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Abstract: Gaining knowledge about vegetation sensitivity in response to climate change is a current
research priority in the context of accelerated shifts generated by global warming, especially for the
Qinghai–Tibet Plateau (QTP), where vegetation is known to be highly sensitive to ongoing climate
change. However, the temporal variability of vegetation sensitivity in response to climate change is
still poorly understood on the QTP. Here, we articulate the interannual variability of the vegetation
sensitivity in response to typical climate factors, including temperature, solar radiation, and water
availability, on the QTP during 2000–2021, using a variety of indicators characterizing vegetation
dynamics, including the Leaf Area Index (LAI), the Normalized Difference Vegetation Index (NDVI),
the Enhanced Vegetation Index (EVI), and solar-induced chlorophyll fluorescence (SIF) data. The
results indicate that temperature exerted positive impacts on forests, grasslands, and barren or
sparsely vegetated areas (BSVs). However, all the land-cover types showed decreasing sensitivity to
temperature variability. Solar radiation had a positive impact on forests, while it had a negative impact
on grasslands and BSVs. An increasing trend was observed for forests, while a decreasing trend was
found for grasslands and BSVs regarding their sensitivity to solar radiation. Water availability exerted
a positive impact on grasslands and BSVs, and no obvious impact direction could be determined
for forests. Over the last two decades, forests and BSVs exhibited increasing sensitivity to water
availability, and no obvious trend was observed for grasslands. Overall, temperature was the most
important climate factor, followed by solar radiation and water availability, regarding the regulation
of vegetation sensitivity on the QTP. Spatially, temperature and solar radiation jointly dominated
the vegetation sensitivity in the central to eastern QTP. Conversely, water availability dominated the
sensitivity of forests in the southeastern QTP and grasslands in the northeastern and southwestern
QTP. This study provides theoretical support for the ecological conservation and management of the
QTP in the context of ongoing climate change.

Keywords: vegetation sensitivity; interannual variability; Qinghai–Tibet Plateau; EVI; NDVI; LAI; SIF

1. Introduction

The Qinghai–Tibet Plateau (QTP) is the largest and highest plateau in the world and is
known as the “water tower” of Asia, “the world’s roof”, and the “third pole”. Vegetation on
the QTP is reported to be highly sensitive to climate changes, such as global warming and
droughts [1–4], as the QTP is experiencing a warming rate twice that of the rate observed
on a global scale [5]. As an “amplifier” of regional and global climate change due to the
prominent elevation and high variability of the climate of the QTP [1], it is highly needed to
evaluate vegetation sensitivity on the QTP in the context of ongoing climate change, which
is instructive with respect to vegetation restoration and key regional division for vegetation
ecosystem management [6].

Vegetation sensitivity denotes the degree to which an ecosystem responds to certain
perturbations or pressures [7], and there are several approaches to estimating it. Previous
studies have used partial correlation analysis [8], linear regression models with one variable,
and direct calculation of the ratio of vegetation variation rate to climate change rate [9–11]
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to estimate vegetation sensitivity. Although these methods are easy to implement, partial
correlation analysis cannot jointly estimate the response of vegetation to multiple climate
factors, and the latter two methods cannot eliminate the potential impact derived from
the entangled relationship between the multiple climate factors considered. To jointly
quantify vegetation sensitivity in response to multiple climate factors, researchers typically
use multi-linear regression (MLR) [12]. However, given that climate factors, such as
temperature, rainfall, and solar radiation, are cross-correlated with each other, it is hard to
attribute vegetation variability to any one of the climatic variables considered in MLR. To
address this issue, principal component regression (PCR) implemented with MLR [13–16]
is an effective way to disentangle the mutually correlated relationships between climate
variables. In addition, slope values derived by the Theil–Sen regression method can also be
used to determine vegetation sensitivity in response to a certain factor, such as near-surface
and sub-surface soil moisture, as implemented by Li et al. [17]. However, this method
cannot estimate vegetation sensitivity in response to multiple climate factors jointly either.
Recently, several studies have tried to integrate the deep-learning method with vegetation
sensitivity estimation, such as those of Bao et al. [18] and Chen et al. [19]. Nevertheless,
such techniques are not mature enough and need further consideration.

Overall, current studies on vegetation sensitivity mainly focus on the spatial domain
while generally ignoring its temporal variability, i.e., assuming vegetation sensitivity to
be constant over time. Previous studies generally found that temperature is the climatic
factor that regulates vegetation growth in the southeastern QTP, while precipitation is the
dominant climatic factor driving vegetation growth in the northwestern QTP [20–22]. The
study of Wang et al. [23] pointed out that alpine grasslands exhibited divergent responses
to precipitation, and Li et al. [21] further reported a widespread increasing vegetation
sensitivity to soil moisture on a global scale. In addition, solar radiation is also reported to
significantly influence vegetation conditions and consequently has considerable impact
on vegetation sensitivity [22,24]. Nevertheless, vegetation sensitivity is known to change
with time, as the temporal variabilities of factors such as climate warming [25], aridity [26],
El Niño events [27], wildfires [28], biodiversity [29], and human disturbance [13,30] have
their own distinctive temporal characteristics that may trigger temporal variability in
vegetation sensitivity.

