
Citation: Dimitrovski, I.; Kitanovski,

I.; Panov, P.; Kostovska, A.;

Simidjievski, N.; Kocev, D. AiTLAS:

Artificial Intelligence Toolbox for

Earth Observation. Remote Sens. 2023,

15, 2343. https://doi.org/10.3390/

rs15092343

Academic Editor: Gwanggil Jeon

Received: 8 March 2023

Revised: 15 April 2023

Accepted: 24 April 2023

Published: 28 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

AiTLAS: Artificial Intelligence Toolbox for Earth Observation
Ivica Dimitrovski 1,2, Ivan Kitanovski 1,2, Panče Panov 1,3, Ana Kostovska 1,3, Nikola Simidjievski 1,3,4

and Dragi Kocev 1,3,*

1 Bias Variance Labs, d.o.o., 1000 Ljubljana, Slovenia
2 Faculty of Computer Science and Engineering, University Ss Cyril and Methodius, 1000 Skopje, North Macedonia
3 Department of Knowledge Technologies, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
4 Department of Computer Science and Technology, University of Cambridge, Cambridge CB3 0FD, UK
* Correspondence: dragi@bvlabs.ai

Abstract: We propose AiTLAS—an open-source, state-of-the-art toolbox for exploratory and predic-
tive analysis of satellite imagery. It implements a range of deep-learning architectures and models
tailored for the EO tasks illustrated in this case. The versatility and applicability of the toolbox
are showcased in a variety of EO tasks, including image scene classification, semantic image seg-
mentation, object detection, and crop type prediction. These use cases demonstrate the potential
of the toolbox to support the complete data analysis pipeline starting from data preparation and
understanding, through learning novel models or fine-tuning existing ones, using models for making
predictions on unseen images, and up to analysis and understanding of the predictions and the
predictive performance yielded by the models. AiTLAS brings the AI and EO communities together
by facilitating the use of EO data in the AI community and accelerating the uptake of (advanced)
machine-learning methods and approaches by EO experts. It achieves this by providing: (1) user-
friendly, accessible, and interoperable resources for data analysis through easily configurable and
readily usable pipelines; (2) standardized, verifiable, and reusable data handling, wrangling, and
pre-processing approaches for constructing AI-ready data; (3) modular and configurable modeling
approaches and (pre-trained) models; and (4) standardized and reproducible benchmark protocols
including data and models.

Keywords: Earth observation; remote sensing; deep learning; semantic segmentation; object detection;
land use and land cover classification

1. Introduction

Remotely gathered data are available from a wide range of sources using a wide range
of data collection techniques. Satellites, airplanes, and Unmanned Aerial Vehicles (UAVs)
are equipped with various sensors that gather huge amounts of remotely sensed images that
provide comprehensive spatial and temporal coverage of the Earth [1,2]. On the other hand,
the increase in data production is well matched by the rapidly growing development of
Artificial Intelligence (AI), which probes various aspects of natural sciences, technology, and
society. Recent trends in machine learning, and particularly in deep learning, have ushered
a new era of image analysis and raised the predictive performance bar in many application
domains, including remote sensing and Earth observation [3]. Remote sensing data have
been used in various application areas, including land use and land cover analysis [4], forest
mapping [5,6], monitoring of natural hazards and disasters [7,8], precision agriculture [9],
assessing the weather and observing climate changes [10], and various environmental
studies [11].

With the ever-growing availability of remote sensing data, there has been a significant
research effort to prepare, label, and provide proper datasets that will support the develop-
ment and evaluation of sophisticated machine-learning methods [12–15]. In the past years,
several publicly available high-resolution remote sensing image datasets have been made

Remote Sens. 2023, 15, 2343. https://doi.org/10.3390/rs15092343 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15092343
https://doi.org/10.3390/rs15092343
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-3948-6370
https://doi.org/10.3390/rs15092343
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15092343?type=check_update&version=1

Remote Sens. 2023, 15, 2343 2 of 48

available to support the research in a variety of remote sensing tasks, such as scene classifi-
cation [4], semantic and instance segmentation [16], object detection [17], change detection,
etc. Most of the annotated EO datasets are limited in scale and restricted in spatial coverage
with a task-specific class distribution. Handling and pre-processing remote sensing image
data can be very challenging due to their properties and heterogeneity, which greatly differ
from conventional image data typically used in recent machine-learning pipelines. Namely,
each type of sensor used for remote sensing has its own advantages (and disadvantages)
conditioned by the geographical coverage, sensor resolution (spatial and temporal), and
flight operations and specifics. For example, satellites are used for sensing at a global scale,
and UAVs are typically used for sensing in small areas due to their flexibility and ease of
operations in such conditions. Instead of 3-channel RGB imagery, the data in remote sensing
are represented through different spectral, spatial, radiometric, and temporal resolutions:

