
Citation: Zhao, J.; Wu, J.; Adeke, J.M.;

Qiao, S.; Wang, J. Detecting

High-Resolution Adversarial Images

with Few-Shot Deep Learning.

Remote Sens. 2023, 15, 2379. https://

doi.org/10.3390/rs15092379

Academic Editor: Andrea Garzelli

Received: 13 April 2023

Revised: 28 April 2023

Accepted: 30 April 2023

Published: 30 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

Detecting High-Resolution Adversarial Images with Few-Shot
Deep Learning
Junjie Zhao 1, Junfeng Wu 2, James Msughter Adeke 1, Sen Qiao 1 and Jinwei Wang 2,3,*

1 School of Electronics and Information Engineering, Nanjing University of Information Science and
Technology, Nanjing 210044, China; ginogogo@nuist.edu.cn (J.Z.); adekejames@nuist.edu.cn (J.M.A.);
sensariel@nuist.edu.cn (S.Q.)

2 School of Computer Science, Nanjing University of Information Science and Technology,
Nanjing 210044, China; wjf@nuist.edu.cn

3 State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450003, China
* Correspondence: wjwei@nuist.edu.cn; Tel.: +86-138-5199-4653

Abstract: Deep learning models have enabled significant performance improvements to remote
sensing image processing. Usually, a large number of training samples is required for detection
models. In this study, a dynamic simulation training strategy is designed to generate samples in real
time during training. The few adversarial examples are not only directly involved in the training
but are also used to fit the distribution model of adversarial noise, helping the real-time generated
samples to be similar to adversarial examples. The noise of the training samples is randomly
generated according to the distribution model, and the random variation of training inputs reduces
the overfitting phenomenon. To enhance the detectability of adversarial noise, the input model is
no longer a normalized image but a JPEG error image. Experiments show that with the proposed
dynamic simulation training strategy, common classification models such as ResNet and DenseNet
can effectively detect adversarial examples.

Keywords: deep learning; anomaly detection; adversarial example; high-resolution image; image
processing

1. Introduction

With the popularity of artificial intelligence technology, deep learning models have
enabled revolutionary performance improvements in the fields of remote sensing image pro-
cessing, such as semantic segmentation [1–3], classification [4–7], and target detection [8,9].
However, adversarial examples [10] pose a significant threat to the security of artificial
intelligence models such as convolutional neural networks (CNNs). By simply adding a
small adversarial noise to a normal picture [11,12], CNNs can be guided to an incorrect con-
clusion. Training an effective adversarial example detection model typically requires many
labeled samples [13,14]. Obtaining a usable detection model with only a small number of
samples is necessary.

The defense methods for adversarial examples are mainly divided into active and
passive defense. Detection is a typical active defense method. The addition of adversarial
noise destroys the original distribution of the image, making statistical values of adver-
sarial examples different from the raw image in the spatial and transformation domains.
Grosse et al. [15] found that the maximum, average, and energy distribution differences of
pictures can be used to detect adversarial examples. Li and Li [16] identified adversarial
examples using the internal characteristics of the attack model and support vector machine
(SVM). Their method directly obtains the output feature maps of each convolution layer of
the original model and sends the statistical features of these feature maps to the SVM for
classification. However, their performance needs to be improved. Liu et al. [17] proposed
an enhanced version of the spatial rich model (ESRM) in combination with steganalysis,

Remote Sens. 2023, 15, 2379. https://doi.org/10.3390/rs15092379 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15092379
https://doi.org/10.3390/rs15092379
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs15092379
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15092379?type=check_update&version=2

Remote Sens. 2023, 15, 2379 2 of 19

which achieved high-accuracy detection. Zhao et al. [14] used a simulated JPEG quantiza-
tion error for detection, and their findings revealed that the block discrete cosine transform
(DCT) domain is more suitable for detecting adversarial noise than the spatial domain.
Effective detection models must use a large number of adversarial examples for training.

With the development of adversarial example generation technology, researchers have
generally sought to reduce the magnitude of adversarial noise to reduce the changes in
visual effects. However, adversarial noise is reduced at the expense of increasing the
number of generation steps. The fast gradient sign method (FGSM) [10] only needs to
add noise once to complete the attack. Subsequently, the number of iterations for the
other generation methods increases exponentially [18,19]. This undoubtedly introduces
significant challenges to the generation of large-scale training samples.

Adversarial training is an effective passive method to defend against adversarial
attacks [20,21]. In the adversarial training process, training samples must be generated in
real time, and the direct use of the original generation method slows the training process.
Therefore, training sample generation and defense in adversarial training are usually asyn-
chronous [11,22]. Inspired by this, we count the distribution characteristics of adversarial
noise with a few examples and use many clean pictures to generate pseudoadversarial
examples. Thus, we can provide a large number of training samples for the detector.
The proposed dynamic simulation training strategy for adversarial example detection
models is characterized by the following innovations and advantages:

• Pseudoadversarial examples are generated through simulation to train the detector so
that the training model no longer requires many real adversarial examples. A small
amount of real adversarial noise is used to fit the distribution, and pseudoadversarial
examples are generated based on this distribution;

• A dynamic simulation training strategy for the entire detector training process is pro-
posed based on pseudoadversarial examples. With the cooperation of a small number
of real examples, JPEG error input, and compression factor fluctuation, the dynamic
simulation training strategy helps common classification models to detect adversarial
examples;

• Because pseudoadversarial examples are generated in real time during the training
process of the detection model and the noise generated in each epoch is different,
the serious overfitting phenomenon is avoided. Benefiting from this, the common
classification model performs well in adversarial example detection.

The remainder of this paper is structured as follows. In Section 2, the generation of
adversarial examples, defense, and other related works are introduced. Section 3 introduces
the relevant basis of JPEG compression error, and in Section 4, we introduce the proposed
training scheme. In Section 5, detailed experiments and analyses are presented to verify
the feasibility of the proposed scheme. Finally, we conclude this paper in Section 6.

2. Related Works
2.1. Adversarial Example Generation

An adversarial example is the addition of artificially designed small adversarial noise
to normal examples, such as clean pictures, to mislead machine learning models. Let Xc
denote the normal input sample and r be the adversarial noise. The adversarial example
(Xad) can be obtained as shown in Equation (1). The amplitude of adversarial noise is
usually so small that it is imperceptible to human vision.

Xad = Xc + r (1)

The generation methods for adversarial examples are mainly divided into white-box
and black-box attacks. In white-box attacks, the parameters of the target model are known
to the attacker. In contrast, a black-box attacker knows only the output of the target model
(discriminative results or confidence levels).

Remote Sens. 2023, 15, 2379 3 of 19

While confirming the existence of adversarial examples, Goodfellow et al. proposed
FGSM to rapidly generate adversarial examples [10]. They directly superimposed the
gradient of the model on the input image, causing the diffusion of the loss function and
misleading the model. Equation (2) describes the generation process, where y represents the
output label of the input (Xc) of the target model, ∇ represents the gradient calculated to
Xc, L represents the current loss function, sign indicates the sign function, and ε represents
the perturbation coefficient.