There are several approaches to estimating the temporal variability of vegetation
sensitivity. For example, it can be determined by dividing the whole investigation period
using predefined key breakpoints [31] or by considering seasonal vegetation sensitivity
directly [32,33]. However, the characterization of the temporal variability in vegetation sen-
sitivity by these methods is rather coarse regarding temporal resolution, which means that
subtle temporal fluctuations in vegetation sensitivity are ignored and cannot be detected.
Therefore, Zhang et al. [34] estimated the temporal variability of vegetation sensitivity in
response to rainfall variability using a dynamic linear model. Moreover, Hua et al. [35] and
Zeng et al. [36] applied a moving time window to the linear regression model to capture
the temporal variability of vegetation sensitivity in response to temperature and rainfall.
Nevertheless, these methods only investigate vegetation sensitivity in response to a certain
climate factor. We argue that current studies are typically focused on the response of a
certain climate driver while neglecting the cross-correlated relationships between climatic
variables. This may lead to biased conclusions, as the relationships between vegetation and
other climatic factors are concealed.

Recently, applying a moving time window to the MLR is a popular approach to
characterize the temporal variability of vegetation sensitivity, such as the 15-year moving
time window used in some studies [37–39]. However, vegetation sensitivity is reported to
have high temporal variability [7,17]. Consequently, a 15-year moving time window may
not well capture the interannual variability of vegetation sensitivity. Moreover, there is a
tradeoff between the kernel size of a moving window and the available samples therein.
Specifically, samples in a short-term time window are typically limited and may lead to
unreliable estimates of vegetation sensitivity.
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Currently, there is very little knowledge about temporal variability in response to
climate change on the QTP. We argue that a moving window with a small kernel size, e.g.,
5 years, may provide new insight into the temporal variability of vegetation sensitivity
on the QTP. Here, evaluating the temporal variability of vegetation sensitivity in response
to ongoing climate change is instructive to dynamically identify the ecologically fragile
areas with high vegetation sensitivity and learn about the triggering mechanisms operating
behind the scenes. This is highly needed for the QTP’s vegetation, which is characterized
by high vulnerability. Moreover, estimating vegetation sensitivity in the temporal domain
provides evidential support for related studies within the ecology community, as it provides
more intrinsic information about factors underlying vegetation sensitivity. Regarding the
vegetation of the QTP, such investigations could serve as a basis for policy formulation and
ecological protection.

Based on the above considerations, this study aims at articulating the interannual
variability of the vegetation sensitivity in response to typical climate factors, including
temperature, solar radiation, and water availability, during 2000–2021 on the QTP using a
variety of indicators characterizing vegetation dynamics. To this end, we first intercom-
pared the spatiotemporal patterns of vegetation dynamics described by the four vegetation
proxies in Section 3.1. Time-invariant and time-variant vegetation sensitivity in response
to the three typical climate factors are revealed in Sections 3.2 and 3.3, respectively. Time-
invariant vegetation sensitivity denotes the overall vegetation sensitivity during the whole
investigation period, and time-variant vegetation sensitivity refers to interannual vegeta-
tion sensitivity obtained from the 5-year time window centered at the year to be processed.
The three climate factors were chosen in our analysis since they are typical and popular
variables used in related studies. In Sections 3.2 and 3.3, vegetation sensitivity estimates
derived from the four vegetation products were intercompared regarding their spatiotem-
poral variability. Moreover, the dominant climatic factor that exerted the greatest impact
on vegetation sensitivity is also revealed in these two sections.

2. Materials and Methods

This section introduces the data and methods used. Section 2.1 provides information
about climate data obtained from ERA5-Land and its preprocessing. After briefly describing
the four vegetation indices used to quantify the vegetation dynamics in Section 2.2, the
reprocessing of the MODIS land-cover dataset is described in Section 2.3. A moving-
window-based scheme to characterize interannual vegetation sensitivity in response to
climate change is detailed in Section 2.4. Finally, the Theil–Sen median slope estimator and
the Mann–Kendall test are described in Section 2.5.

2.1. ERA5-Land Climate Data

ERA5-Land monthly average data were considered here to describe the climate vari-
ability of the QTP. The ERA5-Land product was developed by the European Centre for
Medium-Range Weather Forecasts (ECMWF) and is a reanalysis dataset that combines
vast amounts of historical observations using advanced modeling and data-assimilation
systems [40]. It provides key global land variables from 1950 onward on a regular latitude–
longitude grid with a spatial resolution of 0.1◦ × 0.1◦. Here, data on surface solar radiation
downward in units of W/m2, potential evapotranspiration and actual evapotranspiration
in units of m, and temperature in units of Kelvin in the ERA5-Land product were used, as
these are generally regarded as the key climate factors regulating vegetation growth [1,4,41].
Following Seddon et al. [41], a water-availability dataset was constructed by calculating
the ratio of actual evapotranspiration to potential evapotranspiration. A greater value
denotes that associated vegetation is more likely to be free from water stress. We used
water availability instead of precipitation because water availability better describes the
water that can be used by vegetation.
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2.2. Satellite-Based Vegetation Dynamic Data

