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Abstract: Maximum carboxylation rate (Vcmax) is a key parameter to characterize the forest carbon
cycle process. Hence, monitoring the Vcmax of different forest types is a hot research topic at home
and abroad, and hyperspectral remote sensing is an important technique for Vcmax inversion.
Moso bamboo is a unique forest type with a high carbon sequestration capacity in subtropical
regions, but the lack of Vcmax data is a major limitation to accurately modeling carbon cycling
processes in moso bamboo forests. Our study area was selected in the moso bamboo forest carbon
sink research base in Shanchuan Township, Anji County, Zhejiang Province, China, which has
a typical subtropical climate and is widely distributed with moso bamboo forests. In this study,
the hyperspectral reflectance and V25

cmax (Vcmax converted to 25 ◦C) of leaves of newborn moso
bamboo (I du bamboo) and 2- to 3-year-old moso bamboo (II du bamboo) were measured at
different canopy positions, i.e., the top, middle and bottom, in the moso bamboo forest. Then,
we applied a discrete wavelet transform (DWT) to the obtained leaf hyperspectral reflectance to
construct the wavelet vegetation index (WVI), analyzed the relationship between the WVI and
moso bamboo leaf V25

cmax, and compared the WVI to the existing hyperspectral vegetation index
(HVI). The ability of the WVI to characterize the moso bamboo V25

cmax was interpreted. Finally,
the partial least squares regression (PLSR) method was used to construct a model to invert the
V25

cmax of moso bamboo leaves. We showed the following: (1) There are significant leaf V25
cmax

differences between I du and II du bamboo, and there are also significant leaf V25
cmax differences

between the top, middle and bottom canopy positions of I du bamboo. (2) Compared to that with
the HVI, the detection wavelength of the V25

cmax of the WVI expanded to the shortwave infrared
region, and thus the WVI had a higher correlation with the V25

cmax. The absolute value of the
correlation coefficient between the V25

cmax of I du bamboo and SR2148,2188 constructed by cD1 was
0.75, and the absolute value of the correlation coefficient between the V25

cmax of II du bamboo and
DVI2069,407 constructed by cD2 was 0.67. The highest absolute value of the correlation coefficient
between V25

cmax and WVI at the three different canopy positions was also 13–21% higher than that
with the HVI. The longest wavelength used by the WVI was 2441 nm. (3) The validation accuracies
of the V25

cmax inversion models constructed with the WVI as a variable were all higher than those
of the models constructed with the HVI as a variable for all ages and positions, with the highest
R2 value of 0.97 and a reduction of 20–60% in the root mean square error (RMSE) value. After the
wavelet decomposition of the hyperspectral reflectance of moso bamboo leaves, the low-frequency
components contained no noise, and the high-frequency components highlighted the original
spectral detail features. The WVI constructed by these components increases the wavelength range
of V25

cmax interpretation. Therefore, the V25
cmax retrieval model based on the WVI encompasses

different resolutions and levels of spectral characteristics, which can better reflect the changes in
bamboo leaves and can provide a new method for the inversion of the V25

cmax of moso bamboo
forests based on hyperspectral remote sensing.
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1. Introduction

Maximum carboxylation rate (Vcmax) is the rate of the carboxylation reaction in the
vegetation photosynthesis process, which indicates the maximum number of moles of
CO2 that can be fixed by leaves per unit area per unit time. This quantity was first used
as a key biochemical parameter to describe the photosynthetic capacity of leaves in the
Farquhar–von Caemmerer–Berry biochemical photosynthesis model (FvCB model), which
was proposed in 1980 [1]. Because of its successful characterization of plant photosynthetic
capacity, Vcmax is widely used in various terrestrial biosphere models to simulate the carbon
cycle. Vcmax is sensitive to temperature, and most models convert it to a fixed value at
25 ◦C, i.e., V25

cmax [2]. However, V25
cmax greatly varies among different vegetation types,

phenological periods and growth environments [2–4]. If the accurate V25
cmax value of

a given vegetation type is not available, this greatly affects the accurate simulation of
the associated carbon cycle process and limits an understanding of the associated carbon
formation mechanism [5]. Therefore, monitoring the V25

cmax of different vegetation types
has remained a research hotspot at home and abroad.

At present, Vcmax monitoring methods can be divided into direct and indirect mea-
surement methods. Direct measurement methods include laboratory [6] and gas exchange
measurement methods [7,8]. Indirect measurement methods mainly entail the use of rele-
vant physiological and biochemical parameters [9,10], radiative transfer models [11,12] and
satellite remote sensing technology for estimation purposes. Among these options, remote
sensing, especially hyperspectral remote sensing technology, can interpret the differences
in vegetation physiological and biochemical parameters at different temporal and spatial
scales from tens or even hundreds of narrow and continuous electromagnetic spectral
features. Therefore, hyperspectral remote sensing technology has become an important
technical means to monitor vegetation physiological and biochemical parameters [13–18]:
for example, this technology has been applied to retrieve the Vcmax of different species
at different canopy positions and different leaf ages. Doughty et al. used the spectral
characteristics of leaves and the partial least squares regression (PLSR) to build a model to
predict the Vcmax of tropical forest leaves [19]; Serbin et al. established a Vcmax full-band
hyperspectral PLSR inversion model to achieve accurate poplar Vcmax estimation [20]. Since
then, the Vcmax full-band hyperspectral PLSR inversion method has been widely adopted
to estimate the Vcmax of soybean [21], corn [22], wheat [23] and other crop leaves. The
natural state is diverse, so predicting the Vcmax of leaves at different temperatures, different
phenologies [24], different site conditions [25] and different ages [26] has become the focus
of researchers. For this reason, methods that can be adapted to more complex scenes can be
more effectively used in Vcmax inversion, such as radiative transfer models [11], integrated
learning [27,28] and deep learning [29].

However, most studies using hyperspectral estimation of Vcmax have adopted raw
hyperspectral data as the model input without considering the effects of information re-
dundancy and data covariance resulting from tens or even hundreds of spectral bands on
the model accuracy. Therefore, hyperspectral preprocessing methods and effective data
mining techniques are essential to improve the accuracy of Vcmax inversion models. For
example, building a spectral index based on an optimal band combination algorithm can
reduce background noise and band multicollinearity, making this index more suitable for
vegetation parameter estimation than one constructed based on full-band hyperspectral
data [30,31]. The existing hyperspectral vegetation index (HVI) has achieved favorable
results in inversion research on vegetation parameters such as Vcmax. For example,
Wang et al. [32,33] showed that the simple ratio vegetation index (SR) and normalized
difference vegetation index (NDVI) could better predict the Vcmax of the Japanese beech
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(Fagus crenata); Dillen et al. demonstrated that the red edge position (REP) is significantly
correlated with Vcmax, the maximum electron transport capacity (Jmax) and chlorophyll
content in a deciduous forest [3]. The discrete wavelet transform (DWT) is a mathemati-
cal transformation for local decomposition of space–time data. It obtains the temporal
and frequency characteristics of signals through the translation and scaling of the mother
wavelet. This decomposition in the time and frequency domains yields a multiresolution
function with a wavelet transform, and this approach can separate high-frequency detail
information from low-frequency macroscopic information to realize deep mining of data
information [34]. Therefore, the DWT can be used to decompose vegetation hyperspec-
tral data at multiple scales to obtain spectral characteristics at every scale and seek the
optimal subinformation for the inversion of vegetation physiological and biochemical
parameters. At present, the use of the DWT for hyperspectral data processing has also
generated favorable results in the inversion of the vegetation net photosynthetic rate [15],
leaf chlorophyll content [35], leaf nitrogen content [36,37], leaf area index [38] and other
aspects. Hence, the study of V25

cmax hyperspectral inversion of vegetation leaves based
on the DWT represents a new and promising exploration direction.