Xad = Xc + ε sign(∇xL(Xc, y)) (2)

The FGSM only needs to generate and add noise once to generate adversarial examples,
which is a rapid process. However, its perturbation coefficient (ε) must be set artificially,
and its attack success rate on large-scale images is low. The schemes that add noise in
multiple steps effectively solve these problems. The basic iteration method (BIM) [23]
adds gradient noise in several steps and recalculates the gradient direction after each step.
Let XN denote the sample generated at the N step, α be the single-step noise amplitude,
and Clipε denote the truncation of cumulatively added noise by ε. The samples generated
by the N + 1 step of BIM can be represented by Equation (3), where X0 = Xc.

XN+1 = Clipε{XN + α sign(∇xL(XN , y))} (3)

Dong et al. proposed an optimized version of the FSGM based on momentum iteration
(MI-FGSM) [24]. Since then, many multistep generation methods have been designed to
achieve two effects: a higher attack success rate and a lower noise amplitude. Compared
with BIM, project gradient descent (PGD) [11] uses less single-step noise and more iteration
steps. To avoid long generation time, the first step of the PGD attack is to add random
noise to the input sample. Currently, PGD remains one of the most effective attack methods.
The C&W method [12] can effectively improve and reduce the amplitude of adversarial
noise by limiting the norm of adversarial noise (L1, L2, and L∞) while ensuring the attack
effect. The Deepfool method [18] assumes that the classification space of the target model
is a linearly differentiable space. In each iteration, the algorithm gradually moves the input
image to the decision boundary until the image is finally moved to the other side of the
decision boundary.

Compared to white-box attacks, black-box attacks can only use limited information.
The strategies for black-box attacks include gradient estimation and boundary queries.
Brendel et al. [25] transformed the estimation problem into an optimization problem and
realized gradient estimation using prior knowledge such as time correlation and data
correlation. The boundary query method, also known as a decision-based attack, was first
proposed by Brendel et al. [26]. A boundary attack [26] needs to randomly generate an
adversarial example, then iteratively reduce the noise to be closer to the original sample.

In addition, there is a series of generation methods based on generative adversarial net-
works (GANs) [27]. Xiao et al. [28] mapped original samples into adversarial disturbances
using the GAN generator and added them to the original samples. The discriminator deter-
mines whether the input samples are adversarial examples. Mangla et al. [29] introduced
an inner convolution layer in a classifier to extract features. They input the features and
random noise into the generator of GAN and proposed AdvGAN++. During deployment,
AdvGAN [28] can perform black-box attacks. However, AdvGAN++ [29] can only carry out
white-box attacks because it requires the output of the middle layers of the target model.

2.2. Defense of Adversarial Examples

Defense methods for adversarial attacks include detection, repair, input transfor-
mation, adversarial training, etc. Feinman et al. [30] proposed measuring the distances
between adversarial and natural examples using kernel density estimation of the classi-
fier’s hidden layers. Carrara et al. [30] proposed a method to extract the output of the
classifier’s hidden layer neurons, then used a long short-term memory (LSTM) network

Remote Sens. 2023, 15, 2379 4 of 19

to detect adversarial examples. Schottle et al. [31] used a steganalysis tools to detect PGD
adversarial examples. SmsNet [13] is an end-to-end adversarial example detection model,
and the feature statistical layer was designed to obtain the high-dimensional features of
each convolutional layer’s output.

The repair of adversarial examples mainly uses downsampling and reconstruction.
In ComDefend [32], ComCNN was first used to compress the adversarial example from
24 bits to 12 bits; then, ResCNN was used to restore the compressed image to a high
quality. SmsGAN [33] downsampled examples in the spatial dimension and reconstructed
high-resolution images using GAN. Operations such as flipping, scaling, and filtering
can mitigate the effects of adversarial attacks [34]. The experiments of Kurakin et al. [23]
showed that JPEG compression decompression significantly resists adversarial attacks.

The goal of adversarial training is to obtain a robust model that is difficult to success-
fully attack. Therefore, this defense approach assumes that the attacker and the defender
use different adversarial attack methods. While proposing PGD attacks, Madry et al. [11]
suggested using samples generated by the PGD for adversarial training. By constrain-
ing the logit distance between the output of the natural example and its corresponding
adversarial example, the logit pairing method [35] improves the robustness of the model
and reduces its influence in recognizing normal inputs. Zhang et al. found that too many
iterations of generating training samples affect the model’s convergence. They proposed
friendly adversarial training (FAT) [21] using a smaller number of iterations and gradually
increasing this number while generating training samples with PGD.

3. Prior Knowledge
3.1. JPEG Encoding and Decoding

JPEG compression is performed in the DCT domain and the YCbCr color space.
As shown in Figure 1, the JPEG compression process includes block, color space conversion,
DCT, quantization, and entropy encoding [36]. Entropy encoding includes zigzag and
Huffman coding methods.

Block
Color Space

Conversion
DCT Quantization

Entropy

Encoding

JPEG

Stream

Raw

Image

Figure 1. JPEG compression process.

Corresponding to the compression process, the JPEG decompression process in-
cludes entropy decoding, inverse quantization, inverse DCT (IDCT), color space inversion,
and block combination, as shown in Figure 2.

Block

Combination

Color Space

Inversion
IDCT

Inverse

Quantization

Entropy

Decoding

JPEG

Stream

Decompressed

Image

Figure 2. JPEG decompression process.

During the compression process, block, DCT, and entropy coding are lossless. How-
ever, the quantization process incurs significant loss, and the color-space-converted data
must be converted from float numbers to eight-bit integers. Therefore, JPEG compression is
lossy. Different quantization tables are used according to different quality factors, resulting
to different loss magnitudes.

3.2. JPEG Error and Adversarial Example Detection

In the JPEG compression and decompression process, quantization, conversion, trun-
cation, and rounding errors [37] are generated. These errors are collectively referred to
as JPEG errors. Using JPEG compression as an input transformation can effectively resist
adversarial examples, since adversarial noise is lost in the JPEG compression and decom-

Remote Sens. 2023, 15, 2379 5 of 19

pression processes. Therefore, inputting JPEG errors into the detectors can improve the
detection effect of adversarial examples.

We used the FGSM (ε = 2) to generate 30,000 adversarial examples. Using the corre-
sponding 30,000 original images, a dataset of 50,000 training images and 10,000 test images
was formed. We used JPEG errors (quality factor = 100) and normalized images to train
VGG16 [38] on the dataset. The test results for different epochs are shown in Figure 3.

Figure 3. Accuracy of VGG16 for JPEG error and normalized image input after each training epoch.
With the training, only the accuracy curve with JPEG error as input shows an upward trend.