A total of four satellite-based vegetation products were used to identify the spa-
tiotemporal variability of the QTP’s vegetation dynamics. Three of them, including the
Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI), and
Leaf Area Index (LAI) datasets, were collected from the Moderate-Resolution Imaging
Spectroradiometer (MODIS) sensor and are freely available at https://modis.gsfc.nasa.gov/
(accessed in 1 October 2022). As a new satellite product to reveal the photosynthesis of
vegetation, solar-induced chlorophyll fluorescence (SIF) was used as the fourth candidate
dataset to describe the vegetation dynamics of the QTP. The SIF dataset, produced by
Zhang et al. [42], provides SIF observations with a spatial resolution of 0.05◦ × 0.05◦ every
4 days. It was constructed by considering surface reflectance data from the MODIS sensor
and SIF data from Orbiting Carbon Observatory-2 (OCO-2) using a neural network method
and showed a superior capacity to describe gross primary production (GPP) compared
to other SIF datasets [43]. We only considered the all-sky daily average SIF dataset in our
work, as it is reported to have a better performance in describing photosynthetically active
radiation (PAR) on cloudy days and is more closely linked to GPP [44].

All the vegetation products were interpolated on a grid of the ERA5-Land reanalysis
data using the Nearest-Neighbor Interpolation method. All available 8-day LAI mea-
surements included in the same month were binned into a monthly dataset using the
Maximum-Value Composite (MVC) approach to avoid possible noise due to cloud. The
4-day SIF data were averaged into a monthly dataset, following Hu et al. [45]. To guarantee
reliable observations for the vegetation dynamics, only vegetation index values of “good
quality” were retained in the following analysis by considering the quality flag affiliated
with the MODIS, NDVI, and EVI products. As for LAI and SIF data, only values >0 were
kept. We further screened out the NDVI and EVI values that corresponded to tempera-
tures <0 ◦C to make sure that they were gleaned from the growing season. To reveal the
interannual variability of the four vegetation products in the following analyses, SIF data
were temporally averaged, while EVI, NDVI, and LAI data were temporally binned by the
MVC method.

2.3. Land-Cover Data

We used the MODIS land-cover product (MCD12C1) to describe land-cover types
of the QTP. This annual product describes the geographic distribution of 17 land-cover
types defined by the International Geosphere–Biosphere Programme (IGBP) with a spatial
resolution of 0.05◦ × 0.05◦ since 2000. To match it with the spatial grid of the ERA5 product
presented in Section 2.1, this dataset was resampled by selecting the land-cover types
located in the same ERA5 grid cell with the highest appearance frequencies. Given that
land cover may change over a long period, the land-cover type with the highest appearance
probability during 2000–2021 was assigned for each pixel to minimize the temporal shifts
in land-cover types. To this end, appearance probability was estimated using the average of
the percentage values affiliated with the MODIS IGBP land-cover product. We further sim-
plified the land-cover classifications (Figure 1), and only three types, i.e., barren or sparsely
vegetated areas (BSVs), grasslands, and forests, were used in the following analyses. Other
land-cover types, such as croplands and shrublands, whose numbers of available pixels
were < 3% were excluded and were not considered in the following analysis.

https://modis.gsfc.nasa.gov/
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Figure 1. Spatial distribution of the reclassified MODIS land-cover types of the Qinghai–Tibet Plateau.
“BSV” denotes “barren or sparsely vegetated area”.

2.4. Vegetation Sensitivity in Response to Climate Change

Vegetation sensitivity here is defined as the mean state of vegetation per unit increase
in climate drivers. To this end, coefficients derived from a multiple linear regression (MLR)
model were used to quantify the vegetation sensitivity in response to temperature, solar
radiation, and water availability. To disentangle the collinearity impact between the climate
driving factors, principal component regression (PCR) [41] was used along with the MLR
model, and only principal components with a significant coefficient (p < 0.1) in the PCR
were kept in the subsequent analyses. The three climate-driving data were normalized
via their Z-scores after they were seasonally detrended by subtracting corresponding
climatology, which would increase the robustness of the MLR model used and make the
resulting regression coefficients comparable to each other. The key formulation to estimate
vegetation sensitivity in response to the three climate factors in each pixel is expressed
as follows:

VP = α × Temp + β × Solar + γ × Water + ε (1)

where VP denotes one of the vegetation proxies, including EVI, NDVI, LAI, and SIF; α,
β, and γ are regression coefficients that are used as proxies for the vegetation sensitivity
in response to temperature (Temp), solar radiation (Solar), and water availability (Water),
respectively; and ε denotes residuals.