Moso bamboo (Phyllostachys heterocycle) belongs to the subfamilies of Poaceae
(Gramineae), which is widely distributed in the subtropical regions of China and ex-
hibits the characteristics of fast growth, high productivity and high carbon sequestration
capacity [39–41]. In contrast to other types of arbor species, moso bamboo has the
obvious phenological characteristics of biennial on- and off-years. Large numbers of
bamboo shoots grow into newborn moso bamboo (I du bamboo) in spring and summer
in the on-years. The leaves of 2- to 3-year-old moso bamboo (II du bamboo) gradually
turn yellow and fall off in the off-years. Ren Yujun et al. [42] showed that the photo-
synthetic efficiency of moso bamboo leaves significantly decreased in the aging process.
The photosynthetic efficiency of I du bamboo leaves significantly differed from that
of II du bamboo leaves. Other related studies also showed [43,44] that the seasonal
variation in forest photosynthesis was driven by the replacement of older leaves with
lower V25

cmax values by new mature leaves with higher V25
cmax values, thus affecting

the total productivity of forest ecosystems. Bielczynski et al. [45] also explained that,
at the physiological level, the age of leaves should be considered when quantifying
photosynthetic characteristics. Wu et al. also verified that leaf age and canopy conditions
should be simultaneously considered when simulating forest carbon cycle processes [46].
Therefore, leaf age and canopy conditions are crucial for V25

cmax estimation.
Based on the above analysis, V25

cmax is a key biochemical parameter to describe the
vegetation photosynthesis process and the carbon cycle, and hyperspectral remote sensing
is an important technical means for V25

cmax inversion. Due to the unique phenological
characteristics of moso bamboo, the use of hyperspectral remote sensing to invert the
V25

cmax of moso bamboo forests at different ages and canopy positions has important
theoretical significance for the analysis of carbon sequestration capacity. In this study, we
adopted I du and II du bamboo, which grow near the flux tower in Shanchuan Township,
Anji County, Zhejiang Province, as examples. First, a full-range spectroradiometer (ASD
FieldSpec 4 Standard Res; Analytical Spectral Devices) and a portable photosynthesis
system (Li-6800; LICOR Biosciences) were used to measure the hyperspectral reflectance
and V25

cmax of leaves with different ages and at different canopy positions. Second, the
relationship between the V25

cmax of moso bamboo and the WVI, which was constructed
by the hyperspectral reflectance after DWT treatment, was analyzed, and the WVI was
compared to the HVI to explain the ability of the WVI to characterize the V25

cmax of moso
bamboo. Finally, a PLSR model was constructed to invert the V25

cmax of moso bamboo
leaves at different ages and canopy positions. The research results could provide a new
method for high-precision inversion of the V25

cmax of bamboo leaves and provide key
parameters for evaluating the carbon cycle process in bamboo forests.
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2. Materials and Methods
2.1. Study Area

As shown in Figure 1, the research area is located in the moso bamboo forest carbon
sink research base in Shanchuan Township, Anji County, Huzhou city, Zhejiang Province,
China. The area is located in the subtropical monsoon climate zone, with an altitude ranging
from 500–1000 m, an average annual temperature of 14.7 ◦C, abundant precipitation and
sufficient sunshine. Therefore, it is suitable for bamboo forest growth. There is a flux
observation tower (119◦40′E, 30◦28′N) with a height of 40 m in the base. The main forest
type within 1 km from the flux tower is pure moso bamboo forest, with a stand density of
approximately 4500 plants/ha, mainly composed of I du bamboo and II du bamboo. The
average diameter of bamboo at breast height is 9.3 cm, and canopy height ranges from
12–18 m, with a sparse understory of shrubs and herbs.
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Figure 1. (a) Boundary of Anji County in the study area; (b) bamboo forest distribution and flux
tower location; (c) map of the spatial distribution of the sample bamboo; (d) using Li-6800 to measure
the A–Ci curve of I du bamboo leaves; (e) leaf spectral curve.

2.2. Measurement of the A–Ci Curve and Hyperspectral Reflectance of Moso Bamboo Leaves

In this study, from June to July 2021, seventeen I du bamboo plants and fifteen II
du bamboo plants in good health were selected as sample bamboo plants within 1 km
around the flux tower (Figure 1c). We selected at least two or more leaves from the top,
middle and bottom canopy positions of each bamboo sample and recorded the age and
canopy position of the bamboo in which each leaf sample was located. First, we measured
the response curve of net photosynthetic rate (An) to intercellular CO2 concentration (Ci)
using a Li-6800 portable photosynthesis system (Li-6800, Li-Cor, Lincoln, NE, USA), also
known as the A–Ci curve. Immediately after, we measured the hyperspectral reflectance
data of the leaf samples using an ASD FieldSpec Pro Spectroradiometer (ASD Inc.,
Boulder, CO, USA). After excluding data from failed measurements, we obtained a total
of 95 leaf samples from I du moso bamboo (30 from the top canopy, 36 from the middle
canopy and 29 from the bottom canopy) and 57 leaf samples from II du moso bamboo
(19 from the top canopy, 18 from the middle canopy and 20 from the bottom canopy).
During the measurement, sunny and cloudless weather conditions were chosen and
continuously monitored from 8:30–11:00 a.m. and 14:00–17:30 p.m. every day (avoiding
the “lunch break” period of leaves).
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2.2.1. A–Ci Measurement

When fitting the A–Ci curve required for V25
cmax calculation, the leaves should

occur under saturated light conditions, but the saturation light intensity required for
photosynthesis differs among different species [47]. Therefore, it is necessary to measure
the light response curve in advance to determine the saturation light intensity of bamboo
leaves. In this study, the photoresponse curves of one I du bamboo leaf and one II du
bamboo leaf were used to determine the saturation light intensity value required for
light induction by moso bamboo leaves. To ensure the effectiveness of this experiment,
the CO2 concentration was set to 400 µmol ·mol−1, the temperature was 25 ◦C, and the
leaves were exposed to light in a low-light environment for approximately 30 min using
a 1400 µmol ·m−2 · s−1 light intensity before the measurement [48]. The light source
was provided by the LED light of the Multiphase Flash TM Fluorometer, and the light
intensity gradient was set to 2000, 1800, 1500, 1200, 1000, 800, 600, 400, 200, 150, 100, 50,
20 and 0 µmol ·m−2 · s−1. Finally, the saturation light intensity of bamboo leaves was
calculated as 1200 µmol ·m−2 · s−1 by correcting the rectangular hyperbolic model [49]
and was used to determine the leaf A–Ci curve.

To obtain V25
cmax, we used a Li-6800 device (with a temperature of 25 ◦C, a relative

humidity of 50% and a light intensity of 1200 µmol ·m−2 · s−1) to measure A–Ci curves at
the Rubisco-limited and RuBP-limited stages. Referring to the CO2 concentration gradient
of Xingyun Liang [50], the CO2 concentration gradient was set as follows: 400, 300, 200,
100, 50, 400, 500, 600, 700, 800, 1000, 1200 and 1400 µmol ·mol−1. Each CO2 concentration
was applied for 2–3 min, and the net photosynthetic rate was recorded after the value had
stabilized. To ensure the validity of the measurement data, the minimum concentration in
the leaf chamber was set to 50 µmol ·mol−1, and the residence time was short to prevent
Rubisco inactivation.

2.2.2. Hyperspectral Reflectance Measurement

After A–Ci curve measurement of the bamboo leaves, the ASD portable field object
spectrum analyzer was used to continue to measure the hyperspectral reflectance of the
bamboo leaves. The measurement band range of the instrument is 350–2500 nm, the
wavelength accuracy is ±1 nm, the spectral resolution in the 350–1000 nm band is 3 nm,
and the spectral sampling interval is 1.4 nm. Moreover, the spectral resolution in the
1000–2500 nm band is 10 nm, and the spectral sampling interval is 2 nm. A standardized
white BaSO4 panel (with 99% reflectance) was employed to calibrate the sensor before
collecting the reflectance. The instrument is equipped with a built-in fiber optic light source
to simulate sunlight, avoiding the influence of unstable external light sources. During
the measurement, the spectral reflectance curves of 10 front surfaces of each leaf were
repeatedly measured and then averaged as the actual measured spectral reflectance curve
of the leaf.

2.3. V25
cmax Calculation

On the basis of each A–Ci measurement curve, the FvCB model was used in this
study to calculate V25

cmax of the bamboo leaves. The FvCB model describes the response
of photosynthetic parameters to CO2 under different environmental conditions, namely
Rubisco enzyme activity-limited state, RuBP regeneration rate-limited state, TPU triose
phosphate transport-limited stage, Rubisco-RuBP co-limited phase and RuBP-TUP co-
limited phase [1,50]. When fitting the A–Ci curve, it is necessary to accurately estimate
physiological and biochemical parameters such as V25

cmax and photorespiration rate
(Rd) by evaluating the distribution at the different restriction stages. The specific process
is as follows:

First, the net photosynthetic rate (An = Ac) at the carboxylase enzyme (Rubisco)
activity-limited stage was fitted. When the intercellular CO2 concentration is low and the
RuBP substrate is sufficient, the activity and quantity of the Rubisco enzyme become the
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main limiting factors of the net photosynthetic rate. The net photosynthetic rate Ac at this
stage can be calculated with Equation (1).

Ac =
V25

cmax(Ci − Γ∗)
Ci + Kc[1 + (Oi/Ko)]

− Rd, (1)

where V25
cmax is the maximum carboxylation rate standardized to 25 ◦C, Ci is the intercel-

lular CO2 concentration, Γ* is the CO2 compensation point, Rd is the respiration rate under
light, Kc = 27.24 Pa is the Michaelis constant of the carboxylation reaction, Ko = 16.58 kPa
is the Michaelis constant of the oxidation reaction, and Oi = 21 kPa is the oxygen partial
pressure of the chloroplast carboxylation sites. The parameters used were standardized to
25 ◦C by the Arrhenius equation [51].