As shown in Figure 3, the model with input of normalized images is entirely unable
to recognize adversarial examples. At the same time, the model with JPEG error can
distinguish adversarial examples from natural examples. Zhao et al. [14] simulated the
JPEG compression process and found that the YCbCr block DCT (bDCT) domain is more
efficient in adversarial example detection than the RGB space domain.

4. Dynamic Simulation Training Strategy
4.1. Problem Description

Equation (1) shows that an adversarial example can be obtained by adding noise to
the natural example. The main method for detecting adversarial examples is to identify
adversarial noise. The symbol ∼ indicates obedience to a particular distribution. Assuming
that the amplitude distribution of adversarial noise conforms to a special probability model
(M), the purpose of training the adversarial example detection model can be described by
Equation (4), where m ∼ M, model represents the detection model, and DKL represents the
Kullback–Leibler (KL) divergence.

max DKL(model(X)||model(X + m)) (4)

Since the probabilistic model (M) is unknown, we can only estimate it from a finite
number (m). The distribution model (M2) satisfies Equation (5) and can be obtained by
fitting the statistical data. Then, the new purpose of training shown in Equation (6) is
designed, where random noise m2 ∼ M2.

∃ m ∼ M, m ∼ M2 (5)

max DKL(model(X)||model(X + m2)) (6)

When an accurate M distribution cannot be obtained, the parent distribution (M2)
of M can be fitted according to a finite number of m. Subsequently, it is only necessary

Remote Sens. 2023, 15, 2379 6 of 19

to follow the M2 distribution to generate data m2 to train the detection model, and the
detection of m can be realized.

4.2. Overall Process

The dynamic simulation training scheme designed in this study estimates the distribu-
tion model by counting the noise distribution of a small number of adversarial examples,
then generating pseudoadversarial noise to help train the detection model, as shown in
Figure 4. First, the distribution of adversarial noise is counted, and the residual sum of
squares (RSS) is used to fit the distribution model (M2). Then, random noise m2 ∼ M2 is
generated and superimposed onto clean samples. After obtaining the residual through
JPEG compression and decompression, pseudoadversarial examples are input into the
classification network for training. To enhance the variation in the input and mitigate over-
fitting, the quality factor used in the compression–decompression process changes slightly.

Clean Images

Adversarial Images
Noise Statistics Distribution Model

3×
3

C
on

v,
 6

4

3×
3

C
on

v,
 1

28

3×
3

C
on

v,
 1

28

3×
3

C
on

v,
 6

4

gl
ob

al
 a

vg

3×
3

C
on

v,
 6

4

3×
3

C
on

v,
 1

28

3×
3

C
on

v,
 1

28

fu
lly

 c
on

ne
ct

ed

Classification Model

Random Noise

JPEG
Compression

&
Decompres-

sion

Factor
Fluctuate

count RSS

Add
&

Clicp

follow
distribution

Figure 4. Overall process of the dynamic simulation training strategy. 	 indicates the calculation of
residuals between matrices.

4.3. Characteristic Analysis
4.3.1. Single Sample Characteristics

A digital image is a two-dimensional discrete signal. The amplitude of adversarial
noise, which is stored and transmitted by the image, must be discrete. Because the range
of adversarial examples needs to be truncated, the adversarial noise amplitude at the
boundary of the pixel value (0 and 255) is irreversibly discarded. Therefore, we exclude
pixels at the boundary of the pixel value before analyzing the characteristics. This step is
known as statistical cleaning.

The number of adversarial noise values (Nv) in the sample is finite and satisfies
0 < Nv < 511. In each sample, the frequency of each noise value is counted separately.

The distribution of adversarial noise is typically related to the texture complexity of
an image. We use horizontal Sobel operator SobelX and vertical Sobel operator SobelY
to extract the gradient information of the images and estimate their textural complexity.
The calculation process for complexity (ComX) is shown in Equation (7), where α is the
horizontal and longitudinal complexity coefficient that satisfies 0 < α < 1.

ComX =
√

α||SobelX(X)||2 + (1− α)||SobelY(X)||2 (7)

To simplify the calculation, we use the L1 norm to approximate the L2 norm. Then,
Equation (8) is used to calculate the approximate complexity (ComEX).

Remote Sens. 2023, 15, 2379 7 of 19

ComEX = α|SobelX(X)|+ (1− α)|SobelY(X)| (8)

4.3.2. Cross-Sample Characteristics

The frequency of occurrence of each noise value in the adversarial noise of the sample
is calculated. For the same noise value with different frequencies, we use the RSS to fit the
distribution of each value on multiple samples, as shown in Figure 5. Probability distribu-
tion models include normal, exponential, t, beta, gamma, and log gamma distributions.

0

1

-1

-2

2

3

-3

Figure 5. Fit of the distribution of each value across samples. Each blue line with an arrow represents
the noise in a sample.

BIM is used to generate 1000 adversarial examples, and the distribution of the numbers
of value 1 noise is displayed in Figure 6. For the same noise value, the distribution models
in the texture and smooth regions exhibit obvious differences.

Loggamma

0

5

10

15

20

25
loggamma
original distribution

 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38
Values

F
re

q
u

en
cy

(a) Distribution of the smooth region.

Loggamma

0

5

10

15

20

25 loggamma
original distribution

 0.15 0.20 0.25 0.30 0.35
Values

F
re

q
u
en

cy

(b) Distribution of the texture region.

Figure 6. Distribution of the numbers of value 1 noise.

To avoid excessive time complexity, we simply use the threshold TX to distinguish
between the texture and smooth regions. The adversarial noise distributions of the tex-
ture and smooth regions for each sample (X) are counted separately. The results of the
characteristics are not very sensitive to the value of TX .

4.4. Preprocessing Method

Before training the detection model, the main preprocessing steps include fitting
the noise distribution, generating pseudoadversarial noise according to the distribution,
and calculating the JPEG error. The steps for fitting the noise distribution and generating

Remote Sens. 2023, 15, 2379 8 of 19

pseudoadversarial noise are described in detail in this subsection. The symbols used in this
study are summarized in Table 1.

Table 1. Meaning of symbols.

Xad adversarial example(s)

Xc
ad clean example corresponding to adversarial example

Xc clean example

Yc label(s) of Xc

x[i] the ith element in matrix x

ft JPEGquality factor used when testing

Nt number of training epochs with Xad

∗ multiplication of corresponding elements in matrices

back() back propagation

cat() combine the input data

clear() statistical cleaning

crosse(x1, x2) cross entropy of x1 and x2

f ollow(x) generate random numbers that follow the x distribution

jpeg(x, f) JPEG compression and decompression with quality factor f

len(x) number of elements in matrix x

minibatch(x) select a batch of data from x

model(x) classification model with input x

oneslike(x) all-1 matrix with the same size as x

random.choice(x) randomly select an element from x

range(x) natural number sequence from 0 to x

zeroslike(x) all-0 matrix with the same size as x

Fitting the distribution model of adversarial noise is the basis for generating pseu-
doadversarial noise. As shown in Algorithm 1, the fitting process includes adversarial
noise extraction, statistical cleaning, texture region division, and RSS fitting.