We advanced the use of the above time-invariant vegetation sensitivity by using a
moving-window-based method in a robust way. The interannual vegetation sensitivity
was obtained by applying MLR with PCR to anomaly Z-scores of vegetation and climatic
datasets for a 5-year moving window advancing by yearly steps over the experimental
periods. The investigation period in our work was restricted to the growing season of the
QTP, and therefore the available samples included in the 5-year moving time window were
generally limited, which may have led to unreliable estimates of regression coefficients.
To address this issue, the Moving Block Bootstrap (MBB) approach [46] was considered
here to draw blocks of data quadruplets, i.e., a vegetation datum and three climatic data,
included in corresponding 5-year windows stochastically. The MBB method can preserve
the temporal auto-correlation in time series data by keeping time series for the same
year unchanged during the sample-construction process. To guarantee reliable regression
coefficients, the resampling procedure was repeated 500 times for each window, and we
took an average of the resulting coefficients to obtain a robust estimate of the regression
coefficients. In addition, MLR only works when the number of available monthly samples
included in a moving window is greater than 10.

The 5-year time window was used here to identify the temporal variability of vegeta-
tion sensitivity with relatively sufficient statistical power (the number of available samples
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was typically > 10), while keeping the kernel size of the window short enough to capture
the interannual variability of the vegetation sensitivity. The timeframe of our analysis was
from 1 January 2000 to 31 December 2021 for the experiments using LAI, EVI, and NDVI
data and began at 1 January 2000 and ended at 31 July 2020 for the SIF data.

2.5. Trend Analysis with the Mann–Kendall Test

Theil–Sen median trend analysis [47] is a robust nonparametric statistical trend calcu-
lation method that describes the trend of a long-term data set. The calculation formula is
as follows:

β = Median
(Xj − Xi

j − i

)
, 2000 ≤ i < j ≤ 2021 (2)

where β is the slope and Xi and Xj are the target data at time steps i and j, respectively.
A positive value for β illustrates an increasing trend, while a negative value indicates a
decreasing trend for the target data set.

The Mann–Kendall test is typically combined with the Theil–Sen median estimator to
determine the statistical significance of the obtained trend. The merit of the Mann–Kendall
test is that it does not require that the target data follow a normal distribution. Readers are
recommended to refer to Mann [48] and Kendall [49] for details. Here, these two methods
were jointly used to determine the trends and their significance for the vegetation dynamics
and the interannual vegetation sensitivity.

3. Results
3.1. Interannual Vegetation Dynamics Based on LAI, EVI, NDVI, and SIF Products

This section explores interannual vegetation dynamics of the QTP using LAI, EVI,
NDVI, and SIF products. Figure 2 gives an overall picture of the temporal variability of
vegetation dynamics for three land-cover types, while Figure 3 presents associated spatial
patterns of the vegetation dynamic trends.
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Figure 2. Temporal averages of interannual (a) LAI, (b) EVI, (c) NDVI, and (d) SIF values classified
by forests (the green lines), grasslands (the red lines), and barren or sparsely vegetated (BSV) areas
(the brown lines). The linear fit line along with its regression equation are presented for each case.
The symbol “*” denotes that the regression coefficient passed the significance test (α < 0.05).
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on the QTP. The black dots denote trend values of corresponding areas that passed the significance
test (α < 0.1).

Figure 2 demonstrates that the temporal variability of the vegetation dynamics indi-
cated by the four vegetation proxies was similar for the three land-cover types. Overall,
all three land-cover types exhibited an upward trend regarding the temporal variability of
vegetation dynamics. Only one case exhibited a significant downward trend, i.e., the BSV
case described by EVI data, shown in Figure 2b. The trends for all cases were statistically
significant except for one case, i.e., the BSV case indicated by SIF data. In general, forests
appeared to have the largest upward trend, followed by grasslands and BSVs. It is notice-
able in Figure 2d that SIF data appeared to increase substantially in the year 2020. Keep in
mind that the SIF data ended at 31 July 2020 and that, consequently, the temporal average
was relatively higher than the SIF averages for other years.

Overall, the spatial patterns were similar for the temporal trends of vegetation dynam-
ics indicated by the four vegetation products. Generally, upward trends were observed
in 69%, 77%, 79%, and 81% of the total pixels for the EVI, SIF, LAI, and NDVI datasets,
respectively. For EVI, NDVI, and SIF data, the upward trends gradually decreased from
the eastern to western QTP, and pixels with negative trends were mostly distributed in
the southern and southwestern areas of the QTP (Figure 3a–c). By contrast, pixels with
negative trends were sparsely distributed in the central to southern areas of the QTP for
LAI data (Figure 3d). It is worth mentioning that grasslands located in the southwestern
QTP experienced more or less decreasing trends, especially for the results indicated by the
SIF data in Figure 3d.