Second, the net photosynthetic rate (An = Aj) at the RuBP regeneration rate-limited
stage was fitted. With the gradual increase in the intercellular CO2 concentration, the
regeneration rate of substrate RuBP becomes lower than the consumption rate, limiting
the photosynthetic rate. The net photosynthetic rate Aj at this stage can be obtained
with Equation (2).

Aj =
Jmax(Ci − Γ∗)

4Ci + 8Γ∗
− Rd, (2)

where Jmax is the maximum electron transfer rate,Ci is the intercellular CO2 concentration,
Γ* is the CO2 compensation point, and Rd is the respiration rate under light. The light and
parameters used were normalized to 25 ◦C by the Arrhenius equation.

Third, the A–Ci fitting curve and V25
cmax were determined. The method of enumerate

segmentation coupled with simultaneous comprehensive fitting of Gu [52] was adopted.
First, the distributions at the Rubisco enzyme activity-limited stage and the RuBP regener-
ation rate-limited stage were enumerated by the linear fitting method. Second, the most
suitable point (Ci transition in Figure 2) for fitting all data retrieved from all possible re-
stricted state distributions was selected as the transition point between the two stages. The
minimum distribution cost function of the A–Ci fitting curve determined by this transition
point was the minimum of all distributions.
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Finally, the V25
cmax value corresponding to the best A–Ci fitting curve was determined

as the final V25
cmax calculation result. The example of the A–Ci fitting curve was shown in

Figure 2. The specific operations were all performed using the R package “plantecophys”
developed by Duursma [53].

2.4. Hyperspectral Vegetation Index
2.4.1. Hyperspectral Vegetation Index Calculation

The HVI of vegetation leaves is closely related to their nitrogen content, chlorophyll
content and specific leaf weight. Therefore, we combined the spectral characteristics of moso
bamboo leaves in this study, referred to related studies at home and abroad, and finally
established three types of HVIs characterizing the leaf nitrogen content, leaf chlorophyll
content and leaf specific gravity for V25

cmax inversion, as summarized in Table 1.

Table 1. Hyperspectral vegetation index computational formulas.

Type HVI Formula Reference

Leaf Nitrogen

Nitrogen reflectance index (NRI) (R570 − R670)/(R570 + R670) Filella et al., 1995 [54]
Normalized difference red edge index (NDRE) (R790 − R720)/(R790 + R720) Barnes et al., 2000 [55]

Double-peak canopy nitrogen index (DCNI) (R720−R700)
(R700−R670) × (R720−R670 +0.03)

Chen et al., 2010 [56]

Normalized difference vegetation index (NDVI1) (R774 − R677)/(R774 + R677) Zarco et al., 1999 [57]
Normalized difference vegetation index (NDVI2) (R800 − R670)/(R800 + R670) Rouse et al., 1974 [58]

Chlorophyll

Ratio of first derivative (D715/D705) (R716 − R714)/(R706 − R704) Vogelmann et al., 1993 [59]
Modified simple ratio (mSR705) (R750 − R445)/(R705 + R445) Sims et al., 2002 [60]

Modified NDVI (mND705) (R750 − R705)/(R750 + R705 − 2 ∗ R445) Sims et al., 2002 [60]
Physiological reflectance index (PRI) (R570 − R539)/(R570 + R539) Gamon et al., 1992 [61]
Pigment specific simple ratio (PSSR) R810/R674 Zarco et al., 1999 [57]

Pigment specific simple ratio Chla (PSSRa) R800/R680 Blackburn et al., 1998 [62]
Pigment specific simple ratio Chlb (PSSRb) R800/R635 Blackburn et al., 1998 [62]

Gitelson and Merzlyak index (GM) R750/R700 Gitelson et al.,1997 [63]
Vogelmann index (Vog) R740/R720 Vogelmann et al., 1993 [59]

Carter index (Carter) R695/R760 Carter et al., 1994 [64]
Double difference index (DD) (R750 − R720) − (R700 − R670) le Mairet et al., 2004 [65]

Modified chlorophyll absorption integral (mCAI) R545+ R752
2 × (752 − 545) −

R752
∑

R545

R Oppelt et al., 2001 [66]

Distance from the base line spanned by the green
reflectance peak (CAR)

CAR =
|α × 670+ R670 +β|√

α2+1

α =
R700−R550

150 β = R550 − 550α
Broge et al., 2001 [67]

Modified chlorophyll absorption
ratio index (MCARI) [(R700 − R670) − 0.2(R700 − R550)

R700
R670

] Daughtry et al., 2000 [68]

Transformed chlorophyll absorption in
reflectance index (TCARI) 3 × [(R700 − R670) − 0.2(R670 − R700)

R700
R670

] Haboudane et al., 2002 [69]

TCARI/Optimized soil-adjusted
vegetation index (TCARI/OSAVI)

TCARI/OSAVI
OSAVI = 1.16 × R800−R670

R800+R670+0.16
Haboudane et al., 2002 [69]

MCARI/OSAVI MCARI/OSAVI Daughtry et al., 2000 [68]

Red edge position (REP)
700+

40 × (Rrededge−R700
)

R740−R700

Rredege =
(R670+R780)

2

Miller et al., 1990 [70]

Integration of reflectivity at 450–680 nm (AR)
∫ 680

450 R Zarco et al., 1999 [57]

Leaf Mass Area
Normalized dry leaf mass area index (NDLMA) (R1368 − R1722)/(R1368 + R1722) Feret et al., 2008 [71]

Normalized dry matter index (NDMI) (R1649 − R1722)/(R1649 + R1722) Wang et al., 2011 [72]

2.4.2. Evaluation of the Correlation between HVI and V25
cmax

In this study, the closeness of the relationship between V25
cmax and HVI was evaluated

by calculating the absolute value of the Pearson correlation coefficient (|r|) between them.
Generally, correlation analysis is a statistical method that helps to define any dependency
between variables. In this study, two variables with an absolute correlation coefficient
below 0.3 are considered to have no correlation. Its results can be interpreted using the
Chaddock scale (Table 2) [73].
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Table 2. Chaddock scale for interpretation of correlation analysis results.

Absolute Value of Correlation, |R| Interpretation

0.00–0.30 Negligible correlation
0.30–0.50 Weak correlation
0.50–0.70 Moderate correlation
0.70–0.90 Strong correlation
0.90–1.00 Very strong correlation

2.5. Wavelet Transform and Wavelet Vegetation Index
2.5.1. Wavelet Transform and Decomposition Level Selection of Hyperspectral Data

In this study, a DWT was used to decompose the original hyperspectral data of the
moso bamboo leaves into coarse-scale approximation coefficients (cA) and fine-scale
detail coefficients (cD). cA captures the overall situation of the original spectrum, re-
flecting the main trend in the original spectrum, while cD provides detailed information
of the original spectrum. To maintain cA and cD in the same dimension as the origi-
nal spectral data, we reconstructed the coefficient vector by upsampling and filtering.
Figure 3 shows a schematic diagram of the three-layer DWT decomposition process.
Through decomposition, the original spectral data S can be divided into a low-frequency
coefficient component cA3 and three high-frequency coefficient components cD3, cD2
and cD1. After wavelet decomposition, the energy feature vector of the original signal
can be obtained by calculating the energy information of each node, which can reflect
the energy distribution of the signal on different scales [15].
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DWT basis functions include the Haar wavelet, bior wavelet system, Daubechies
wavelet system, symlets wavelet system, coiflets wavelet system and many other wavelets.
Considering the advantages of the bior1.5 wavelet in signal decomposition and the de-
termination of surface vegetation biochemical parameters [15], we chose this wavelet as
the basis function to apply DWT treatment to the hyperspectral reflectance of the bamboo
leaves in the study area, and the optimal number of wavelet decomposition layers was
determined by the correlation coefficient between the low-frequency component cA of each
layer and the original spectrum, as proposed by Kaewpijit [73].

2.5.2. Construction and Screening of the Wavelet Vegetation Index

In this study, the spectral vegetation index constructed by the wavelet-reconstructed
spectral bands was referred to as the WVI, which mainly includes the difference wavelet
vegetation index wDVIi,j, the simple ratio wavelet vegetation index wSRi,j and the nor-
malized row wavelet vegetation index wNDVIi,j. First, the correlation between the WVI
and V25

cmax was calculated for each band combination in the reconstructed component of
each level. Second, the best band combination corresponding to this WVI was determined
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according to the principle of the maximum absolute value of the correlation. Accordingly,
the optimal WVI for each type was determined and used for V25

cmax inversion model
construction. The three WVI types can be calculated as follows:

wDVIi,j = wRi − wRj (3)

wSRi,j =
wRi
wRj

(4)

wNDVIi,j =
wRi−wRj
wRi+wRj

(5)

where wRi and wRj are the reflectivity values at wavelengths i and j (nm), respectively, in
the reconstructed spectrum.

2.6. Construction of the V25
cmax Inversion Model Based on the PLSR Model

The PLSR model can reduce the dimensionality of data by compressing a large
number of colinear variables into a few orthogonal principal components to avoid high
covariance among multiple variables. It can achieve a better predictive performance than,
for example, stepwise regression or principal component regression methods, and this
method is therefore widely used in hyperspectral inversion of vegetation biochemical
parameters [22,25,74].

