-level features from coarse to fine. The high-level semantic features can guide
their next-level features by element-wise multiplication operation, as shown in blue box of
Figure 6. With the hierarchical multiplication operation, the salient region and background
can be more obviously distinguished. Then, the refined features are concatenated with
their higher-level semantic features (as shown in green box of Figure 6), so more high-level
semantic features can be preserved. The proposed hierarchical multiplication decoding
mechanism has the benefit of eliminating the ambiguity of the semantic features. Therefore,
the object region would be more salient while the background distractors can be effectively
suppressed by the hierarchical refinement strategy.

Specifically, the fused multi-modal features Ei would be fed into G block to capture
the global contextual information. The G block includes four parallel branches. A 1× 1
convolution is adopted to unify the channel number to 32 in every branch, followed by
a convolution with kernel size of 2k − 1 being adopted in the kth branch (k ∈ 2, 3, 4)
to extract multi-scale features. Then, all branches are tailed by a 3× 3 convolution with
dilation rate of 2k− 1. Finally, the outputs of the four branches are concatenated and unified
to channel 32 with a 1× 1 convolution [32]. The outputs of the G block are defined by:

f g
j = G(Ej), (4)



Remote Sens. 2023, 15, 2393 8 of 20

where Ej and G(·) represent the jth level input features and global context block, respec-
tively. The purpose of G block is to capture long-range contextual information from the
fused multi-modal features.
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Figure 6. Structure of the hierarchical multiplication decoder. ‘G’ represents global context block. �
and c© denote element-wise multiplication and concatenation of features, respectively.

To more thoroughly excavate the high-level semantic features, we leverage a multiplication-
based hierarchical decoding mechanism to refine the features from coarse to fine. For con-
venience, the multi-level semantic features with and without refinement can be denoted as
Fg

0 , Fg
1 , Fg

2 , Fg
3 and f g

0 , f g
1 , f g

2 , f g
3 , f g

4 , respectively. The proposed hierarchical multiplication
mechanism mainly includes four steps. For simplicity, we do not mention the ‘UpConv’
operation for resizing in the following.

• Firstly, refine f g
3 by f g

4 with element-wise multiplication to obtain Fg
3 . Concatenate f g

4
and Fg

3 to obtain Fc
3 .

• Secondly, refine f g
2 by Fg

3 with element-wise multiplication to obtain Fg
2 . Concatenate

Fg
2 and Fc

3 to obtain Fc
2 .

• Thirdly, refine f g
1 by Fg

2 with element-wise multiplication to obtain Fg
1 . Concatenate

Fg
1 and Fc

2 to obtain Fc
1 .

• Finally, refine f g
0 by Fg

1 with element-wise multiplication to obtain Fg
0 . Concatenate Fg

0
and Fc

1 to obtain Fc
0 , as the final output of HMD.

With the multiplication strategy, those object regions can be more salient while back-
ground information would be suppressed. Thus, the higher-level semantic information can
guide its next-level features with hierarchical multiplication operation. The hierarchical
multiplication flow can be defined as follows:{

f u_p
4 = UpConv( f g

4 )
Fg

3 = f g
3 � f u_p

4
(5)

{
Fu_p

4−i = UpConv(Fg
4−i)

Fg
4−i−1 = f g

4−i−1 � Fu_p
4−i

(6)

where i ∈ {1, 2, 3}, and UpConv(·) denote the up-sampling operation and standard 3×3
convolution operation. � indicates element-wise multiplication.
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The multi-level features’ representative ability becomes stronger after hierarchical
multiplication. Meanwhile, each refined feature is concatenated with its last-level features
as the output features. Thus, more high-level semantic information can be preserved via
hierarchical concatenation. The hierarchical concatenated flow can be defined as:{

Fc
3 = cat(Fg

3 , f u_p
4 )

Fc
4−i−1 = cat(Fg

4−i−1, UpConv(Fc
4−i))

(7)

where cat(·) represents the concatenation of multiple semantic features. Fc
3 and Fc

4−i−1
indicates the 3rd and (4− i− 1)th level output of HMD, respectively.