According to Algorithm 1, the distribution models of the texture and smooth regions
are extracted. Furthermore, we analyze the textural complexity of the clean example (Xc)
and generate each numerical probability of a single example based on the above two
distributions. These probabilities are used to generate the final pseudoadversarial noise.
The process of generating pseudoadversarial noise for Xc based on the existing distribution
is shown in Algorithm 2.

Remote Sens. 2023, 15, 2379 9 of 19

Algorithm 1: The fitting of adversarial noise distribution
Input: Xad, Xc

ad
Output:

Disttext: distribution of texture region
Distsmooth: distribution of smooth region

1 Noisead = Xad - Xc
ad ;

2 Noisead = clear(Noisead) ;
3 Xtext = ComEX(Xad) ;
4 Masktext = zeroslike(Xtext) ;
5 Masksmooth = oneslike(Xtext) ;
6 for i in range(len(Xtext)) do
7 if Xtext[i] > Tx then
8 Masktext[i] = 1 ;
9 Masksmooth[i] = 0 ;

10 end

11 end

12 Disttext = RSS(Noisead * Masktext) ;
13 Distsmooth = RSS(Noisead * Masksmooth) ;
14 return

Algorithm 2: Generation of pseudoadversarial noise
Input: Xc, Disttext, Distsmooth
Output:

Noisep
ad: pseudoadversarial noise

1 Xtext = ComEX(Xc) Masktext = zeroslike(Xtext) ;
2 Masksmooth = oneslike(Xtext) ;
3 for i in range(len(Xtext)) do
4 if Xtext[i] > Tx then
5 Masktext[i] = 1 ;
6 Masksmooth[i] = 0 ;

7 Noisetext = follow(Disttext) * Masktext ;
8 Noisesmooth = follow(Distsmooth) * Masksmooth ;
9 Noisep

ad = Noisetext + Noisesmooth ;
10 return

In lines 10 and 11 of Algorithm 2, the follow(.) function includes two steps: generating
the probability corresponding to each noise value according to their distribution and gen-
erating random numbers according to this probability. Let Pi represent the probability of
noise value i. In the first step, three different random probability cases are considered.
The corresponding processing strategies are as follows:

• ∃ Pi < 0 : repeat step 1;
• ∀ Pi ≥ 0 & ΣNv

i=1Pi ≤ 1 : P0 = P0 + (1− ΣNv
i=1Pi);

• ∀ Pi ≥ 0 & ΣNv
i=1Pi > 1 : Pi = ePi /ΣNv

i=1ePi .

4.5. Training Algorithm

The pseudoadversarial noise added to Xc is generated in real time, resulting in differ-
ences in the training data of each epoch, thereby avoiding severe overfitting. In addition,
a slight noise is beneficial for training effective detection models. This is one of the reasons
why we artificially increase P0.

To enable the classification model to distinguish adversarial examples (pseudoadversarial
examples) from clean examples, the input images are replaced with JPEG errors. In specific

Remote Sens. 2023, 15, 2379 10 of 19

training steps, two additional strategies are designed to mitigate overfitting and enhance
the detection performance. First, the amplitude of the pseudoadversarial noise is randomly
reduced by half. We then design a quality factor fluctuation strategy. The compression
and decompression quality factors used in the training examples are randomly reduced
by one or two according to the test factor. The detailed training process is presented in
Algorithm 3.

Algorithm 3: Process of training with pseudoadversarial noise

Input: Xc, Noisep
ad, Yc

1 while epoch ≤ num_epoches do
2 data0 = minibatch(Xc) ;
3 noise = Noisep

ad / 2 * random.choice([1, 2]) ;
4 data1 = data0 + noise ;
5 for i in range(len(data1)) do
6 if data1[i] > 255 then
7 data1[i] = 1 ;
8 end

9 if data1[i] < 0 then
10 data1[i] = 0 ;
11 end

12 end

13 factor = random.choice([f + 2, f + 1, ft]) ;
14 data0 = data0 – jpeg(data0, factor) ;
15 data1 = data1 – jpeg(data1, factor) ;
16 data = cat(data0, data1) ;
17 label = cat(0, 1) ;
18 loss = crosse(model(data), label) ;
19 loss.back() ;
20 if epoch > num_epoches – Nt then
21 loss = crosse(model(Xad), Yc) ;
22 loss.back() ;
23 end

24 epoch += 1 ;
25 end

It is worth noting that the JPEG compression and decompression processes is artificially
added before being input to the model. Therefore, the quality factor is known, even
during testing.

5. Results
5.1. Experimental Settings
5.1.1. Dataset Introduction

We used FGSM [10], BIM [23], Deepfool [18], C&W [12], DDN [19], BoundaryAt-
tack [26], BrendelBethgeAttack [39], and BanditsAttack [25] to generate adversarial exam-
ples. For convenience, these attack methods are called FGSM, BIM, Deepfool, C&W, DDN,
Boundary, Brendel, and Bandits, respectively. Among them, FGSM and BIM use coeffi-
cients of 2, 4, 6, and 8, and the Bandits method contains L2 and L∞ versions, generating
15 subdatasets. The coefficient ε corresponds to the range from 0 to 255. Each subdataset
contains 1000 examples to fit the noise distribution and 5000 for testing.

Remote Sens. 2023, 15, 2379 11 of 19

5.1.2. Experimental Environment

The experiments in this study are implemented using the PyTorch deep learning
framework. The experimental hardware includes an Intel 12400 CPU and an NVIDIA RTX
4090 GPU. The software environment includes Ubuntu 22.04 LTS, Cuda 11.7, Python 3.10,
and PyTorch 1.13.

5.2. Performance Evaluation
5.2.1. Performance of Different Models

Owing to structural differences across models, they perform differently in adversarial
example detection. The performance of the model is not the focus of this study. Therefore,
we designed a new indicator to evaluate the performance of the proposed dynamic simu-
lation training strategy. The relative accuracy (Accrel) is defined as the ratio between the
accuracy of the training strategy in this study and the accuracy trained with sufficient real
examples of the same model, as shown in Equation (9). TPd and TNd represent the true
positives and negatives of the proposed training strategy, respectively, and TPe and TNe
are the true positives and true negatives of sufficient training examples, respectively.

Accrel =
Accd
Acce

=
TPd + TNd
TPe + TNe

(9)

In some training detector schemes with real adversarial examples [13,17], the number
of training examples is typically 50,000. Half of these are adversarial examples, and the
other half are clean examples. Therefore, 50,000 training examples fit the above description
for a sufficient number of real examples.

Based on the fast attack methods of FGSM and BIM, 25,000 adversarial examples were
generated to build the training dataset. The performances of ResNet [40], WideResNet [41],
DenseNet [42], VGG [38], and Res2Net [43] are listed in Tables 2 and 3.

Table 2. Performance of different models on the FGSM dataset.