In general, the dotted lines in Figure 4 demonstrate that temperature exhibited an
increasing trend, while solar radiation presented a decreasing trend over 2000–2021 on the
QTP. The regression coefficients of the fit lines were significant for temperature (Figure 4d)
and solar radiation (Figure 4f). By contrast, water availability displayed an insignificant
decreasing trend, shown in Figure 4e. Spatially, pixels with significant increasing trend
values were clustered in the central to southern QTP for temperature. For solar radiation, as
shown in Figure 4c, an insignificant increasing trend was found in western areas, northern
areas, and southeastern areas of the QTP. Compared with temperature and solar radiation,
water availability exhibited a rather scattered spatial distribution, and no explicit spatial
pattern was observed in Figure 4b.
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areas that passed the significance test (p < 0.1). (d–f) show the corresponding interannual variability
of the three climate factors by considering the spatial average values for each year.

3.2. Time-Invariant Response of Vegetation Dynamics to Climate Changes

Before investigating time-variant vegetation sensitivity, it is necessary to explore time-
invariant vegetation sensitivity, as previous related studies have done. In this section, the
spatial patterns of time-invariant vegetation sensitivity in response to the three climate
factors are investigated (Figure 5) using the obtained regression coefficients. The dominant
climate factor with the largest regression coefficient for vegetation sensitivity is revealed
in Figure 6.

Except for LAI, the spatial patterns were similar for EVI, NDVI, and SIF products
regarding their sensitivity to the three climatic factors. In general, solar radiation had a
negative impact on vegetation dynamics, as associated regression coefficients were mostly
<0. Positive regression coefficients were found in the southeastern QTP, and associated
coefficient values were relatively small (<0.2). Compared with EVI, NDVI, and SIF, LAI
displayed a contrasting spatial pattern, as shown in Figure 5, as regression coefficients were
relatively large in the southeastern QTP, while they were negative and relatively small in
the western QTP. The vegetation sensitivity in response to temperature was similar for all
four vegetation products (the second column in Figure 5). Positive regression coefficients
were observed in the central to eastern QTP, and associated values were relatively large
(>0.3). By contrast, negative regression values were found for parts of regions located in
the southwestern QTP. As for water availability, shown in the third column in Figure 5,
except for LAI, the other three proxies revealed that their sensitivity to water availability
was small, as corresponding values were in a range from −0.1 to 0.1. Relatively large and
positive regression coefficients were found in parts of areas distributed in the western and
northeastern QTP. Nevertheless, LAI indicated that negative regression values (>−0.1) were
observed for most pixels in southern and central-to-eastern areas of the QTP.
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Figure 5. Spatial distribution of regression coefficients derived from the PCR for vegetation sensi-
tivity in response to solar radiation (the first column), temperature (the second column), and water
availability (the third column), based on the (a1–a3) LAI, (b1–b3) EVI, (c1–c3) NDVI, and (d1–d3) SIF
products. Regression coefficients are dimensionless, since all the vegetation products were seasonally
detrended and normalized using their Z-scores before applying them to the PCR.
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The regression coefficients were intercompared using their absolute values to identify the dominant
climate factor. (a–d) represent the evaluation results derived from the LAI, EVI, NDVI, and SIF
products, respectively. The bar chart above each subfigure describes the fraction values of red, green,
and blue pixels for the whole area.
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The four vegetation proxies in Figure 6 jointly reveal that temperature was the most
important factor regulating vegetation sensitivity on the QTP, followed by solar radiation
and water availability. Temperature was the dominant factor in 49.6%, 42.7%, 51.6%, and
48.8% of the total pixels for LAI, EVI, NDVI, and SIF data, respectively. Solar radiation and
water availability were identified as the dominant factors in about 30% and 20% of total
pixels, respectively. The spatial patterns of the dominant climatic factors were similar for
EVI, NDVI, and SIF proxies, while a relatively different spatial pattern was observed for LAI
data. EVI, NDVI, and SIF data jointly exhibited that temperature was the dominant factor
for pixels located in the central to eastern QTP. Water availability was the dominant factor
for pixels distributed in parts of areas of the southwestern and northeastern QTP. Pixels
with solar radiation as the dominant factor were sparsely distributed on the QTP, and most
of them were found in the northeastern and western QTP. Nevertheless, LAI suggested
that solar radiation was the dominant factor for pixels located in the southeastern QTP.

3.3. Time-Variant Response of Vegetation Dynamics to Climate Changes

Section 3.2 only explores the time-invariant vegetation sensitivity in response to the
three climate factors; the temporal variability of the vegetation sensitivity could not be
determined. This section focuses on the time-variant vegetation sensitivity with a view
to investigating the spatial patterns of its temporal trends (Figure 7), the trend values
classified by land-cover types (Figure 8), the impact directions indicated by the signs of
regression coefficients (Figure 9), and associated dominant climate factors (Figure 10).
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Figure 7. Spatial distribution of trend values for vegetation dynamics in response to solar radiation
(the first column), temperature (the second column), and water availability (the third column) based
on the (a1–a3) LAI, (b1–b3) EVI, (c1–c3) NDVI, and (d1–d3) SIF products.