To intuitively prove the effectiveness of our HMD, we provide some visual examples
in Figure 7, including features before hierarchical multiplication flow (referring to f g

1 , f g
2 ,

f g
3 , and f g

4 in Figure 6) and features after hierarchical multiplication flow (referring to Fg
0 ,

Fg
1 , Fg

2 , and Fg
3 in Figure 6). We can observe that the features before multiplication operation

(denoted as ‘B/Mul’ in Figure 7) are coarse and blurred. The background of the refined
features (denoted as ‘A/Mul’ in Figure 7) is smoother and the object region is clearer after
hierarchical multiplication. It demonstrates the background distractors has been effectively
suppressed and the object region has been highlighted. The visual examples verified the
effectiveness of the proposed hierarchical multiplication mechanism.

B/ Mul.

A/ Mul.

RGB Depth GT

B/ Mul.

A/ Mul.

𝑓!
" 𝑓#

" 𝑓$
" 𝑓%

"

𝑓!
" 𝑓#

" 𝑓$
" 𝑓%

"

𝐹!
" 𝐹#

" 𝐹$
" 𝐹%

"

𝐹!
" 𝐹#

" 𝐹$
" 𝐹%

"

Figure 7. Visual comparison of features. B/Mul. = Before Multiplication; A/Mul. = After
Multiplication. The features are relatively coarse before multiplication and the features are finer
after multiplication. This shows that our hierarchical multiplication strategy can refine the features
from coarse to fine.

2.4. Loss Function

We observe that the predicted maps produced by some existing RGB-D SOD algo-
rithms suffer from coarse object boundaries. Thus, we apply a CAM to boost contour
quality by explicitly utilizing contour information. Specifically, the fused features from
each stage of the backbone are fed into CAM and their channels are unified to 256 by 3× 3
convolutional layers. To make the contour regions more salient, the multi-scale contour
features are directly supervised by the binary contour labels [50]. Here, a 1× 1 convolution
and a sigmoid function are used to map the contour features to predicted edge maps. All
contour features are resized to the same size and then concatenated together. Finally, we
exploit it to refine the semantic features that are generated from HMD. We adopt binary
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cross entropy (BCE) loss [51] to supervise the contour prediction (Pc) and the contour loss
is defined as:

lossc(Pc, Gc) = Gc log Pc + (1− Gc) log(1− Pc), (8)

where Pc and Gc mean the predicted contour saliency maps and ground truth binary contour
saliency maps, respectively. We jointly optimize the model by defining the total loss:

losstotal = losspred + lossaux + αlossc. (9)

The weight α is used to keep a trade-off between the contour and semantic loss. We
empirically set α = 0.3. The losspre and lossaux represent the prediction loss and auxiliary
loss for which BCE is widely used. The lossaux and losspre are computed as:

lossaux(P1, G) = G log P1 + (1− G) log(1− P1), (10)

losspred(P2, G) = G log P2 + (1− G) log(1− P2), (11)

where P1, P2 are the predicted results of middle stage and the last stage, and G indicates
the ground truth. More specifically, the BCE loss can be formulated as:

loss(P, G) =
1

W × H
Gi,j log Pi,j + (1− Gi,j) log(1− Pi,j), (12)

where Gi,j and Pi,j are the ground truth and predicted value in the spatial position (i, j) of
image. W and H denote the width and height of image, respectively.

3. Results
3.1. Datasets

The proposed method has been quantitatively evaluated on five widely used RGB-
D SOD datasets, including NJU2K [24], NLPR [52], STERE [53], DES [54], and SIP [25].
A simple introduction about five datasets is given below: NJU2K [24] includes 1985 image
pairs and ground truth with different challenging and complex objects. The stereo images
are gathered from the Internet and 3D movies. It is divided into a testing set and a
training set, which incorporates 500 and 1485 images, respectively. NLPR [52] includes
1000 images with single or multiple salient objects, which are harvested by Kinect in
different environments. It is split into a testing set and a training set, which contains 300
and 700 images, respectively. STERE [53] incorporates 1000 pairs of binocular pictures for
testing. These images are mainly downloaded from the Internet. DES [54] is a relatively
small testing dataset that contains 135 images captured by Microsoft Kinect in indoor
circumstances. SIP [25] contains 929 accurately annotated high-resolution images, which
involve various real-world scenes. One of the main characteristics is that it contains multiple
salient persons per image.