The HVI, WVI and HVI + WVI were normalized as input features, and an inversion
model based on the V25

cmax of moso bamboo leaves was developed using the PLSR
model. In this study, during PLSR model construction, the sample pair was randomly
divided into training and testing data sets at a ratio of 7:3, and this process was repeated
50 times to evaluate the generalization performance of the inversion model. In the model
training and testing phase, we employed the coefficient of determination (R2) and root
mean square error (RMSE), as determined with Equations (6) and (7), respectively, to
evaluate the model accuracy.

R2 = 1− ∑n
i=1(yi

∗ − yi)
2

∑n
i=1

(
yi −

−
y
)2 , (6)

RMSE =

√
1
n∑n

i=1[yi
∗ − yi]

2, (7)

where n is the number of samples, yi is the measured value of the i-th sample V25
cmax, yi

∗ is

the estimated value of the i-th sample V25
cmax, and

−
y is the average value of the measured

V25
cmax values.

2.7. The Summary Scheme of Study

The summary scheme of this study is shown in Figure 4. Firstly, we obtained
saturated light intensity through the light response curves and measured V25

cmax data
through A–Ci curves. Then, we obtained HVI data by performing band operation using
hyperspectral data. At the same time, we used the DWT to process hyperspectral data
to obtain cA and cD and then obtained WVI data by selecting the optimal combination
of these components. Finally, we conducted a correlation analysis between V25

cmax and
HVI, WVI, respectively. We also used HVI, WVI, HVI + WVI as input features to establish
an inversion model using the PLSR method, which demonstrated the effectiveness of the
WVI in improving inversion accuracy.
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3. Results and Analysis

3.1. V25
cmax Analysis of Moso Bamboo Leaves at the Different Ages and Canopy Positions

Figure 5a shows the Mann–Whitney test results of the V25
cmax differences between

the I du and II du moso bamboo leaves. The results showed that the mean rank (87.52) of
V25

cmax of the I du moso bamboo leaves is higher than the mean rank (54.21) of V25
cmax

of the II du moso bamboo leaves, and there was a significant difference. Figure 5b shows
the V25

cmax statistical results of the I du and II du moso bamboo leaves at the different
canopy positions. Due to the small sample size and unknown type of data distribution
of V25

cmax measurements for the three canopy positions, we used the Kruskal–Wallis test
for statistical analysis. All the results are summarized in Figure 5b with letter notation to
indicate significant differences. The results indicated that the V25

cmax of the I du and II
du moso bamboo leaves gradually decreased from the top layer to the bottom layer of the
canopy, but there was no significant difference in the V25

cmax of the II du moso bamboo
leaves between the different canopy positions. In regard to the I du moso bamboo, there
was a significant V25

cmax difference between the leaves at the top and middle positions and
those at the bottom position (p < 0.05), but there was no significant difference between the
leaves at the top and middle positions.

3.2. Correlation between the HVI and V25
cmax of Moso Bamboo Leaves at the Different Ages

Figure 6 shows the correlation between the V25
cmax and HVI of the I du and II du

moso bamboo leaves. In this study, the closeness of the relationship between V25
cmax and

HVI was evaluated by calculating the absolute value of the Pearson correlation coefficient
(|r|) between them. Figure 6 shows that in regard to the I du moso bamboo, there is only
a negligible correlation between NIR and leaf V25

cmax. The DCNI, NDVI1, NDVI2, PRI,
PSSR, PSSRa, mCAI and NDLMA had weak correlations with leaf V25

cmax. There were
moderate correlations between other HVIs and leaf V25

cmax. Among the HVIs sensitive
to the nitrogen content, NDRE attained the highest correlation with leaf V25

cmax, and the
absolute value of the correlation coefficient reached 0.57. Among the HVIs sensitive to
chlorophyll content, the correlation between REP and leaf V25

cmax was the highest, and
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the absolute value of the correlation coefficient reached 0.59. Among the HVIs sensitive to
leaf mass area, the correlation between NDMI and leaf V25

cmax was the highest, and the
absolute value of the correlation coefficient reached 0.56.
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II du Moso bamboo leaves. The correlation below the dashed line can be ignored.

Regarding II du moso bamboo, except for the weak correlation between NDMI and
V25

cmax, the other HVIs exhibited only negligible correlation with the leaf V25
cmax.

In addition, according to the calculation formulas of NDMI and NDLAM in Table 1,
these two HVIs encompassed the 1722 nm shortwave infrared band, especially NDMI,
which encompassed the 1649 nm and 1722 nm shortwave infrared bands and can be adopted
as an important vegetation index to characterize the dry matter content of leaves [72].
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Based on the above analysis, it can be observed that the HVIs utilizing the short-wave
infrared region had greater potential in characterizing the V25

cmax of II du bamboo leaves.
This indicates that the information carried by the hyperspectral spectral bands in this region
is worth further exploration using more approaches.

3.3. Correlation between the HVI and V25
cmax of Moso Bamboo Leaves at the Different

Canopy Positions

Because there was no significant difference in the V25
cmax of the II du moso bamboo

leaves at the different canopy positions (Figure 4b), only I du moso bamboo was considered
in the correlation analysis between the HVI and V25

cmax of the bamboo leaves at the
different canopy positions in this study.

Figure 7 shows the correlation between the leaf V25
cmax and HVI of I du moso bamboo

at the top, middle and bottom canopy positions. Figure 7 shows that Carter, DD, CAR,
MCARI/OSAVI, REP and AR have strong correlations with V25

cmax at the top canopy
positions, while the other HVIs (except NRI) have a moderate correlation with V25

cmax.
Except for NDVI1, PSSRa and NDLMA, the other HVIs have an undeniable correlation
with leaf V25

cmax at the middle canopy positions. For the bottom canopy positions, all the
HVIs have undeniable correlations with leaf V25

cmax.
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Table 3 shows the HVIs with the highest absolute values of the correlation coefficients
with the V25

cmax of the I du moso bamboo leaves at the top, middle and bottom canopy
positions. According to the analysis of Table 3, Carter, D715/D705 and REP, which are closely
related to chlorophyll, were the most suitable for characterizing the V25

cmax of I du moso
bamboo leaves at the top, middle and bottom canopy positions, respectively. Among the
HVIs closely related to the nitrogen content of leaves, NDRE was the most suitable for
characterizing the V25

cmax of I du moso bamboo leaves at the bottom canopy position.
Among the HVIs closely related to the leaf mass area of leaves, NDMI and NDMI were the
most suitable for characterizing the V25

cmax of I du moso bamboo leaves at the top canopy
position. The I du moso bamboo leaves occurred at the growth stage, and the contents
of biophysical and chemical elements in the leaves differed among the different canopy
positions, so there were also differences in the HVIs for V25

cmax characterization, which
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provides an important reference for selecting the most suitable HVI for V25
cmax retrieval at

the different canopy positions and interpreting the differences in the vertical distribution of
the carbon fixation capacity.

Table 3. HVIs with the highest absolute values of the correlation coefficients with the V25
cmax of I du

Moso bamboo leaves at the different canopy positions.

Leaf Nitrogen Chlorophyll Leaf Mass Area

Top NDRE
(0.69)

Carter
(0.74)

NDMI
(0.61)

Middle NDRE
(0.66)

D715/D705
(0.68)

NDMI
(0.53)

Bottom NDRE
(0.70)

REP
(0.75)

NDMI
(0.55)

3.4. Correlation between the Wavelet Vegetation Index and V25
cmax of Moso Bamboo Leaves

Figure 8 shows the correlation coefficients between the low-frequency component cA
and the original spectrum obtained by wavelet coefficient single-branch reconstruction
for 20 decomposition levels with the bior1.5 wavelet basis function. It can be seen from
Figure 8 that there is almost no difference in the correlation coefficients between different
ages and canopy positions, and after the original spectrum is decomposed to the 6th layer,
the correlation between cA and the original spectrum began to decline. Thus, the results
of the optimal decomposition level of the original spectrums at different bamboo ages
and canopy positions were the same. The reason for these results may be that although
these original spectrums come from different bamboo ages or canopy positions, they are all
spectra of bamboo leaves, so their signal-to-noise ratios are similar, resulting in consistent
results. Therefore, in this study, the original spectrum was decomposed into six layers, and
the wavelet coefficients were reconstructed by a single branch to obtain cA6, cD1, cD2, cD3,
cD4, cD5 and cD6.
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With the use of the method introduced in Section 2.5.2, the optimal WVI at each
decomposition level for the characterization of the V25

cmax of I du and II du moso bamboo
leaves was screened, as listed in Table 4. Table 4 shows that the correlation between V25

cmax
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and the three WVI types of I du and II du moso bamboo constructed by the high-frequency
information of layers 1–5 was generally higher than that constructed by the low-frequency
information cA6 and the high-frequency information cD6, in which the absolute value of
the correlation coefficient between SR2148,2188 and V25

cmax constructed by cD1 was 0.75.
The correlation between the three WVI types and the V25

cmax of II du moso bamboo was
generally the same as that with the V25

cmax of I du moso bamboo. The absolute value of
the correlation coefficient between DVI2069,407 constructed by cD2 and the V25

cmax of II du
moso bamboo was 0.67.