• Spectral resolution defines the bandwidth and the sampling rate used to capture data. A
high value for the spectral resolution means more narrow bands pertaining to small
parts of the spectrum, and conversely, a low value means broader bands related to large
parts of the spectrum. Spectral bands are groups of wavelengths, such as ultraviolet,
visible, near-infrared, infrared, and microwave. Based on these, image sensors can be
multi-spectral if they are able to cover tens of bands (e.g., Sentinel-2, which collects
12 bands) and hyper-spectral if they can collect thousands, such as Hyperion (part of
the EO-1 satellite), which covers 220 spectral bands (0.4–2.5 µm) [18].

• Spatial resolution defines the size of the area on the Earth’s surface represented by each
pixel from an image. Spatial resolution relates to the level of detail captured in the
image, with high resolutions (small pixel size) capturing more and low resolutions
(large pixel size) capturing fewer details in an image. For example, most bands
observed by the Moderate Resolution Imaging Spectroradiometer (MODIS) have a
spatial resolution of 1 km, where each pixel represents a 1 km × 1 km area on the
ground [19]. In contrast, images captured from UAVs or drones can have a very small
spatial resolution of less than 1 cm [20].

• Radiometric resolution defines the number of discrete signals of given strengths that the
sensor can record (also known as dynamic range). A large value of the dynamic range
means that more details can be discerned in the recording, e.g., Landsat 7 records
8-bit images and can thus detect 256 unique gray values of the reflected energy [21];
similarly, Sentinel-2 has a 12-bit radiometric resolution (4095 gray values) [22]. In
other words, a higher radiometric resolution allows for simultaneous observation of
high and low-contrast objects in the scene. For example, a radiometric resolution is
necessary to distinguish between subtle differences in ocean color when assessing
water quality.

• Temporal resolution defines the frequency at which a given satellite revisits a given
observation area. Polar-orbiting satellites have a temporal resolution that can vary
from 1 day to 16 days (e.g., for Sentinel-2, this is ten days [22]). The temporal aspects of
remote sensing are essential in monitoring and detecting changes in given observation
areas (incl. land use change, mowing, and deforestation).

The increasing amount of available EO data is equally matched with the number of
libraries and toolboxes designed to handle, process, and potentially provide a data analysis
framework for such data. However, considering the complexity of EO data coupled
with the diversity of EO tasks that can be addressed, many of the available libraries and
toolboxes focus either on the data-specific processing aspect, have a very narrow application
horizon, or include machine-learning approaches that are hardly accessible for domain
experts. This relates to libraries such as eo-learn (open source) [23] and Up42 (commercial
product) [24], which provide accessible means for EO data processing/feature extraction
workflows from satellite imagery. These libraries focus mainly on the data acquisition,
handling, and data pre-processing stages of the workflow and offer limited machine-
learning capabilities. Similarly, Sentinels for Common Agriculture Policy (Sen4CAP), an
open-source project based on the Sentinel Application Platform (SNAP), provides data

Remote Sens. 2023, 15, 2343 3 of 48

pre-processing algorithms and workflows but only in the limited scope of agriculture
monitoring relevant to the management of the CAP [25].

More recent libraries such as Orfeo ToolBox (OTB) [26] offer similar capabilities with
respect to data pre-processing, data augmentation, and feature extraction pipelines, in
addition to a catalog of more traditional machine-learning approaches for image data
analysis. OTB further allows remote integration with deep-learning libraries such as
TensorFlow [27]. However, this capability is part of an unofficial OTB module aimed
primarily at AI users. On the other hand, CANDELA [28] is an end-to-end platform
tailored for EO users, focusing on services that provide quick data access and exploratory
data analysis. In addition to the core data handling capabilities, CANDELA allows for
handcrafted application-centered data analysis blocks that employ data pre-processing
and machine-learning methods but are specifically tailored for a particular EO task at
hand (such as change detection). TorchGeo [29] is a recent library that builds on the
PyTorch [30] deep-learning framework that includes more general methods for EO data
analysis. Namely, it includes data loaders for standard benchmark datasets, methods for
data handling, and data transformations, as well as a catalog of (pre-trained) vision models
applicable to different tasks pertaining to EO applications.