Training/Testing dataset. We adopt the same training setting as previous stud-
ies [55,56]. In total, 1485 images from the NJU2K dataset and 700 images from the NLPR
dataset are used as the training set. All the images of SIP, DES, STERE, and the remaining
images in the NLPR and NJU2K datasets are applied as the testing set.

3.2. Evaluation Metrics

Four mainstream metrics are adopted to evaluate the performance of the proposed
CAF-HMNet, incorporating mean absolute error (MAE) [57], S-measure (Sα) [58], maxi-
mum F-measure (Fβ) [59], and maximum E-measure (Eξ) [60].

S-measure. The S-measure evaluates both object-aware and region-aware structural
similarity between ground truth and predicted maps. It combines the object-aware(S0) and
region-aware (Sr) structural similarity as the final structure metric:
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Sα = α ∗ S0 + (1− α) ∗ Sr, (13)

where α ∈ [0, 1] and α = 0.5 is the default setting [58].
E-measure. The E-measure simultaneously captures local pixel matching information

and global statistics. It is formulated as:

Eξ =
1

W × H

W

∑
x=1

H

∑
y=1

f (
2ϕGT ◦ ϕFM

ϕGT ◦ ϕGT + ϕFM ◦ ϕFM
), (14)

where f (·) is a quadratic function. ◦ indicates the Hadamard product. ϕGT and ϕFM are
the bias matrix of ground-truth maps and binary foreground maps, respectively.

F-measure. The F-measure is a region-based similarity, and it is the weighted harmonic
mean of recall and precision. The F-measure can evaluate the overall performance. It is
formulated as:

Fβ =
(1 + β2) · Precision · Recall

β2 · Precision + Recall
. (15)

As advised by previous works [41,61], β2 is set to 0.3.
MAE. The MAE calculates the average value of the per pixel absolute error between

the ground truth and the prediction.

MAE =
1

W × H

W

∑
i=1

H

∑
j=1
|P̄(i, j)− Ḡ(i, j)|, (16)

where P̄ and Ḡ denote the predicted results and ground truth. W and H represent the
image width and height.

3.3. Implementation Details

The input depth and RGB image pairs are reshaped to 352× 352 during the training
and inference phase. Different image enhancement methods are utilized for the training
dataset, i.e., border clipping, random flipping, and rotating. The backbone network pa-
rameters are pre-trained on ImageNet [62]. We use PyTorch default settings to initialize
the remaining network parameters. The Adam optimizer algorithm [63] is employed to
train our model. The batch size is set to 10. The initial learning rate is set to 1× 10−4 and is
divided by 10 per 60 epochs with total 200 epochs. The PyTorch [64] framework is used to
conduct experiments base on a single RTX 3090 GPU platform. The parameters and FLOPs
of our CAF-HMNet are 72.05 M and 43.30 G, respectively.

3.4. Comparison with State-of-the-Art Methods

We compare our CAF-HMNet with thirteen SOTA RGB-D models, including TANet [35],
DMRA [36], SSF [26], DRLF [65], CoNet [66], DCMF [67], A2dele [68], D3Net [25], IC-
Net [38], DANet [69], BBSNet [32], CDNet [70], and DSA2F [71]. The saliency maps for
comparison are supplied by the authors to ensure comparison fairness.

Quantitative Evaluation. The quantitative comparison in Table 1 shows that our
method achieves satisfactory results, compared with other SOTA CNN-based methods,
in terms of all four evaluation metrics. It has performance gains over the best compared
algorithms (CVPR’21 DSA2F [71] and TIP’21 CDNet [70]) for the metrics (Sα, maxFβ, maxEξ ,
and MAE) on five mainstream datasets. This is mainly attributed to two aspects: firstly,
our RCDA module can singularize more depth semantic information. Secondly, the HMD
can effectively suppress background distractors and highlight the salient object region.
The experiment results verify that our model is successful in exploiting the high-level
semantic information to guide low-level features and multi-modal feature fusion.
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Table 1. Quantitative evaluation of the proposed model with different methods, using S-measure (Sα), max F-measure (Fβ), max E-measure (Eξ), and MAE (M)
scores on five datasets. ↑ (↓) means that the higher (lower) the better. We highlight the best performance in each row with bold font.