ResNet18 ResNet34 ResNet50 ResNet101 Res2Net50

ε = 2
Accd 99.07% 98.65% 97.86% 97.99% 97.89%
Accrel 100.39% 99.87% 99.85% 100.21% 99.65%

ε = 4
Accd 99.54% 99.35% 99.52% 99.04% 99.03%
Accrel 99.83% 99.63% 99.88% 102.61% 101.23%

ε = 6
Accd 99.92% 99.83% 99.89% 99.64% 99.70%
Accrel 100.03% 100.01% 100.05% 99.81% 100.41%

ε = 8
Accd 99.91% 99.94% 99.87% 99.89% 99.94%
Accrel 99.98% 100.02% 99.98% 99.96% 100.02%

WideResNet50 WideResNet101 DenseNet169 VGG11 VGG16

ε = 2
Accd 97.38% 98.11% 96.92% 97.05% 97.72%
Accrel 98.47% 99.03% 99.28% 98.22% 99.45%

ε = 4
Accd 99.70% 99.42% 99.02% 98.37% 99.50%
Accrel 99.83% 99.56% 99.61% 98.75% 100.13%

ε = 6
Accd 99.92% 99.85% 99.80% 99.13% 99.65%
Accrel 100.20% 99.96% 99.98% 99.31% 99.80%

ε = 8
Accd 99.91% 99.98% 99.83% 99.88% 99.87%
Accrel 100.02% 100.01% 99.90% 100.23% 100.03%

Remote Sens. 2023, 15, 2379 12 of 19

Table 3. Performance of different models on the BIM dataset.

ResNet18 ResNet34 ResNet50 ResNet101 Res2Net50

ε = 2
Accd 96.25% 96.69% 95.78% 96.13% 95.84%
Accrel 98.96% 99.21% 98.55% 98.65% 98.67%

ε = 4
Accd 98.41% 98.01% 98.62% 98.27% 97.84%
Accrel 99.35% 99.15% 99.91% 99.48% 99.30%

ε = 6
Accd 99.28% 98.96% 99.08% 98.81% 99.06%
Accrel 99.85% 99.59% 99.99% 99.63% 99.74%

ε = 8
Accd 99.54% 99.59% 99.47% 99.25% 99.23%
Accrel 99.86% 99.93% 99.84% 99.75% 99.69%

WideResNet50 WideResNet101 DenseNet169 VGG11 VGG16

ε = 2
Accd 96.47% 96.09% 92.16% 95.96% 92.40%
Accrel 98.90% 98.51% 100.45% 98.66% 121.77%

ε = 4
Accd 98.33% 97.71% 97.80% 97.78% 98.33%
Accrel 99.30% 98.74% 99.83% 98.68% 114.54%

ε = 6
Accd 99.21% 99.45% 99.46% 99.30% 99.07%
Accrel 99.54% 99.73% 100.65% 99.84% 101.29%

ε = 8
Accd 99.37% 99.49% 98.57% 98.98% 99.27%
Accrel 99.59% 99.83% 99.18% 99.31% 101.12%

In Tables 2 and 3, for both the FGSM and BIM datasets, the Accd of some models can
exceed 96%. This indicates the superiority of the proposed dynamic simulation training
strategy. The performance of each model differs significantly, even if the model structure
differs only in the number of layers. Data from series models of ResNet suggest that too
many layers are not beneficial.

With 1000 samples from each dataset, we calculated the influence of ε on the noise
intensity, as shown in Table 4. The noise intensity (Intn) is defined as the average noise
amplitude of each pixel, as shown in Equation (10). n represents the number of pixels in
the picture. Xad,i and Xc

ad,i represent the ith element of Xad and Xc
ad, respectively. For the

same model, Accd exhibits an upward trend with an increase in ε. The change in Accd
is directly related to the noise amplitude: the greater the noise, the easier it is to detect
the adversarial example. This trend is consistent with the results of existing adversarial
example detection models.

Table 4. The effect of the perturbation coefficient (ε) on the noise intensity (Intn).

ε = 2 ε = 4 ε = 6 ε = 8

FGSM 1.99 3.97 5.93 7.91
BIM 1.38 2.29 3.15 3.68

Intn =

√
Σn

i=1(Xad,i − Xc
ad,i)

2

√
n

(10)

To analyze the training process of the detection model, the test accuracy of the BIM
(ε = 2) dataset in each epoch of ResNet34 training is counted as shown in Figure 7.
The number of training epochs is set to 30, and Nt is set to 10. This means that when training
with the proposed method, only the last 10 epochs involve real adversarial examples.

Remote Sens. 2023, 15, 2379 13 of 19

0 5 10 15 20 25 30

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

Epoch

 N = 10
 N = 0
 1000 example

t

t

Figure 7. The test accuracy of ResNet34 in the training process with the whole proposed method, no
Xad, and Xad only.

Because the training dataset is randomly generated, the training accuracy of the model
on it has no practical significance. Therefore, only the accuracy of the test dataset is shown
in Figure 7.

The three curves in Figure 7 represent training using the whole proposed method
(Nt = 10), no Xad (Nt = 0), and Xad only (1000 example), respectively. When only Xad training
is used, the model suffers from serious overfitting, owing to the shortage of training data,
which leads to limited accuracy. Compared with the data in Table 3, the accuracy of the
1000-example curve is significantly lower. In the Nt = 0 curve, the accuracy is much higher
than that in the 1000-example curve. Owing to the high randomness of the training data,
the Nt = 0 curve has a very large fluctuation, even in the last few cycles. With the help of
Xad, the Nt = 10 curve exhibits both high accuracy and small fluctuations.

5.2.2. Performance of Each Dataset

The detection performance of ResNet 34 with the dynamic simulation training strategy
for each dataset is shown in Figure 8. Both the FGSM and BIM datasets contain only the
case in which ε = 2. To visualize the relationship between model detection performance
and Intn, Figure 8 also includes the Intn of each dataset. The lengths (LInt and LAcc) of bins
representing Intn and the accuracy were transformed using Equation (11) to make their
relationship more obvious.{

LInt = lg(1 + Intn)

LAcc = (Accuracy− 0.85)/0.15
(11)

All accuracy in Figure 8 is more than 89%, indicating that the proposed dynamic
simulation training strategy can help ResNet 34 achieve good results in the adversarial
example detection task. The larger the Intn of the dataset, the better the performance of
the detection model. This indicates that the detection difficulty of adversarial examples is
positively correlated with the Intn of the examples generated by the current attack method.

Remote Sens. 2023, 15, 2379 14 of 19

98.65%

96.69%

96.17%

91.08%

90.58%

99.32%

89.46%

99.96%

99.99%

1.99

1.38

1.18

0.86

0.84

4.07

0.71

6.59

24.51

FGSM

BIM

Deepfool

C&W

DDN

Boundary

Brendel

Bandits L

Bandits L

 Int
 Accuracy

2

∞

n

Figure 8. ResNet34 accuracy and Intn for each dataset.