Table 4. Correlation between the optimal WVI and V25
cmax of the bamboo leaves of different ages.

Coefficients
I du II du

WVI |r| WVI |r|

cA6

wDVI692,820 0.61 wDVI2292,1844 0.32
wSR1460,2292 0.60 wSR1652,1780 0.35

wNDVI2292,1460 0.60 wNDVI1780,1652 0.35

cD1

wDVI2185,2153 0.73 wDVI1161,819 0.62
wSR2148,2188 0.75 wSR1684,2221 0.57

wNDVI2185,2147 0.74 wNDVI2343,1714 0.59

cD2

wDVI2178,2154 0.74 wDVI2069,407 0.67
wSR2154,2186 0.74 wSR407,443 0.66

wNDVI2186,2154 0.74 wNDVI2441,407 0.61

cD3

wDVI2182,2158 0.71 wDVI910,878 0.60
wSR2158,2178 0.72 wSR2362,2330 0.49

wNDVI2130,1418 0.71 wNDVI2342,1154 0.54

cD4

wDVI2176,2160 0.72 wDVI2224,1696 0.51
wSR2152,2184 0.73 wSR1696,2224 0.54

wNDVI2184,2152 0.73 wNDVI2312,1152 0.50

cD5

wDVI2140,1628 0.72 wDVI2396,1148 0.45
wSR2156,2188 0.73 wSR1516,2316 0.46

wNDVI2188,2156 0.73 wNDVI2380,1148 0.48

cD6

wDVI1604,836 0.60 wDVI2372,1156 0.40
wSR2084,740 0.60 wSR1731,2372 0.40

wNDVI2084,740 0.60 wNDVI2372,1124 0.46

Comparing Table 4 and Figure 6, it can be found that almost all the correlations be-
tween the WVI and V25

cmax were higher than those with the HVI. The DWT is known as a
“mathematical microscope”, which suggests that when the hyperspectral reflectance data
are subjected to the DWT, it increases the ability of the vegetation reflectance spectra to
determine V25

cmax. This occurs because information that is difficult to represent in the
raw hyperspectral reflectance data is extracted in the low- and high-frequency domains
after multilayer DWT application [15]. For example, after six-layer DWT decomposition,
although the low-frequency information cA6 has been severely smoothed, noise has been
filtered to the maximum extent (Figure 9). The correlation between the three WVI types
constructed by cA6 and V25

cmax was still higher than that with REP (0.59), which attained
the highest correlation with V25

cmax among the various HVIs. The high-frequency coef-
ficient highlights the detailed information with notable spectral fluctuation and obvious
feature change. In regard to I du moso bamboo, the correlation coefficient between the
three WVI types and V25

cmax constructed by the high-frequency information of layers 1–5
was approximately 20–30% higher than that with REP (0.59), which attained the highest
correlation with V25

cmax among the different HVIs. Regarding II du moso bamboo, the
correlation coefficient between the three WVI types and V25

cmax constructed by the high-
frequency information of layers 1–5 was approximately 36–103% higher than that with
NDMI (0.33), which attained the highest correlation with V25

cmax among the various HVIs.
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In addition, comparing Table 4 and Figure 6, it could be found that all HVIs, except
NDLAM and NDMI, encompassed wavelength ranges in the visible and near-infrared
spectra, while the wavelengths of all WVIs, except for a few indexes, encompassed the
shortwave infrared spectrum with a longer wavelength range, and the longest wavelength
was 2396 nm.
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Similar to the HVI, we analyzed the correlation between the WVI and the leaf V25
cmax

of I du moso bamboo at the top, middle and bottom canopy positions, as summarized in
Table 5. According to Table 5, the correlation between V25

cmax and the WVI constructed by
the high-frequency information was generally higher than that with the WVI constructed
by the low-frequency information. The correlation between wDVI2243,477 and V25

cmax
constructed by cD2 in the top layer was the highest, and the absolute value of the correlation
coefficient was 0.85. The absolute value of the correlation coefficient of wDVI2153,1225 and
wSR1623,2153 constructed by cD1 in the middle layer was 0.82, and the absolute value of the
correlation coefficient of wSR2146,2183 constructed by cD1 in the lower layer reached 0.87.

Table 5. Correlation between the wavelet vegetation index comprising the best band combination
and V25

cmax of the leaves at the different canopy positions.

Coefficients
Top Middle Bottom

WVI |r| WVI |r| WVI |r|

cA6

wDVI2420,1460 0.75 wDVI820,756 0.66 wDVI1076,564 0.76
wSR692,820 0.73 wSRC756,820 0.67 wSR500,1908 0.75
wNDVI756,692 0.73 wNDVI820,756 0.66 wNDVI1908,500 0.74

cD1

wDVI1827,490 0.84 wDVI2153,1225 0.82 wDVI2205,630 0.86
wSR667,1667 0.84 wSR1623,2153 0.82 wSR2146,2183 0.87
wNDVI2234,1309 0.82 wNDVI2153,1623 0.81 wNDVI2196,2146 0.85

cD2

wDVI2243,477 0.85 wDVI1675,1291 0.80 wDVI2205,631 0.86
wSR629,1675 0.82 wSR1359,1739 0.78 wSR1995,719 0.85
wNDVI1665,479 0.83 wNDVI1739,1359 0.78 wNDVI1995,719 0.85

cD3

wDVI2286,482 0.83 wDVI2174,2156 0.78 wDVI2186,2162 0.85
wSR486,2062 0.82 wSR2178,2156 0.78 wSR2158,2186 0.85
wNDVI2062,486 0.81 wNDVI2174,2156 0.76 wNDVI1994,718 0.85

cD4

wDVI2288,488 0.79 wDVI2144,1632 0.75 wDVI1424,640 0.86
wSR504,1096 0.80 wSR528,584 0.74 wSR2160,2192 0.83
wNDVI2240,952 0.78 wNDVI2144,1416 0.74 wNDVI2000,728 0.83

cD5

wDVI1820,732 0.76 wDVI2140,1628 0.76 wDVI1420,652 0.84
wSR636,1068 0.79 wSR2140,1420 0.76 wSR2156,2188 0.82
wNDVI2092,732 0.79 wNDVI2140,1420 0.76 wNDVI2188,2156 0.83

cD6

wDVI2044,804 0.74 wDVI2148,836 0.71 wDVI1892,516 0.82
wSR484,2276 0.77 wSR2148,740 0.74 wSR516,1924 0.80
wNDVI2436,420 0.77 wNDVI2148,740 0.74 wNDVI1924,400 0.80

Comparing Tables 3 and 5, the absolute values of the correlation coefficients between
the WVI and leaf V25

cmax at the three different canopy positions were generally higher than
those with the HVI, with the maximum correlation values of the WVI increasing by 13–21%
relative to the HVI. Similarly, the wavelengths of the WVI at the three locations were mostly
within the shortwave infrared range, and the longest wavelength reached 2441 nm.

Noise in the hyperspectral reflectance data was filtered out after DWT treatment,
highlighting the spectral details. The resulting WVI provided an expanded wavelength
range for detection, thus significantly enhancing the ability of the HVI to interpret the
V25

cmax of moso bamboo leaves at the different ages and canopy positions. In summary,
the WVI constructed from DWT-treated bamboo hyperspectral reflectance provides more
advantages in leaf V25

cmax interpretation.