Datasets Metric TANet
TIP19 [35]

DMRA
ICCV19 [36]

SSF
CVPR20 [26]

DRLF
TIP20 [65]

CoNet
ECCV20 [66]

DCMF
TIP20 [67]

A2dele
CVPR20 [68]

D3Net
TNNLS20 [25]

ICNet
TIP20 [38]

DANet
ECCV20 [69]

BBSNet
ECCV20 [32]

CDNet
TIP21 [70]

DSA2F
CVPR21 [71] Ours

NJU2K

Sα ↑ 0.878 0.886 0.899 0.886 0.894 0.889 0.869 0.900 0.894 0.899 0.917 0.885 0.904 0.922
Fβ ↑ 0.874 0.886 0.886 0.883 0.872 0.859 0.874 0.900 0.868 0.871 0.899 0.866 0.898 0.923
Eξ ↑ 0.925 0.927 0.913 0.926 0.912 0.897 0.897 0.950 0.905 0.908 0.917 0.911 0.922 0.953
M ↓ 0.060 0.051 0.043 0.055 0.047 0.052 0.051 0.041 0.052 0.045 0.037 0.048 0.039 0.034

NLPR

Sα ↑ 0.886 0.899 0.914 0.903 0.907 0.900 0.896 0.912 0.923 0.920 0.924 0.902 0.918 0.937
Fβ ↑ 0.863 0.879 0.875 0.880 0.848 0.839 0.878 0.897 0.870 0.875 0.880 0.848 0.892 0.929
Eξ ↑ 0.941 0.947 0.949 0.939 0.936 0.933 0.945 0.953 0.944 0.951 0.954 0.935 0.950 0.969
M ↓ 0.041 0.031 0.026 0.032 0.031 0.035 0.028 0.030 0.028 0.027 0.025 0.032 0.024 0.020

STERE

Sα ↑ 0.871 0.835 0.887 0.888 0.908 0.883 0.878 0.899 0.903 0.901 0.901 0.896 0.897 0.909
Fβ ↑ 0.861 0.847 0.867 0.878 0.885 0.841 0.874 0.891 0.865 0.868 0.876 0.873 0.893 0.906
Eξ ↑ 0.923 0.911 0.921 0.929 0.923 0.904 0.915 0.938 0.915 0.921 0.920 0.922 0.927 0.946
M ↓ 0.060 0.066 0.046 0.050 0.041 0.054 0.044 0.046 0.045 0.043 0.043 0.042 0.039 0.039

DES

Sα ↑ 0.858 0.900 0.905 0.895 0.910 0.877 0.885 0.898 0.920 0.924 0.918 0.875 0.916 0.924
Fβ ↑ 0.827 0.888 0.876 0.869 0.861 0.820 0.865 0.885 0.889 0.899 0.871 0.839 0.901 0.920
Eξ ↑ 0.910 0.943 0.948 0.940 0.945 0.923 0.922 0.946 0.959 0.968 0.951 0.921 0.955 0.961
M ↓ 0.046 0.030 0.025 0.030 0.027 0.040 0.028 0.031 0.027 0.023 0.025 0.034 0.023 0.022

SIP

Sα ↑ 0.835 0.806 0.868 0.850 0.858 0.859 0.826 0.860 0.854 0.875 0.879 0.823 0.862 0.883
Fβ ↑ 0.830 0.821 0.851 0.813 0.842 0.819 0.825 0.861 0.836 0.855 0.883 0.805 0.865 0.892
Eξ ↑ 0.895 0.875 0.911 0.891 0.909 0.898 0.892 0.909 0.899 0.914 0.922 0.880 0.908 0.926
M ↓ 0.075 0.085 0.056 0.071 0.063 0.068 0.070 0.063 0.069 0.054 0.055 0.076 0.057 0.050
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Moreover, we conduct multiple experiments and report both the average performance
and standard deviation. As shown in Table 2, the Sα and Fβ on NJU2K are 0.923 ± 0.001
and 0.923 ± 0.002, respectively. The maximum standard deviation is 0.00476, while the
minimum standard deviation is 0.00050, indicating the consistently small variance in the
results obtained. Hence, both the average performance and standard deviation confirm
that our comparisons hold statistical significance.