5.3. Comparison and Analysis

To analyze the actual performance of the proposed training scheme, we compare it
with ESRM [17], SmsNet [13], and DCT-Like [14] models with sufficient training data,
as shown in Table 5. Since ESRM, SmsNet, and DCT-Like are not few-shot models, we
trained them using 25,000 real adversarial examples. They cannot be trained with normal
images alone. The model used in co-operation with the proposed scheme is ResNet34.
For the remainder of this work, ResNet 34 is the default detection model in the proposed
dynamic simulation training strategy.

Table 5. Comparison of the performance of different detectors.

Ours ESRM [17] SmsNet [13] DCT-Like [14]

FGSM 98.65% 98.10% 98.49% 99.64%
BIM 96.69% 97.14% 99.27% 99.18%

Deepfool 96.17% 95.13% 98.26% 99.07%
C&W 91.08% 92.87% 93.83% 95.02%

The proposed dynamic simulation training strategy does not require a large number
of training samples. It achieve good results as a training scheme with only 1000 real
adversarial examples. Owing to the differences between pseudo- and real adversarial
examples and the limitations of the model, our solution still has a gap relative to other
advanced detectors. However, the data in Table 5 indicate that this gap is within the range
of 4%.

5.4. Experiments across Datasets

In addition to the model’s performance on a single dataset, its performance on an
unknown dataset is also an important metric. This means that we need to train with one
dataset and test on different datasets. In this subsection, we train detection models with
1000 real adversarial examples, and the number of test images remains at 10,000.

5.4.1. Cross-Coefficient Test

In Table 6, the FGSM and BIM datasets with perturbation coefficients (ε) of 2 and 8,
respectively, are used for training. While one ε is used for training, the others in 2, 4, 6,
and 8 are used for testing. Table 6 shows the accuracy and recall rates of the tests.

Remote Sens. 2023, 15, 2379 15 of 19

Table 6. Test accuracy and recall across coefficients.

Train
Test

ε = 2 ε = 4 ε = 6 ε = 8

FGSM

ε = 2
accuracy - 99.07% 98.78% 98.92%

recall - 99.91% 99.82% 99.86%

ε = 8
accuracy 51.14% 86.87% 99.57% -

recall 3.23% 74.22% 99.84% -

BIM

ε = 2
accuracy - 97.16% 97.27% 97.37%

recall - 99.96% 99.98% 99.97%

ε = 8
accuracy 85.89% 92.61% 98.99% -

recall 83.32% 86.59% 99.65% -

When the training condition is ε = 8, the detection accuracy of the ε = 2 dataset is
low. The accuracy of the FGSM dataset is approximately 50%, and the recall rate is only
3.23%. This shows that the cross-coefficient test effect of training with the ε = 8 dataset is
poor. When the training dataset is ε = 2, the model detection performance is significantly
improved, indicating that a small ε during training is efficient for unknown data detection.

5.4.2. Cross-Attack Method Test

In Figure 9, the performance of the proposed scheme tested across attack methods is
shown as a heat map. The horizontal and vertical axes represent the training and testing
datasets, respectively. Among the datasets, the ε of FGSM and BIM is 2, and Bandits is the
L2 version. The darker the color of the small square, the worse the test result.

- 0.9712 0.9803 0.9419 0.9707 0.9677 0.9601 0.9188

0.9398 - 0.9716 0.9398 0.9677 0.9424 0.9591 0.8653

0.8427 0.7936 - 0.9384 0.957 0.8769 0.9557 0.6913

0.5601 0.5301 0.7206 - 0.7996 0.5506 0.8812 0.5286

0.5291 0.5119 0.6952 0.8957 - 0.517 0.8906 0.5126

0.9205 0.9129 0.9557 0.9892 0.9664 - 0.9447 0.8773

0.5273 0.5113 0.652 0.8782 0.7581 0.5127 - 0.5131

0.9496 0.9708 0.9805 0.9382 0.9708 0.9935 0.9649 -

FG
SM B
IM

D
ee

pf
oo

l

C
&

W

D
D

N

B
ou

nd
ar

y

B
re

nd
el

B
an

di
ts

FGSM

BIM

Deepfool

C&W

DDN

Boundary

Brendel

Bandits

Te
st
 D
at
as
et

Train Dataset

0.5

0.6

0.7

0.8

0.9

1.0
legend

Figure 9. Test accuracy across attack methods. The “Legend” indicates the relationship between
accuracy and colors.

The shade of the color for each column in Figure 9 indicates the cross-dataset test effect
of training on one dataset. The lightest colored columns are the C&W and Brendel columns,
which obtain the best detection model for these two datasets. In Figure 8, both C&W and

Remote Sens. 2023, 15, 2379 16 of 19

Brendel have low detection accuracy. The FGSM and Bandits that perform well, as shown
in Figure 8, perform poorly in Figure 9. This shows that the cross-dataset performance is
negatively correlated with the same dataset, and the detection effect of unknown data is
negatively correlated with the Intn of the training dataset.

5.5. Multidataset Experiment

Although the cross-dataset detection capability can enable the detection of multiple
types of adversarial examples using a single model (all parameters are the same), we still
expect it to be able to detect multiple types of adversarial examples more efficiently. In this
section, multiple ε datasets and multiple-attack method datasets are used to train and test
the same model.

5.5.1. Multicoefficient Test

The data in Table 6 show that the detection model is sensitive to changes in the
perturbation factor (ε). A decrease in the perturbation coefficient causes a rapid degradation
in the model performance. Simultaneous training using multiple perturbation coefficients
(ε) is used to avoid this problem. The test accuracy of models trained with multiple ε values
on the FGSM and BIM datasets are shown in Table 7, where overall represents a dataset
consisting of all test samples with ε values equal to 2, 4, 6, and 8.

Table 7. Accuracy of the multicoefficient model. “Overall” represents a dataset consisting of all
test samples.

ε = 2 ε = 4 ε = 6 ε = 8 Overall

FGSM 98.63% 99.32% 99.31% 98.53% 99.20%
BIM 96.15% 98.97% 99.36% 99.21% 98.42%

The accuracy in Table 7 is all greater than 96%. Compared with the single-dataset
test performance in Tables 2 and 3, the gap of the multicoefficient model is within the
range of 1%. This shows that the proposed dynamic simulation training strategy has good
adaptability to multicoefficient datasets.

The multidataset model performs better than the single-dataset model on some
datasets, such as the BIM dataset with ε = 4 and ε = 6. This is because more training data
variations further avoid overfitting.

5.5.2. Multimethod Test

The performance of the model trained on multiple attack-method datasets is presented
in Table 8. Among the adopted datasets, the perturbation coefficient (ε) of FGSM and BIM
is 2, and Bandits is the L2 version.

Table 8. Performance of the multimethod model.