Overall, Figure 7 illustrates that the spatial patterns were similar for the trend values
of vegetation sensitivity in response to the three climatic factors, as indicated by the
LAI, EVI, NDVI, and SIF data. The vegetation sensitivity displayed a significant upward
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trend in response to solar radiation in eastern and parts of southern areas of the QTP,
while a significant downward trend in central areas of the QTP was observed. Vegetation
sensitivity in response to temperature exhibited a significant downward trend in the central
to northeastern QTP. Conversely, pixels with an upward trend were sparsely distributed
in other regions and did not yield explicit spatial patterns. Compared with temperature
and solar radiation, vegetation exhibited a much lower trend regarding the sensitivity in
response to water availability, as most of the associated trend values were in a range from
−0.005 to 0.005. Nevertheless, trend values of water availability were noticeable in the
southwestern QTP, as trend values of associated pixels were typically >0.05 or <−0.05.
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Figure 8. Boxplots of trend values for the vegetation proxies, i.e., SIF (blue), NDVI (orange), EVI
(yellow), and LAI (green), in response to (a) solar radiation, (b) temperature, and (c) water availability.
The trend values are further classified by BSVs, grasslands, and forests. Associated mean and median
values are shown in the right-hand table next to each subfigure. Cases with an opposite performance,
i.e., an opposite trend identified by the mean and median values, are highlighted with red coloring in
the table.
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Figure 9. Percentage values of positive and negative regression coefficients derived from LAI, EVI,
NDVI, and SIF data for the interannual vegetation sensitivity in response to (a) solar radiation,
(b) temperature, and (c) water availability.
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Figure 10. RGB composites of the fraction values that describe the appearance frequency of the
dominant climate factors over the investigation period (temperature, red; water availability, blue; and
solar radiation, green). (a–d) present the results derived from the LAI, EVI, NDVI, and SIF products,
respectively. The dominant climate factor denotes the climate factor with the maximum impact on
vegetation sensitivity.

The boxplots in Figure 8 demonstrate that the trend of vegetation sensitivity in re-
sponse to the three climatic factors was generally consistent for the four vegetation proxies
when considering different land-cover types. As indicated by all four vegetation proxies,
vegetation sensitivity in response to temperature gradually decreased over the recent two
decades in BSVs, grasslands, and forests, as the associated means and medians of the trend
values were <0 (Figure 8b). Such decreasing trends were more pronounced in grasslands
than in BSVs and forests. Except for the LAI case, shown in Figure 8a, vegetation sensitivity
in response to solar radiation experienced a decreasing trend for BSVs and grasslands. By
contrast, an increasing sensitivity was found for forests areas, except for the EVI case. For
water availability, as shown in Figure 8c, only the forest cases indicated by SIF data yielded
a contrasting trend, i.e., mean and median metrics indicated different trend directions,
when compared with the other three proxies. BSVs and forests showed increasing trends,
while no obvious trend could be determined for the grasslands, as corresponding mean
and median values were typically small and indicated different directions.

Given that a climate factor may exert an opposite impact on the vegetation sensitivity
over the investigation period, which could not be revealed in Figures 7 and 8, we further
investigated the signs of the regression coefficients classified by the three land-cover types,
as represented in Figure 9.

In general, the boxplots in Figure 9a show that solar radiation exerted a negative impact
on vegetation in BSVs and grasslands, while it exerted a positive impact on vegetation in
forests. Figure 9b illustrates that temperature generally had a negative impact on all three
land-cover types. By contrast, water availability displayed a positive impact on BSVs and
grasslands (Figure 9c). Nevertheless, no obvious sign of the regression coefficients could be
determined for forests. Taking all four vegetation proxies into consideration, we further
summarized the trend of vegetation sensitivity illustrated in Figure 8 and corresponding
signs of the regression coefficients displayed in Figure 9. The conclusions are shown
in Table 1.
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Table 1. A summary of the trends and corresponding impact directions for vegetation sensitivity
in forests, grasslands, and BSVs. The overall trend for vegetation sensitivity was deduced from the
averages and medians of the trend values shown in Figure 8. The overall impact direction indicated
by the sign of regression coefficients was determined based on Figure 9. Since four vegetation
proxies were used, we jointly considered the four results to obtain an overall assessment of the
vegetation sensitivity trends and the corresponding impact directions indicated by the signs of
regression coefficients.

Temperature Solar Radiation Water Availability

Trend Sign Trend Sign Trend Sign
Forests Downward Positive Upward Positive Upward No sign

Grasslands Downward Positive Downward Negative No trend Positive
BSVs Downward Positive Downward Negative Upward Positive

Note: “BSVs” denotes “barren or sparsely vegetated areas”.

The dominant climate factor that exerted the largest impact on vegetation sensitivity
was revealed by comparing the absolute values of the regression coefficients for the three
climatic driving factors for each year. For a given pixel in a given year, the climate factor
with the maximum regression coefficient was regarded as the dominant factor. The frac-
tion values describing the appearance frequency for each climate factor over the whole
investigation period were calculated and were RGB-composited, as shown in Figure 10.