3.5. Inversion of V25
cmax of Moso Bamboo Leaves

In this study, the HVI presented in Table 1, the constructed WVI provided in
Tables 4 and 5 and the combination of the HVI and WVI (HVI + WVI) were used as
input variables of the PLSR model, and a V25

cmax inversion model for moso bamboo
leaves was constructed according to the different bamboo ages and canopy positions.
Then, the V25

cmax inversion model with the closest R2 and RMSE values to the median
was selected.
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Analysis of Figure 10 shows that the accuracy of the V25
cmax inversion model with the

WVI as a variable was higher than that of the inversion model with the HVI as a variable,
both in terms of the model fitting accuracy (training samples) and model validation accuracy
(validation samples). Based on the HVI, the validation accuracy R2 value of V25

cmax of
I du moso bamboo was 0.47, and the validation accuracy R2 value of II du moso bamboo
was only 0.08. Compared to the HVI, the V25

cmax validation accuracy was substantially
improved when the WVI was used as the input variable. Specifically, the validation
accuracy R2 value of the V25

cmax of I du moso bamboo was 0.62, which increased by 32%,
and the RMSE was 8.01 µmol ·m−2 · s−1, which decreased by 22%. The validation accuracy
R2 value of the V25

cmax of II du moso bamboo was 0.7, which increased by 775%, and the
RMSE was 9.44 µmol ·m−2 · s−1, which decreased by 32%. Figure 10 also shows that after
employing the combination of the WVI and HVI as a comprehensive variable, the inversion
accuracy R2 and RMSE values of V25

cmax were better than those when employing the HVI.
This shows that the WVI could improve the accuracy of HVI inversion of V25

cmax, and
the model built based on the WVI achieved a high performance, which can be adopted to
accurately retrieve the V25

cmax of bamboo leaves.
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Figure 11 shows the inversion results of the V25
cmax of I du moso bamboo at the

top, middle and bottom canopy locations. Similar to the V25
cmax inversion results for

moso bamboo at the different ages, the validation accuracy of V25
cmax with the WVI as a

variable was higher than that with the HVI as a variable. R2 increased by 90%, 71% and
23%, and the RMSE value decreased by 57%, 36% and 36%, respectively. The validation
accuracy R2 of the model constructed by employing the combination of the WVI and HVI
as a comprehensive variable was also higher than that when employing the HVI. The R2

values increased by 82%, 56% and 33%, respectively, and the RMSE values also significantly
decreased by 51%, 43% and 57%, respectively.
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4. Discussion

4.1. The V25
cmax Differences among the Different Bamboo Ages and Canopy Positions

In this study, we analyzed distribution differences in leaf V25
cmax at different bamboo

ages and canopy positions. There was a significant difference in V25cmax between I du
moso bamboo and II du moso bamboo, with the V25cmax of I du moso bamboo leaves
being significantly higher than II du moso bamboo leaves. This finding is consistent with
the conclusion of previous studies by Pantin, Albert and others, which also indicated
that the physiological activities related to photosynthesis change with leaf age during leaf
development [44,75]. This may be attributed to the fact that Rubisco activity in leaves
decreases with increasing leaf age, which directly impacts the reduction in V25

cmax [76].
Furthermore, there was a significant difference in leaf V25

cmax between different
canopy positions. This may be due to inconsistent light conditions received by leaves at
different canopy positions, which can affect their photosynthetic capacity. The results of
I du moso bamboo in this study are consistent with the research conclusion of Kenzo et al.,
which showed that leaf V25

cmax tends to increase with increases in canopy height [77].
This could be attributed to the fact that the young leaves of I du moso bamboo occurred in
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the growing stage, so they are more sensitive to environmental factors, such as light, CO2
and temperature, that affect photosynthetic carbon fixation. There was no significant
difference in the V25

cmax of the II du moso bamboo leaves between the different canopy
positions. This may be due to the II du moso bamboo leaves being 2–3 years old and
having completely developed with stable physiological and structural parameters.

4.2. The V25
cmax of Leaves at the Different Ages Are Sensitive to Different Types of HVIs

The reflectance characteristics of vegetation are mainly controlled by pigments, water
content and leaf structure [78], so the inversion of leaf nitrogen content, chlorophyll, leaf
area index, net photosynthetic rate, leaf biomass and other vegetation parameters based on
the HVI is a hot research topic at home and abroad [79–84]. In this study, we analyzed the
relationship between V25

cmax and three types of HVIs, which represent the leaf nitrogen
content, leaf chlorophyll content and leaf mass area. Regarding I du moso bamboo, the HVI
which is commonly used to characterize chlorophyll, was more sensitive to leaf V25

cmax.
Regarding II du moso bamboo, the HVI which is commonly used to characterize leaf
mass area, was more notably correlated with leaf V25

cmax. That is to say, the V25
cmax of

leaves at the different ages are sensitive to different types of HVIs. This occurs because
newly generated I du moso bamboo leaves are in a state of carbon starvation due to the
urgent need to accumulate nutrients, and therefore their physiological parameter V25

cmax
is more sensitive to factors affecting carbon status. Since chlorophyll is directly involved
in the physiological activities of plant carbon sequestration, the HVI which characterizes
chlorophyll content, is more sensitive to V25

cmax changes. The II du moso bamboo leaves
were mature with stable physiological and structural parameters, and their physiological
parameter V25

cmax was more sensitive to factors related to leaf dry matter and water. The
leaf mass area is the leaf dry matter mass per unit area after water removal, so it can better
characterize the V25

cmax of mature leaves.

4.3. The WVI Can Better Characterize V25
cmax

To explain the ability of the WVI to characterize the V25
cmax of moso bamboo, we

analyzed the relationship between the WVI and HVI and the V25
cmax of moso bamboo

leaves in this study. Most correlations between the constructed WVI and the V25
cmax of

leaves at the different ages and canopy positions were higher than those with the HVI.
For example, the absolute values of the correlation coefficients between the WVI and the
V25

cmax of I du moso bamboo improved by approximately 20–30% relative to the best
performing REP among the HVIs, while the absolute values of the correlation coefficients
between the WVI and the V25

cmax of II du moso bamboo improved by approximately
36–103% relative to the best performing NDMI among the HVIs. The absolute values of the
correlation coefficients between the WVI and the V25

cmax of I du moso bamboo constructed
by cD1-cD5 high-frequency information at each canopy position were 13–21% higher than
those with the HVI. This occurred because after the original hyperspectral reflectance
was processed by the DWT, the low-frequency information cA essentially captured the
original spectrum after partial noise removal and resolution reduction. Moreover, the
detailed features characterizing the peak and valley characteristics of the spectrum in the
original hyperspectral reflectance were decomposed into high-frequency information cD
(Figure 9). Therefore, the WVI comprising noise-free and detail-enhancing components
could better reflect the variation in V25

cmax. Blackburn [35] suggested that the more
layers of decomposition there are, the more high-frequency components containing useful
information are removed, resulting in a decrease in spectral information. Li [37] also found
that using cD coefficients at decomposition levels of 6–10 can predict target parameters well.
These findings support the results of our study, indicating that detail components (cD) also
contain valuable information. Our study also demonstrated that a WVI constructed from
cD coefficients is more sensitive to V25

cmax in bamboo leaves, indicating the significant
potential of spectral detail information for explaining V25

cmax variation.
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In addition, the constructed WVI could apply information to a wider range of bands.
In contrast to the band combinations that constitute the HVI, which mainly remain
within the visible and near-infrared reflectance shoulders of the spectrum, the band
combinations that constitute the WVI include not only the visible and red edge regions
but also extend to the near-mid-infrared region of the spectrum, with the longest band
reaching 2441 nm (Tables 4 and 5, respectively). The vegetation reflectance characteristics
in the near-infrared and shortwave infrared regions are mainly influenced by moisture
content and dry matter [78]. Moreover, related studies have reported that V25

cmax is
related not only to chlorophyll content but also to moisture and leaf dry matter [85,86].
Therefore, the long wavelength band is more advantageous in explaining the V25

cmax of
moso bamboo.

4.4. The Model Constructed by the WVIs Improved the Accuracy of Inverting V25
cmax

The PLSR model can manage multicollinearity among variables. It organically
combines multiple regression, principal component analysis and typical correlation
analysis to simultaneously achieve regression modeling, data structure simplification
and correlation analysis between two sets of variables under one algorithm. The PLSR
model can achieve a higher model correlation analysis accuracy and an enhanced data
resolution, and it has therefore become a commonly used model for hyperspectral
remote sensing inversion of vegetation V25

cmax [87]. In this study, PLSR-based inversion
models of the V25

cmax of moso bamboo leaves were constructed using the WVI, HVI and
HVI + WVI as input variables. The study verified that the V25

cmax inversion model of
moso bamboo leaves at the different ages and canopy positions constructed by the WVI
as a feature attained high accuracy and low error. For example, the V25

cmax inversion
model of II du moso bamboo constructed based on the HVI achieved a fitting accuracy
R2 value of 0.22, and the validation accuracy R2 value was only 0.08, which indicates
very poor model performance, i.e., the model can hardly be employed to correctly invert
the V25

cmax of moso bamboo leaves. In contrast, the fitting and validation accuracy
R2 values of the WVI-based V25

cmax inversion model were above 0.7, and the RMSE
was significantly lower. According to the relevant analysis in Table 5 and Section 3.4,
compared to the HVI, the wavelength of the band combination used to construct the WVI
increased, and the spectral range was expanded. More importantly, cA6 reconstructed
from the low-frequency component of the wavelet reduced the noise in the original
spectrum, while cD1–cD6 reconstructed from the high-frequency component highlighted
the detailed information of the bamboo leaf spectrum. Therefore, the V25

cmax inversion
model based on the WVI encompassed different resolutions and different levels of
spectral characteristics, so it can better reflect changes in the V25

cmax of moso bamboo
leaves. The PLSR modeling approach effectively integrated the relevant information
from the WVI, and the results of it explained 70% of the variation in V25

cmax. Our method
performs better in inverting V25

cmax than the previously published results using the HVI
to invert V25

cmax, such as PRI (R2 = 0.04), RVSI (R2 = 0.15), EVI (R2 = 0.23) and DDn
(R2 = 0.50) [88], and better than the DNN model proposed by Song et al. (R2 = 0.54) for
estimating V25

cmax [29].