Table 2. The experimental results of repeated experiments under the same setting. No. x denotes the
x-th time experimental results. AP = Average Performance and SD = Standard Deviation.

Models
NJU2K NLPR STERE

Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓
No. 1 0.922 0.923 0.953 0.034 0.937 0.929 0.969 0.020 0.909 0.906 0.946 0.039

No. 2 0.922 0.924 0.954 0.033 0.930 0.917 0.962 0.023 0.908 0.903 0.943 0.040

No. 3 0.922 0.921 0.952 0.034 0.930 0.918 0.965 0.022 0.905 0.900 0.940 0.041

No. 4 0.924 0.925 0.954 0.033 0.932 0.923 0.967 0.022 0.904 0.897 0.938 0.042

AP 0.923 0.923 0.953 0.034 0.932 0.922 0.966 0.022 0.907 0.904 0.942 0.041

SD 0.00087 0.00148 0.00083 0.00050 0.00286 0.00476 0.00259 0.00109 0.00206 0.00415 0.00303 0.00112

Qualitative Comparison. To further demonstrate the superior performance of our
model, we supply some visual predicted maps of the proposed method and various SOTA
methods in Figure 8. From the predicted maps, we can observe that our proposed method
has better detection performance than other SOTA methods under various challenging
situations: small object (1st and 2nd rows), low-quality depth maps (3rd and 4th rows), slim
structure (5th and 6th rows), low contrast scene (7th and 8th rows), and complex scene (9th
and 10th rows). Additionally, we also report the Dice similarity coefficient (Dice) metric for
reference at the bottom of each scene. ↑ denotes that the higher the better.

In Figure 8a, we first display two examples of poor-quality depth maps where the
object information is not clearly visible. Nevertheless, our proposed method can accurately
detect salient objects in these cases, indicating the efficacy of our RCDA module. Second,
two small object examples are shown in Figure 8b. Although the aircraft on the upper-left
of the first row is tiny, our method can exactly detect it. Third, we present two examples
with slim structures in Figure 8c. As shown in the second row, most SOTA methods fail to
detect the stem of instruction board, while our method can precisely segment the salient
object, even though the stem of the instruction board is slim and easily neglected. Fourth,
Figure 8d shows examples with low contrast between the background and target regions.
Many methods fail to segment the complete object. Our method can segment the object
more accurately and completely.

Finally, there are two examples of complex scenes in Figure 8e. From the first row,
we can find that most SOTA methods make the wrong detection. However, our method
can accurately detect the salient object by effectively suppressing the background distrac-
tors. In the second row, our method completely segments the object by highlighting the
foreground object while other methods output the incomplete results.
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(b)

(a)

(c)

(d)

(e)

RGB Depth   GT  DMRA   SSF CoNet   DCMF   D3Net  CDNet DSA2F    Ours

Dice ↑ 0.865 0.953 0.880 0.950 0.957 0.929 0.815 0.975

Dice ↑ 0.915 0.915 0.930 0.932 0.934 0.921 0.957 0.960

Dice ↑ 0.835 0.772 0.908 0.862 0.845 0.950 0.925 0.967

Dice ↑ 0.805 0.872 0.763 0.507 0.853 0.827 0.907 0.915

Dice ↑ 0.700 0.772 0.815 0.765 0.555 0.711 0.790 0.853

Dice ↑ 0.943 0.978 0.962 0.894 0.970 0.887 0.945 0.982

Dice ↑ 0.890 0.907 0.938 0.934 0.854 0,949 0.959 0.969

Dice ↑ 0.569 0.588 0.769 0.800 0.764 0,512 0.446 0.789

Dice ↑ 0.961 0.954 0.434 0.950 0.947 0.826 0.767 0.972

Dice ↑ 0.687 0.914 0.210 0.898 0.896 0.848 0.784 0.967

Figure 8. Visual comparison with other state-of-the-art models. Different from other models, the pro-
posed method locates the salient object accurately with fewer background distractors in different
scenarios, including (a) poor-quality depth maps, (b) small objects, (c) slim structures, (d) low-contrast
scenes, and (e) complex scenes.