A distinct spatial pattern was observed for the dominant climatic factor with respect
to regulation of the time-variant vegetation sensitivity shown in Figure 10, which was
strongly consistent with the spatial pattern of the time-invariant vegetation sensitivity
shown in Figure 6. LAI exhibited a relatively different spatial pattern, as solar radiation
was found to exert the maximum impact on vegetation sensitivity in the southeastern QTP.
Conversely, EVI, NDVI, and SIF jointly revealed that temperature and water availability
controlled the vegetation sensitivity in the southeastern QTP. In general, temperature was
the dominant factor for pixels located in the central to eastern QTP. Water availability was
the dominant factor for pixels located in the northeastern QTP and forest areas in the south-
ern QTP, which findings were different in comparison with the time-invariant vegetation
sensitivity shown in Figure 6. The spatial pattern of solar radiation was relatively scattered,
and the corresponding pixels were mostly distributed around the spatial distribution of
temperature factors.

4. Discussion

Overall, the trend values indicated by the four vegetation proxies appeared to show
similar change patterns, indicating a strong consistency among different data sources in
capturing the temporal variability of vegetation on the QTP. All the data demonstrate
that vegetation on the QTP has been greening in the last two decades, as about 70–80% of
the total pixels indicated an upward trend [6,24,38,50]. In the context of global warming
and increasing emissions of carbon dioxide, vegetation activity on the QTP has enhanced
substantially [51]. Carbon dioxide is known to stimulate vegetation growth through the
combined effects of the direct physiological effect and the indirect effect of climate change
induced by itself [52]. Consequently, these two factors contribute to favorable conditions
for vegetation growth on the QTP and result in the greening phenomenon observed. It has
to be stressed that EVI, NDVI, and LAI data more or less indicate that vegetation located
in the southwestern QTP is browning [50,51,53]. Nevertheless, this phenomenon is more
predominant, as indicated by the SIF data. Such phenomena arouse particular concern
for associated vegetation, since SIF is reported to be more correlated with vegetation
photosynthesis activity than vegetation index [8,54]. Moreover, the biodiversity of the QTP
will decrease in future if global warming is not curbed [55]. This would make vegetation in
the southwestern QTP more vulnerable in the near future and needs special attention.

Time-invariant and time-variant vegetation sensitivity derived from LAI data were
relatively different when compared with those obtained from the other three vegetation
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proxies. Pixels with such discrepancies were mainly found in the southeastern QTP, where
forests account for a large proportion of the land cover. Although EVI, NDVI, and SIF can
well capture the seasonal variability of LAI, they are reported to provide premature esti-
mates of the onset of the growing season in forests [56]. Moreover, the relationship between
LAI and vegetation index is found to change with the leaf seasonality, leaf orientation, and
growth stage of vegetation cover [57]. These factors may lead to the different performance
of LAI in comparison with EVI, NDVI, and SIF.

As a vegetation proxy that is drawing more and more attention, SIF has an evaluation
performance highly consistent with those of NDVI and EVI. Different from NDVI, EVI, and
LAI, SIF is directly linked to photosynthetic activity and has an advantage over vegetation
indices in describing plant physiological responses to water stress [54,58]. In addition, SIF
is more sensitive to climate variables than vegetation indices [59] and shows a premature
start of season relative to the vegetation index [60]. Consequently, SIF is expected to have a
different performance to the other three vegetation proxies. However, keep in mind that a
monthly time scale was considered here and that SIF values included in the same month
were averaged in our analysis. Such processing conceals the characteristics of the high
temporal resolution, e.g., 4 days, in SIF data, resulting in SIF having a similar performance
to EVI and NDVI data here.

Vegetation sensitivity in response to climate change exhibited pronounced spatiotem-
poral heterogeneity on the QTP for the four vegetation proxies. For both time-invariant
and time-variant sensitivity, temperature was the most important factor regulating veg-
etation sensitivity of the QTP over the last two decades, which is consistent with the
findings of Piao et al. [1], Lin et al. [2], Zhang et al. [6], and Ma et al. [24]. Our results
revealed that temperature generally exerted positive impacts on vegetation sensitivity for
the high-cold grasslands located in the central to eastern QTP, which was also reported in
the study by Fu and Sun [61]. However, our results also demonstrated that vegetation of
the QTP experienced a downward trend in the sensitivity to temperature variability, indi-
cating that the impact of temperature on vegetation is gradually decreasing. In particular,
Zhu et al. [62] pointed out that such declining phenomena reflect a shift from water to
energy limitations for vegetation of the QTP. Moreover, the declining trend may be at-
tributed to the acclimation of plants and communities, such as plant biomass allocation
and changes in community composition, so that vegetation on the QTP [63–65] can cope
with the widespread global warming.