5. Conclusions

In this study, we adopted I du and II du bamboo, which grow near the flux tower in
Shanchuan Township, Anji County, Zhejiang Province, as examples. First, we analyzed
distribution differences in leaf V25

cmax at the different bamboo ages and canopy positions.
Second, the relationship between the V25

cmax of moso bamboo and the WVI, which was
constructed by the hyperspectral reflectance after DWT treatment, was analyzed, and the
WVI was compared to the HVI to explain the ability of the WVI to characterize the V25

cmax
of moso bamboo. Finally, a PLSR model was constructed to invert the V25

cmax of moso
bamboo leaves at different ages and canopy positions. The research results could provide a
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new method for high-precision inversion of the V25
cmax of bamboo leaves and provide key

parameters for evaluating the carbon cycle process in bamboo forests.
The results show that:

1. The V25
cmax differences between the different bamboo ages and canopy positions

largely reflects the actual photosynthesis situation during the growth of bamboo
leaves, which lays an important foundation for V25

cmax retrieval from hyperspectral
reflectance data.

2. Most HVIs have not negligible correlation with the V25
cmax of leaves of different ages

and at different canopy positions, but their correlation is significantly lower than that
between the WVI and V25

cmax. The WVI comprising noise-free and detail-enhancing
components can use information obtained from a wider range of bands and better
reflect variation in V25

cmax.
3. The V25

cmax inversion model constructed based on the WVI contains spectral features
at different resolutions and levels and can be used to invert the V25

cmax of moso
bamboo leaves of different ages and at different canopy positions with high accuracy
and few errors.

Author Contributions: Conceptualization, H.D. and F.M.; methodology, K.G.; validation, K.G.;
formal analysis, K.G.; investigation, K.G., C.N., Q.C. and Y.X.; data curation, K.G.; writing—original
draft preparation, K.G.; writing—review and editing, X.L., H.D. and K.G.; visualization, K.G. and
Z.H.; supervision, H.D. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Leading Goose Project of Science Technology
Department of Zhejiang Province under Grant (2023C02035), in part by the National Natural Science
Foundation under Grant (32171785, 32201553, and 31901310), and in part by the Key Research and
Development Program of Zhejiang Province under Grant (2021C02005).

Data Availability Statement: Not applicable.

Acknowledgments: The authors gratefully acknowledge the supports of various foundations. The
authors are grateful to the editor and anonymous reviewers whose comments have contributed to
improving the quality of this study.

Conflicts of Interest: The authors declare that they have no competing interest.

References
1. Farquhar, G.D.; von Caemmerer, S.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species.

Planta 1980, 149, 78–90. [CrossRef] [PubMed]
2. Kattge, J.; Knorr, W.; Raddatz, T.; Wirth, C. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for

global-scale terrestrial biosphere models. Glob. Change Biol. 2009, 15, 976–991. [CrossRef]
3. Dillen, S.Y.; de Beeck, M.O.; Hufkens, K.; Buonanduci, M.; Phillips, N.G. Seasonal patterns of foliar reflectance in relation to

photosynthetic capacity and color index in two co-occurring tree species, Quercus rubra and Betula papyrifera. Agric. For.
Meteorol. 2012, 160, 60–68. [CrossRef]

4. Burnett, A.C.; Serbin, S.P.; Lamour, J.; Anderson, J.; Davidson, K.J.; Yang, D.; Rogers, A. Seasonal trends in photosynthesis and
leaf traits in scarlet oak. Tree Physiol. 2021, 41, 1413–1424. [CrossRef] [PubMed]

5. Rogers, A. The use and misuse of Vc,max in Earth System Models. Photosynth. Res. 2014, 119, 15–29. [CrossRef] [PubMed]
6. Woodrow, I.; Berry, J. Enzymatic Regulation of Photosynthetic CO2, Fixation in C3 Plants. Annu. Rev. Plant Physiol. Plant Mol.

Biol. 2003, 39, 533–594. [CrossRef]
7. Song, G.; Wang, Q.; Jin, J. Exploring the instability of the relationship between maximum potential electron transport rate and

maximum carboxylation rate in cool-temperate deciduous forests. Agric. For. Meteorol. 2021, 308-309, 108614. [CrossRef]
8. Stinziano, J.R.; Morgan, P.B.; Lynch, D.J.; Saathoff, A.J.; McDermitt, D.K.; Hanson, D.T. The rapid A–Ci response: Photosynthesis

in the phenomic era. Plant Cell Environ. 2017, 40, 1256–1262. [CrossRef]
9. Rascher, U.; Alonso, L.; Burkart, A.; Cilia, C.; Cogliati, S.; Colombo, R.; Damm, A.; Drusch, M.; Guanter, L.; Hanus, J.; et al.

Sun-induced fluorescence—A new probe of photosynthesis: First maps from the imaging spectrometer Hy Plant. Glob. Change
Biol. 2015, 21, 4673–4684. [CrossRef]

10. Croft, H.; Chen, J.M.; Luo, X.; Bartlett, P.; Chen, B.; Staebler, R.M. Leaf chlorophyll content as a proxy for leaf photosynthetic
capacity. Glob. Change Biol. 2017, 23, 3513–3524. [CrossRef]

11. Yu, Y.; Yang, X.; Fan, W. Remote Sensing Inversion of Leaf Maximum Carboxylation Rate Based on a Mechanistic Photosynthetic
Model. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–12. [CrossRef]

https://doi.org/10.1007/BF00386231
https://www.ncbi.nlm.nih.gov/pubmed/24306196
https://doi.org/10.1111/j.1365-2486.2008.01744.x
https://doi.org/10.1016/j.agrformet.2012.03.001
https://doi.org/10.1093/treephys/tpab015
https://www.ncbi.nlm.nih.gov/pubmed/33611562
https://doi.org/10.1007/s11120-013-9818-1
https://www.ncbi.nlm.nih.gov/pubmed/23564478
https://doi.org/10.1146/annurev.pp.39.060188.002533
https://doi.org/10.1016/j.agrformet.2021.108614
https://doi.org/10.1111/pce.12911
https://doi.org/10.1111/gcb.13017
https://doi.org/10.1111/gcb.13599
https://doi.org/10.1109/TGRS.2020.3040273


Remote Sens. 2023, 15, 2362 22 of 24

12. Camino, C.; Gonzalez-Dugo, V.; Hernandez, P.; Zarco-Tejada, P.J. Radiative transfer Vcmax estimation from hyperspectral imagery
and SIF retrievals to assess photosynthetic performance in rainfed and irrigated plant phenotyping trials. Remote Sens. Environ.
2019, 231, 111186. [CrossRef]

13. Ji, J.; Li, X.; Du, H.; Mao, F.; Fan, W.; Xu, Y.; Huang, Z.; Wang, J.; Kang, F. Multiscale leaf area index assimilation for Moso bamboo
forest based on Sentinel-2 and MODIS data. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102519. [CrossRef]

14. Gu, C.; Du, H.; Mao, F.; Han, N.; Zhou, G.; Xu, X.; Sun, S.; Gao, G. Global sensitivity analysis of PROSAIL model parameters
when simulating Moso bamboo forest canopy reflectance. Int. J. Remote Sens. 2016, 37, 5270–5286. [CrossRef]

15. Sun, S.B.; Du, H.Q.; Li, P.H.; Zhou, G.M.; Xu, X.J.; Gao, G.L.; Li, X.J. Retrieval of leaf net photosynthetic rate of moso bamboo
forests using hyperspectral remote sensing based on wavelet transform. Chin. J. Appl. Ecol. 2016, 27, 49–58.

16. Li, Y.; Zhou, G.; Gu, C.; Xu, X.; Sun, S.; Gao, G. Chlorophyll content in Phyllostachys violascens related to hyper-spectral
vegetation indices and development of an inversion model. J. Zhejiang AF Univ. 2015, 32, 335–345.

17. Cheng-Yan, G.U.; Hua-Qiang, D.U.; Zhou, G.M.; Han, N.; Xiao-Jun, X.U.; Zhao, X.; Sun, X.Y. Retrieval of leaf area index of Moso
bamboo forest with Landsat Thematic Mapper image based on PROSAIL canopy radiative transfer model. Chin. J. Appl. Ecol.
2013, 24, 2248–2256.

18. Du, H.-Q.; Ge, H.-L.; Fan, W.-Y.; Jin, W.; Zhou, Y.-F.; Li, J. Study on relationships between total chlorophyll with hyperspectral
features for leaves of Pinus massoniana forest. Spectrosc. Spectr. Anal. 2009, 29, 3033–3037.