4. Discussion

In this section, we conduct ablation experiments on the NJU2K [24], NLPR [52],
STERE [53], and SIP [25] datasets to study the effectiveness of different modules in our
method. The baseline is our CAF-HMNet without additional modules (i.e., RCDA, HMD,
and CAM).

The effectiveness of the RGB compensated depth attention module. To illustrate
the advantages of the RCDA module in the proposed CAF-HMNet, we conduct an ablation
experiment. We use the RCDA module for multi-modal feature fusion rather than the
element-wise addition used at baseline. The baseline’s performance is illustrated in row 1.
Row 2 (denoted as ‘B + RCDA’) represents the model which adopts the RCDA module for
multi-modal feature fusion. As shown in Table 3, ablation studies on the STERE dataset have
demonstrated the effectiveness of the RCDA module, yielding an improvement of 1.6, 1.7,
and 1.1 points in Sα, Fβ, and Eξ over baseline when using the RCDA module for multi-modal
feature fusion. Compared with baseline, using the RCDA module significantly improves
the performance. This verifies the effectiveness of the RCDA module. Additionally, we
conduct an ablation study where maximum pooling is incorporated in the channel and
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spatial attention of our RCDA module. As shown in Table 4, we can find that the model
with maximum pooling cannot effectively improve the performance but the computational
complexity is increased. Therefore, the maximum pooling operation is not considered in
our RCDA module.

Table 3. The ablation experiments of different modules. B = Baseline, RCDA = RGB Compensated
Depth Attention Module; HMD = Hierarchical Multiplication Decoder.

Models
NJU2K NLPR STERE SIP

Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓
B 0.911 0.908 0.943 0.038 0.924 0.910 0.955 0.026 0.891 0.885 0.933 0.048 0.867 0.870 0.907 0.062

B + RCDA 0.919 0.917 0.948 0.036 0.929 0.918 0.961 0.024 0.907 0.902 0.944 0.041 0.881 0.887 0.920 0.054

B + HMD 0.920 0.919 0.950 0.036 0.930 0.921 0.966 0.023 0.895 0.886 0.933 0.047 0.878 0.884 0.919 0.055

B + RCDA + HMD 0.920 0.922 0.950 0.035 0.931 0.921 0.962 0.024 0.907 0.901 0.942 0.041 0.884 0.889 0.924 0.052

Table 4. The ablation experiments of different RCDA strategies. ‘RCDA’ denotes our method and
‘RCDA + MaxPooling’ denotes that maximum pooling is included in our RCDA module.

Models
NJU2K NLPR STERE

FLOPs (G)
Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓

RCDA 0.922 0.923 0.953 0.034 0.937 0.929 0.969 0.020 0.909 0.906 0.946 0.039 43.14

RCDA + MaxPooling 0.922 0.924 0.953 0.034 0.930 0.917 0.960 0.024 0.906 0.902 0.943 0.040 43.15

Moreover, to intuitively show the advantages of the RCDA module, we visualize some
examples in Figure 9. The ‘B’ and ‘B + RCDA’ columns in Figure 9 show that the predicted
maps of the baseline can be optimized by adding the RCDA module. There is richer object
semantic information after the RCDA module is used, which proves the effectiveness of
our method.

RGB    Depth          GT              B B+RCDA       B+HMD B+RCDA+HMD

Dice ↑ 0.912 0.974 0.975 0.977

Dice ↑ 0.956 0.964 0.963 0.965

Dice ↑ 0.558 0.933 0.912 0.938

Figure 9. Visual comparison of gradually adding different modules. ‘B’, ‘B + RCDA’, ‘B + HMD’,
and ‘B + RCDA + HMD’ denote the corresponding row of Table 3. Column 4 ‘B’ denotes the
predictions of baseline. Column 5 ‘B+RCDA’ represents the output of baseline with RCDA module.
‘B+HMD’ and ‘B+RCDA+HMD’ mean the predictions of baseline with HMD, and baseline with both
the RCDA module and HMD, respectively.

The effectiveness of the hierarchical multiplication decoder. We conduct an ablation
experiment to validate the effectiveness of the proposed HMD. We adopt HMD to aggregate
multi-level features instead of the UNet decoder utilized in the baseline. The performance
of the baseline with HMD is illustrated in row 3 (denoted as ‘B + HMD’) of Table 3. From the
experimental results, we can see huge performance gains from using our HMD.