We found solar radiation to be an important climate factor that should not be ignored
in vegetation sensitivity studies, which has also been emphasized recently by Zhang
et al. [22], Ma et al. [24], and Jiang et al. [37]. The trend analysis showed that forests in the
southeastern QTP displayed an increasing sensitivity to solar radiation. As temperature
is continuously increasing in the southeastern QTP [6], solar radiation modifies forest
sensitivity by stimulating photosynthesis and makes forests absorb more carbon dioxide.
By contrast, grasslands and BSVs appeared to show declining sensitivity in response to
solar radiation, and solar radiation exerted negative impacts on grasslands and BSVs.
This may be explained by the fact that high levels of solar radiation on the QTP make
plants reach their light saturation points easily by regulating leaf nitrogen and phosphorus
stoichiometry, which leads to the photoinhibition of photosynthesis [66].

Compared with temperature and solar radiation, all four vegetation proxies revealed a
small temporal trend for vegetation sensitivity in response to water availability on the QTP
in the last two decades. Such phenomena were more pronounced in central to eastern areas
of the QTP, where the trend values for grasslands were small, which may be explained
by their elevations. By contrast, forests and BSVs exhibited upward trends regarding
water availability, which is consistent with the findings of Wang et al. [65] and Li et al. [17]
and may be related to the human–environment nexus [13] through grazing, farming, and
urbanization [50]. Over the last two decades, water availability generally exerted positive
impacts on vegetation sensitivity, except for the forests located in the southeastern QTP.
Forested areas are more sensitive to water availability than temperature and solar radiation,
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and they displayed positive sensitivity trends. This may occur as a consequence of climate
warming and persistent drought in these areas [67,68]. In addition, Shen et al. [4] pointed
out that precipitation impacts on vegetation spring phenology on the QTP, especially in the
drylands, which may alter the vegetation sensitivity on the QTP accordingly.

As the temperature of the QTP is expected to continuously increase in the future,
the vegetation sensitivity of the grasslands located in the central QTP may experience an
intensified increase in vegetation sensitivity, as our results revealed that temperature is
the main climate factor dominating vegetation sensitivity in these areas. In the future,
grasslands having a high vegetation sensitivity means that the grassland ecosystem of the
QTP will become more vulnerable, and the situation may become even worse if humans
relax protection efforts. In forests located in the southeastern QTP, more attention should
be paid to the temporal variability in water availability and solar radiation, since these two
factors are the dominant climate factors regulating the vegetation sensitivity of forests in
these regions.

There are two limitations to our study. First, only the first-order moment, i.e., the mean
state, indicated by regression coefficients derived from MLR was considered. The second-
order moment indicated by variance metrics, such as the Vegetation Sensitivity Index (VSI)
proposed by Seddon et al. [41], was ignored. Nevertheless, the first and second moments
describe vegetation sensitivity in response to climate change from different perspectives,
and our results, e.g., the dominant climate factors, may change when considering VSI
metrics. Second, the window size was set as 5 years, which is significantly smaller than
the 15-year window used in the studies of Chen et al. [69] and Jiang et al. [37]. However,
studies such as Zeng et al.’s [36] and Wang et al.’s [38] also applied a moving time window
with a kernel size of 5 years, and they reported that changing the window size would
result in strongly consistent trend results for the regression coefficients, which needs
further investigation.

5. Conclusions

We investigated time-invariant and time-variant (interannual) vegetation sensitivity
in response to temperature, solar radiation, and water availability on the QTP over the last
two decades by considering four vegetation proxies, including LAI, EVI, NDVI, and SIF
products. Except for LAI, the other three vegetation proxies provided strongly consistent
evaluations regarding the interannual vegetation dynamics and vegetation sensitivity
in response to climate change. Overall, the vegetation dynamics indicated by the four
vegetation products all showed increasing trends over the last two decades, as pixels with
an upward trend value accounted for 69%, 77%, 79%, and 81% of the total pixels for the
EVI, SIF, LAI, and NDVI data, respectively. The greening trend gradually decreased from
the eastern to western QTP, and pixels with a negative trend were clustered in southern
and southwestern areas of the QTP. Compared with those of the other three vegetation
proxies, SIF data indicated a widespread decreasing trend for grasslands located in the
southwestern QTP.

Trend analysis revealed that temperature exerted positive impacts on vegetation, but
vegetation of the QTP displayed a decreasing sensitivity to temperature. Solar radiation
was shown to have a positive impact on forests, while it had negative impacts on grasslands
and BSVs. Grasslands and BSVs exhibited decreasing sensitivity, while forests showed
increasing sensitivity to solar radiation. As for water availability, forests and BSVs exhibited
increasing sensitivity, but no obvious trend was observed for grasslands. Water availability
exerted positive impacts on grasslands and BSVs, and no obvious impact direction could be
determined for forests. The spatial patterns of the dominant climate factors were similar for
time-invariant and time-variant vegetation sensitivity. In general, temperature is the most
important driving factor, followed by solar radiation and water availability. Temperature
and solar radiation jointly dominated the vegetation sensitivity in central to eastern areas
of the QTP. By contrast, water availability was the dominant factor regarding vegetation
sensitivity in forests in the southeastern QTP and in grasslands in northeastern and south-
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western areas of the QTP. Our findings have important implications for understanding
response and feedback associated with climate change in the vegetation dynamics on the
QTP, providing a baseline for vegetation preservation and management for policymakers.
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