FGSM BIM Deepfool C&W

Accuracy 97.20% 96.98% 96.24% 97.36%

DDN Boundary Brendel Bandits

Accuracy 87.82% 96.81% 84.08% 97.12%

The detection accuracy of the multimethod model exceeded 84%. Compared to the
single-method model shown in Figure 8, the maximum gap is 5.38%. This gap is acceptable.
However, its test effect on the Brendel dataset was 3.74% lower than that of the C&W
dataset training model, as shown in Figure 9. Because multiple datasets work together
to train a model, it tends to identify easy examples with a large Intn to quickly reduce

Remote Sens. 2023, 15, 2379 17 of 19

losses. This results in poor performance of the multimethod models on the DDN and
Brendel datasets. However, the overall multimethod model detection performance is still
satisfactory. The dynamic simulation training strategy effectively helps the model detect
multiple adversarial examples.

6. Conclusions

In this study, we proposed a new task of training the adversarial example detection
model when the data are insufficient and designed a dynamic simulation training strategy.
In the proposed scheme, pseudoadversarial examples for training are generated in real time,
which does not require additional time and extra costs. A small number of real adversarial
examples is used to help the model achieve stable performance.

In the testing and analysis processes, we found that a small number of real adversarial
examples played an important role. In future studies, more ways to use these models will
be explored to further improve detection performance.

Author Contributions: Data curation, J.Z. and S.Q.; writing—original draft preparation, J.Z.; software,
J.W. (Junfeng Wu); writing—review and editing, J.W. (Junfeng Wu), J.M.A. and J.W. (Jinwei Wang);
visualization, S.Q. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (62072250,
U20B2065, 61872203, and 61802212), in part by the Plan for Scientific Talent of Henan Province
(2018JR0018), in part by the Postgraduate Research & Practice Innovation Program of Jiangsu Province
(KYCX200974), and the Priority Academic Program Development of Jiangsu Higher Education
Institutions (PAPD) fund.

Data Availability Statement: Data sharing is not applicable to this article.

Acknowledgments: All authors would like to thank the editors and reviewers for their advice.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, J.; Zhao, L.; Dang, J.; Wang, Y.; Yue, B.; Gu, Z. A Semantic Segmentation Method for High-resolution Remote Sensing

Images Based on Encoder-Decoder. In Proceedings of the 2022 Tenth International Conference on Advanced Cloud and Big Data
(CBD), Guilin, China, 4–5 November 2022; pp. 98–103. [CrossRef]

2. Chen, Z.; Zhao, J.; Deng, H. Global Multi-Attention UResNeXt for Semantic Segmentation of High-Resolution Remote Sensing
Images. Remote Sens. 2023, 15. [CrossRef]

3. Sun, L.; Cheng, S.; Zheng, Y.; Wu, Z.; Zhang, J. SPANet: Successive Pooling Attention Network for Semantic Segmentation of
Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4045–4057. [CrossRef]

4. Sun, L.; Ma, C.; Chen, Y.; Zheng, Y.; Shim, H.J.; Wu, Z.; Jeon, B. Low Rank Component Induced Spatial-Spectral Kernel Method
for Hyperspectral Image Classification. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 3829–3842. [CrossRef]

5. Cheng, G.; Xie, X.; Han, J.; Guo, L.; Xia, G.S. Remote Sensing Image Scene Classification Meets Deep Learning: Challenges,
Methods, Benchmarks, and Opportunities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3735–3756. [CrossRef]

6. Sun, L.; Zhao, G.; Zheng, Y.; Wu, Z. Spectral-Spatial Feature Tokenization Transformer for Hyperspectral Image Classification.
IEEE Trans. Geosci. Remote Sens. 2022, 60, 5522214. [CrossRef]

7. Sun, L.; Fang, Y.; Chen, Y.; Huang, W.; Wu, Z.; Jeon, B. Multi-Structure KELM With Attention Fusion Strategy for Hyperspectral
Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5539217. [CrossRef]

8. Kim, M.; Jeong, J.; Kim, S. ECAP-YOLO: Efficient Channel Attention Pyramid YOLO for Small Object Detection in Aerial Image.
Remote Sens. 2021, 13, 4851. [CrossRef]

9. Wu, X.; Li, W.; Hong, D.; Tao, R.; Du, Q. Deep Learning for Unmanned Aerial Vehicle-Based Object Detection and Tracking: A
survey. IEEE Geosci. Remote Sens. Mag. 2022, 10, 91–124. [CrossRef]

10. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and Harnessing Adversarial Examples. In Proceedings of the 3rd International
Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

11. Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards Deep Learning Models Resistant to Adversarial Attacks. In
Proceedings of the 6th International Conference on Learning Representations (ICLR), Vancouver, BC, Canada, 30 April–3 May
2018.

12. Carlini, N.; Wagner, D.A. Towards Evaluating the Robustness of Neural Networks. In Proceedings of the 2017 IEEE Symposium
on Security and Privacy (SSP), San Jose, CA, USA, 22–24 May 2017; pp. 39–57. [CrossRef]

13. Wang, J.; Zhao, J.; Yin, Q.; Luo, X.; Zheng, Y.; Shi, Y.; Jha, S.K. SmsNet: A New Deep Convolutional Neural Network Model for
Adversarial Example Detection. IEEE Trans. Multimed. 2022, 24, 230–244. [CrossRef]

http://doi.org/10.1109/CBD58033.2022.00026
http://dx.doi.org/10.3390/rs15071836
http://dx.doi.org/10.1109/JSTARS.2022.3175191
http://dx.doi.org/10.1109/TCSVT.2019.2946723
http://dx.doi.org/10.1109/JSTARS.2020.3005403
http://dx.doi.org/10.1109/TGRS.2022.3221534
http://dx.doi.org/10.1109/TGRS.2022.3208165
http://dx.doi.org/10.3390/rs13234851
http://dx.doi.org/10.1109/MGRS.2021.3115137
http://dx.doi.org/10.1109/SP.2017.49
http://dx.doi.org/10.1109/TMM.2021.3050057

Remote Sens. 2023, 15, 2379 18 of 19

14. Zhao, J.; Wang, J. Lightweight DCT-Like Domain Forensics Model for Adversarial Example. In Proceedings of the 19th
International Workshop on Digital Forensics and Watermarking (IWDW), Melbourne, Australia, 25–27 November 2020.

15. Grosse, K.; Manoharan, P.; Papernot, N.; Backes, M.; McDaniel, P.D. On the (Statistical) Detection of Adversarial Examples. arXiv
2017, arXiv:1702.06280.