Moreover, some visual examples are shown to intuitively prove the effectiveness of
HMD. As shown in Figure 9, adding HMD can generate predicted maps with both more
sufficient semantic information and clearer detailed information. This demonstrates that
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the proposed hierarchical multiplication mechanism efficiently utilizes high-level semantic
information to guide low-level features.

Finally, from row 4 of Table 3, we can find that the baseline with both RCDA module
and HMD achieves the best performance on most metrics. Compared with the previ-
ous model, the ‘B + RCDA + HMD’ model outputs more complete and accurate features,
as shown in Figure 9. This is mainly owed to the RCDA module and the HMD. The quantita-
tive results and visualized features demonstrate the effectiveness of the proposed modules.

The effectiveness of the contour-aware module. To show the effectiveness of the
CAM, we remove the CAM from the proposed CAF-HMNet for the ablation study. From
Figure 10, we can find that our CAF-HMNet (denoted as ‘w/CAM’) can predict more
completed salient object regions and clearer boundaries compared with the model without
the contour-aware module (denoted as ‘w/o CAM’). For example, our model can effectively
predict the legs of the bird, as shown in the green circle of the second row. In summary,
the model with CAM can generate clearer boundaries and more integrated salient objects.

RGB    Depth          GT                 w/o CAM w/ CAM

Dice ↑ 0.928 0.928

Dice ↑ 0.973 0.992

Dice ↑ 0.946 0.956

Figure 10. The comparison of the visual predicted maps with CAM (w/CAM) and features without
CAM (w/o CAM).

The superiority of the hierarchical multiplication decoder. To intuitively show the
superiority of the hierarchical multiplication decoding mechanism, we visualize some con-
catenated features (referring to Fc

0 , Fc
1 , Fc

2 , and Fc
3 in Figure 6) with and without hierarchical

multiplication (denoted as ‘C/w/Mul.’ and ‘C/w/o Mul.’, respectively, in Figure 11). It
is obvious that the predicted maps without hierarchical multiplication operation have
insufficient semantic information (as shown in the yellow circle of Figure 11) and wrong
predictions (as shown in the red circle of Figure 11). However, we can correct these de-
ficiencies by adding our hierarchical multiplication mechanism. The visualized features
further demonstrate that the proposed hierarchical multiplication decoding mechanism
can effectively enhance the salient object region and suppress the background distractors.
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C/ w/ Mul.

RGB Depth GT
C/ w/o Mul.

C/ w/ Mul.

C/ w/o Mul.

C/ w/o Mul.

C/ w/ Mul.

C/ w/o Mul.

C/ w/ Mul.

Prediction𝐹!
" 𝐹#

" 𝐹$
" 𝐹%

"

Methods C/ w/o Mul. C/ w/ Mul.
Dice ↑ 0.916 0.992

Methods C/ w/o Mul. C/ w/ Mul.
Dice ↑ 0.962 0.975

Methods C/ w/o Mul. C/ w/ Mul.
Dice ↑ 0.724 0.959

Methods C/ w/o Mul. C/ w/ Mul.
Dice ↑ 0.876 0.932

Figure 11. Visual comparison of Concatenated features with hierarchical Multiplication (C/w/Mul.)
and Concatenated features without hierarchical Multiplication (C/w/o Mul.).

5. Conclusions

In this paper, we reveal the deficiencies of existing U-shape SOD methods, from the
perspective of multi-modal feature fusion and the utilization of high-level semantic infor-
mation. To address these issues, we propose the compensated attention feature fusion and
hierarchical multiplication decoder network. Specifically, we firstly design a compensated
attention feature fusion module to solve the multi-modal feature fusion issue. Secondly,
we propose a hierarchical multiplication decoder to fully exploit high-level semantic infor-
mation to guide low-level features. Experiments on five challenging RGB-D SOD datasets
demonstrate that the proposed method achieves promising performance under four widely
used evaluation measures. In particular, our CAF-HMNet achieves 92.2% Sα, 92.3% Fβ,
95.3% Eξ , and 3.4% MAE on the NJU2K dataset and 93.7% Sα, 92.9% Fβ, 96.9% Eξ , and 2.0%
MAE on the NLPR dataset.
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