19. Doughty, C.E.; Asner, G.P.; Martin, R.E. Predicting tropical plant physiology from leaf and canopy spectroscopy. Oecologia 2011,
165, 289–299. [CrossRef]

20. Serbin, S.P.; Dillaway, D.N.; Kruger, E.L.; Townsend, P.A. Leaf optical properties reflect variation in photosynthetic metabolism
and its sensitivity to temperature. J. Exp. Bot. 2012, 63, 489–502. [CrossRef]

21. Ainsworth, E.A.; Serbin, S.P.; Skoneczka, J.A. Using leaf optical properties to detect ozone effects on foliar biochemistry. Photosynth.
Res. 2014, 119, 65–76. [CrossRef]

22. Yendrek, C.R.; Tomaz, T.; Montes, C.M.; Cao, Y.; Morse, A.M.; Brown, P.J.; McIntyre, L.M.; Leakey, A.D.B.; Ainsworth, E.A.
High-Throughput Phenotyping of Maize Leaf Physiological and Biochemical Traits Using Hyperspectral Reflectance. Plant
Physiol. 2016, 173, 614–626. [CrossRef]

23. Silva-Perez, V.; Molero, G.; Serbin, S.P.; Condon, A.G.; Reynolds, M.P.; Furbank, R.T.; Evans, J.R. Hyperspectral reflectance as a
tool to measure biochemical and physiological traits in wheat. J. Exp. Bot. 2017, 69, 483–496. [CrossRef] [PubMed]

24. Barnes, M.L.; Breshears, D.D.; Law, D.J.; van Leeuwen, W.J.D.; Monson, R.K.; Fojtik, A.C.; Barron-Gafford, G.A.; Moore, D.J.P.
Beyond greenness: Detecting temporal changes in photosynthetic capacity with hyperspectral reflectance data. PLoS ONE 2017,
12, e0189539. [CrossRef]

25. Dechant, B.; Cuntz, M.; Vohland, M.; Schulz, E.; Doktor, D. Estimation of photosynthesis traits from leaf reflectance spectra:
Correlation to nitrogen content as the dominant mechanism. Remote Sens. Environ. 2017, 196, 279–292. [CrossRef]

26. Wu, J.; Rogers, A.; Albert, L.P.; Ely, K.; Prohaska, N.; Wolfe, B.T.; Oliveira Jr, R.C.; Saleska, S.R.; Serbin, S.P. Leaf reflectance
spectroscopy captures variation in carboxylation capacity across species, canopy environment and leaf age in lowland moist
tropical forests. New Phytol. 2019, 224, 663–674. [CrossRef] [PubMed]

27. Fu, P.; Meacham-Hensold, K.; Guan, K.; Wu, J.; Bernacchi, C. Estimating photosynthetic traits from reflectance spectra:
A synthesis of spectral indices, numerical inversion, and partial least square regression. Plant Cell Environ. 2020, 43,
1241–1258. [CrossRef] [PubMed]

28. Fu, P.; Meacham-Hensold, K.; Guan, K.; Bernacchi, C.J. Hyperspectral Leaf Reflectance as Proxy for Photosynthetic Capacities:
An Ensemble Approach Based on Multiple Machine Learning Algorithms. Front. Plant Sci. 2019, 10, 730. [CrossRef]

29. Song, G.; Wang, Q. Including Leaf Traits Improves a Deep Neural Network Model for Predicting Photosynthetic Capacity from
Reflectance. Remote Sens. 2021, 13, 4467. [CrossRef]

30. Im, J.; Jensen, J.R.; Jensen, R.R.; Gladden, J.; Waugh, J.; Serrato, M. Vegetation Cover Analysis of Hazardous Waste Sites in Utah
and Arizona Using Hyperspectral Remote Sensing. Remote Sens. 2012, 4, 327–353. [CrossRef]

31. Zhang, J.; Cheng, T.; Guo, W.; Xu, X.; Qiao, H.; Xie, Y.; Ma, X. Leaf area index estimation model for UAV image hyperspectral data
based on wavelength variable selection and machine learning methods. Plant Methods 2021, 17, 49. [CrossRef]

32. Wang, Q.; Iio, A.; Kakubari, Y. Broadband simple ratio closely traced seasonal trajectory of canopy photosynthetic capacity.
Geophys. Res. Lett. 2008, 35, L07401. [CrossRef]

33. Jin, P.; Wang, Q.; Iio, A.; Tenhunen, J. Retrieval of seasonal variation in photosynthetic capacity from multi-source vegetation
indices. Ecol. Inform. 2012, 7, 7–18. [CrossRef]

34. Bruce, L.M.; Koger, C.H.; Jiang, L. Dimensionality reduction of hyperspectral data using discrete wavelet transform feature
extraction. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2331–2338. [CrossRef]

35. Blackburn, G.A.; Ferwerda, J.G. Retrieval of chlorophyll concentration from leaf reflectance spectra using wavelet analysis. Remote
Sens. Environ. 2008, 112, 1614–1632. [CrossRef]

36. Wang, J.; Chen, Y.; Chen, F.; Shi, T.; Wu, G. Wavelet-based coupling of leaf and canopy reflectance spectra to improve the
estimation accuracy of foliar nitrogen concentration. Agric. For. Meteorol. 2018, 248, 306–315. [CrossRef]

37. Li, F.; Wang, L.; Liu, J.; Wang, Y.; Chang, Q. Evaluation of Leaf N Concentration in Winter Wheat Based on Discrete Wavelet
Transform Analysis. Remote Sens. 2019, 11, 1331. [CrossRef]

https://doi.org/10.1016/j.rse.2019.05.005
https://doi.org/10.1016/j.jag.2021.102519
https://doi.org/10.1080/01431161.2016.1239287
https://doi.org/10.1007/s00442-010-1800-4
https://doi.org/10.1093/jxb/err294
https://doi.org/10.1007/s11120-013-9837-y
https://doi.org/10.1104/pp.16.01447
https://doi.org/10.1093/jxb/erx421
https://www.ncbi.nlm.nih.gov/pubmed/29309611
https://doi.org/10.1371/journal.pone.0189539
https://doi.org/10.1016/j.rse.2017.05.019
https://doi.org/10.1111/nph.16029
https://www.ncbi.nlm.nih.gov/pubmed/31245836
https://doi.org/10.1111/pce.13718
https://www.ncbi.nlm.nih.gov/pubmed/31922609
https://doi.org/10.3389/fpls.2019.00730
https://doi.org/10.3390/rs13214467
https://doi.org/10.3390/rs4020327
https://doi.org/10.1186/s13007-021-00750-5
https://doi.org/10.1029/2008GL033619
https://doi.org/10.1016/j.ecoinf.2011.10.004
https://doi.org/10.1109/TGRS.2002.804721
https://doi.org/10.1016/j.rse.2007.08.005
https://doi.org/10.1016/j.agrformet.2017.10.017
https://doi.org/10.3390/rs11111331


Remote Sens. 2023, 15, 2362 23 of 24

38. Pu, R.; Gong, P. Wavelet transform applied to EO-1 hyperspectral data for forest LAI and crown closure mapping. Remote Sens.
Environ. 2004, 91, 212–224. [CrossRef]

39. Mao, F.; Li, P.; Zhou, G.; Du, H.; Xu, X.; Shi, Y.; Mo, L.; Zhou, Y.; Tu, G. Development of the BIOME-BGC model for the simulation
of managed Moso bamboo forest ecosystems. J. Environ. Manag. 2016, 172, 29–39. [CrossRef] [PubMed]

40. Mao, F.; Du, H.; Li, X.; Ge, H.; Cui, L.; Zhou, G. Spatiotemporal dynamics of bamboo forest net primary productivity with climate
variations in Southeast China. Ecol. Indic. 2020, 116, 106505. [CrossRef]

41. Kang, F.; Li, X.; Du, H.; Mao, F.; Zhou, G.; Xu, Y.; Huang, Z.; Ji, J.; Wang, J. Spatiotemporal Evolution of the Carbon Fluxes from
Bamboo Forests and their Response to Climate Change Based on a BEPS Model in China. Remote Sens. 2022, 14, 366. [CrossRef]

42. Ren, Y.; Yang, S.; Dongxiong, W.U.; Huang, C.; Guan, Y.; Miao, Y. Leaf senescence characteristics and the screen and identification
of leaf senescence associated genes in moso bamboo. J. Fujian Agric. For. Univ. (Nat. Sci. Ed.) 2017, 46, 630–640.

43. Wu, J.; Albert, L.P.; Lopes, A.P.; Restrepo-Coupe, N.; Hayek, M.; Wiedemann, K.T.; Guan, K.; Stark, S.C.; Christoffersen, B.;
Prohaska, N.; et al. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests. Science
2016, 351, 972–976. [CrossRef] [PubMed]

44. Loren, P.A.; Jin, W.; Neill, P.; Plinio, B.d.C.; Travis, E.H.; Edgard, S.T.; Valeriy, Y.I.; Rafael, S.O.; Sabrina, G.; Marielle, N.S.; et al.
Age-dependent leaf physiology and consequences for crown-scale carbon uptake during the dry season in an Amazon evergreen
forest. New Phytol. 2018, 219, 870–884.
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