16. Li, X.; Li, F. Adversarial Examples Detection in Deep Networks with Convolutional Filter Statistics. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 5775–5783. [CrossRef]

17. Liu, J.; Zhang, W.; Zhang, Y.; Hou, D.; Liu, Y.; Zha, H.; Yu, N. Detection Based Defense Against Adversarial Examples From
the Steganalysis Point of View. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA, USA, 15–20 June 2019; pp. 4825–4834. [CrossRef]

18. Moosavi-Dezfooli, S.; Fawzi, A.; Frossard, P. DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016;
pp. 2574–2582. [CrossRef]

19. Rony, J.; Hafemann, L.G.; Oliveira, L.S.; Ayed, I.B.; Sabourin, R.; Granger, E. Decoupling Direction and Norm for Efficient
Gradient-Based L2 Adversarial Attacks and Defenses. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 4322–4330. [CrossRef]

20. Li, Y.; Wu, B.; Feng, Y.; Fan, Y.; Jiang, Y.; Li, Z.; Xia, S. Semi-supervised robust training with generalized perturbed neighborhood.
Pattern Recognit. 2022, 124, 108472. [CrossRef]

21. Zhang, J.; Xu, X.; Han, B.; Niu, G.; Cui, L.; Sugiyama, M.; Kankanhalli, M.S. Attacks Which Do Not Kill Training Make Adversarial
Learning Stronger. In Proceedings of the 37th International Conference on Machine Learning (ICML), Virtual, 13–18 July 2020;
Volume 119, pp. 11278–11287.

22. Song, C.; Fan, Y.; Yang, Y.; Wu, B.; Li, Y.; Li, Z.; He, K. Regional Adversarial Training for Better Robust Generalization. arXiv 2021,
arXiv:2109.00678.

23. Kurakin, A.; Goodfellow, I.J.; Bengio, S. Adversarial examples in the physical world. In Proceedings of the 5th International
Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017.

24. Dong, Y.; Liao, F.; Pang, T.; Su, H.; Zhu, J.; Hu, X.; Li, J. Boosting Adversarial Attacks with Momentum. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 9185–9193.
[CrossRef]

25. Ilyas, A.; Engstrom, L.; Madry, A. Prior Convictions: Black-box Adversarial Attacks with Bandits and Priors. In Proceedings of
the 7th International Conference on Learning Representations (ICLR), New Orleans, LA, USA, 6–9 May 2019.

26. Brendel, W.; Rauber, J.; Bethge, M. Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning
Models. In Proceedings of the 6th International Conference on Learning Representations (ICLR), Vancouver, BC, Canada,
30 April–3 May 2018.

27. Wu, J.; Wang, J.; Zhao, J.; Luo, X.; Ma, B. ESGAN for generating high quality enhanced samples. Multim. Syst. 2022, 28, 1809–1822.
[CrossRef]

28. Xiao, C.; Li, B.; Zhu, J.; He, W.; Liu, M.; Song, D. Generating Adversarial Examples with Adversarial Networks. In Proceedings
of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI), Stockholm, Sweden, 13–19 July 2018;
pp. 3905–3911. [CrossRef]

29. Mangla, P.; Jandial, S.; Varshney, S.; Balasubramanian, V.N. AdvGAN++: Harnessing latent layers for adversary generation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2
November 2019.

30. Feinman, R.; Curtin, R.R.; Shintre, S.; Gardner, A.B. Detecting Adversarial Samples from Artifacts. arXiv 2017, arXiv:1703.00410.
31. Schöttle, P.; Schlögl, A.; Pasquini, C.; Böhme, R. Detecting Adversarial Examples—A Lesson from Multimedia Forensics. arXiv

2018, arXiv:1803.03613
32. Jia, X.; Wei, X.; Cao, X.; Foroosh, H. ComDefend: An Efficient Image Compression Model to Defend Adversarial Examples. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June
2019; pp. 6084–6092. [CrossRef]

33. Zhao, J.; Wang, J. Recovery of Adversarial Examples based on SmsGAN. J. Zhengzhou Univ. Eng. Sci. 2021, 42, 50–55.
34. Xu, W.; Evans, D.; Qi, Y. Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks. In Proceedings of the

25th Annual Network and Distributed System Security Symposium (NDSS), San Diego, CA, USA, 18–21 February 2018.
35. Kannan, H.; Kurakin, A.; Goodfellow, I.J. Adversarial Logit Pairing. arXiv 2018, arXiv:1803.06373.
36. Wang, J.; Wang, H.; Li, J.; Luo, X.; Shi, Y.; Jha, S.K. Detecting Double JPEG Compressed Color Images with the Same Quantization

Matrix in Spherical Coordinates. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 2736–2749. [CrossRef]
37. Wang, H.; Wang, J.; Luo, X.; Zheng, Y.; Ma, B.; Sun, J.; Jha, S.K.J. Detecting Aligned Double JPEG Compressed Color Image with

Same Quantization Matrix Based on the Stability of Image. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 4065–4080. [CrossRef]
38. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd

International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.
39. Brendel, W.; Rauber, J.; Kümmerer, M.; Ustyuzhaninov, I.; Bethge, M. Accurate, reliable and fast robustness evaluation. In

Proceedings of the Annual Conference on Neural Information Processing Systems 2019 (NIPS), Vancouver, BC, Canada, 8–14
December 2019; pp. 12841–12851.

http://dx.doi.org/10.1109/ICCV.2017.615
http://dx.doi.org/10.1109/CVPR.2019.00496
http://dx.doi.org/10.1109/CVPR.2016.282
http://dx.doi.org/10.1109/CVPR.2019.00445
http://dx.doi.org/10.1016/j.patcog.2021.108472
http://dx.doi.org/10.1109/CVPR.2018.00957
http://dx.doi.org/10.1007/s00530-022-00953-3
http://dx.doi.org/10.24963/ijcai.2018/543
http://dx.doi.org/10.1109/CVPR.2019.00624
http://dx.doi.org/10.1109/TCSVT.2019.2922309
http://dx.doi.org/10.1109/TCSVT.2021.3111195

Remote Sens. 2023, 15, 2379 19 of 19

40. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

41. Zagoruyko, S.; Komodakis, N. Wide Residual Networks. In Proceedings of the Proceedings of the British Machine Vision
Conference 2016 (BMVC), York, UK, 19–22 September 2016.

42. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.
[CrossRef]

43. Gao, S.; Cheng, M.; Zhao, K.; Zhang, X.; Yang, M.; Torr, P.H.S. Res2Net: A New Multi-Scale Backbone Architecture. IEEE Trans.
Pattern Anal. Mach. Intell. 2021, 43, 652–662. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1109/TPAMI.2019.2938758

	Introduction
	Related Works
	Adversarial Example Generation
	Defense of Adversarial Examples

	Prior Knowledge
	JPEG Encoding and Decoding
	JPEG Error and Adversarial Example Detection

	Dynamic Simulation Training Strategy
	Problem Description
	Overall Process
	Characteristic Analysis
	Single Sample Characteristics
	Cross-Sample Characteristics

	Preprocessing Method
	Training Algorithm

	ResultsExperiment and Analysis
	Experimental SettingsExperiment Introduction
	Dataset Introduction
	Experimental Environment

	Performance Evaluation
	Performance of Different Models
	Performance of Each Dataset

	Comparison and Analysis
	Experiments across Datasets
	Cross-Coefficient Test
	Cross-Attack Method Test

	Multidataset Experiment
	Multicoefficient Test
	Multimethod Test

	ConclusionsConclusion
	References