An implicit but common theme among most of these libraries is the community barrier.
Libraries that offer the most recent machine-learning approaches are tailored for data
scientists and have a steep learning curve for domain experts, but libraries tailored for the
remote sensing community are not easily applicable in modern machine-learning pipelines.
While most of these attempts are a step in the right direction, there is still a gap related to the
need for a common AI4EO framework that will provide (1) accessible and interoperability
resources for data analysis (via configurable and readily usable pipelines); (2) standardized,
verifiable, and reusable data handling, wrangling, and pre-processing approaches for
constructing AI-ready data; (3) modular and configurable modeling approaches and (pre-
trained) models; and (4) standardized and reproducible benchmark protocols (including
data and models).

We present AiTLAS (http://aitlas.bvlabs.ai (accessed on 8 March 2023)), an open-
source AI4EO toolbox that is designed based on the principles outlined above, thus fa-
cilitating the use of EO data in the AI community and, more importantly, accelerating
the uptake of (advanced) machine-learning methods and approaches by EO experts. AiT-
LAS provides various resources, including customizable and easily usable data analysis
pipelines; semantically annotated datasets, formalized to be used directly by AI methods;
recent approaches for learning models de novo coupled with a model catalog consisting of
large pre-trained vision models applicable to EO tasks; standardized frameworks for model
benchmarking [3]; mechanisms for quantitative and qualitative model evaluation, etc.

In this paper, we provide extensive details of the many functionalities and capabilities
of AiTLAS. We demonstrate its versatility for use in different EO tasks by exploiting the
variety of EO data and AI methods made available for direct use within the toolbox. We
first explain the design and implementation of AiTLAS and then discuss the supported EO
tasks and data. Next, we explain the AI methods that are implemented within the toolbox.
Furthermore, we showcase several use cases to illustrate the basic principles behind the
toolbox, its modularity, and its flexibility. Lastly, we summarize the distinctive proprieties
of AiTLAS and outline directions for its further development.

2. Materials and Methods
2.1. Design and Implementation of the AiTLAS Toolbox

The AiTLAS toolbox is designed such that leveraging recent (and sophisticated) deep-
learning approaches over a variety of EO tasks (and data) is straightforward. On the one
hand, it utilizes EO data resources in an AI-ready form; on the other hand, it provides a
sufficient layer of abstraction for building and executing data analysis pipelines, thus facili-
tating better usability and accessibility of the underlying approaches—particularly useful
for users with limited experience in machine learning, and in particular deep learning.

http://aitlas.bvlabs.ai

Remote Sens. 2023, 15, 2343 4 of 48

AiTLAS can be used both as an end-to-end standalone tool and as a modular library.
Users can use and build on different toolbox components independently, be they related to
the tasks, datasets, models, benchmarks, or complete pipelines. It is also flexible and versatile,
facilitating the execution of a wide array of tasks on various domains and providing easy
extension and adaptation to novel tasks and domains. Moreover, AiTLAS adheres to
the principle less is more—it embeds the most common tasks and functionalities in easy-
to-use interfaces that simplify the usage and adaptation of the toolbox with minimal
modifications. Last but not least, AiTLAS is fully aligned with the principles of open
science—its development is community-driven and open-source.

Figure 1 presents a high-level schematic diagram of the main modules and components
of AiTLAS. It is designed around the concept of a workflow, where users need to define a
specific task (aitlas.tasks), be it an exploratory analysis of a dataset or a predictive task of
a different kind, such as image classification, object detection, image segmentation, etc. In
turn, the instantiated task serves as an arbiter of the workflow and orchestrates the flow
between the two central components of the toolbox—the datasets (aitlas.datasets) and
the models (aitlas.models)—which relate to AI-ready formalized data and configurable
model architectures, respectively. Programmatically, these modules are embedded within
the core module aitlas.base , which contains all main abstract definitions related to every
module, such as definitions of tasks, models, and datasets, but are also related to eval-
uations (aitlas.metrics), data transformations (aitlas.transforms), and various types of
visualizations (aitlas.visulizataions and aitlas.datasets.visulizataions).

aitlas.models

EO Data
Repository

Model
Repository

aitlas.base

aitlas.transforms

aitlas.dataset.visualizations

aitlas.datasets aitlas.models

aitlas.metrics

aitlas.visualizations

output

cli

aitlas.task

data flow
model flow

task specification

Figure 1. Diagram of the main modules and components in the AiTLAS toolbox.

More specifically, as a standalone application, the flow of AiTLAS begins with the
user-specified definition of a task. These definitions can be provided at input via command-
line interface (CLI) as a formatted JSON configuration file or more directly executed via
Jupiter notebooks. This initiates the arbiter module aitlas.tasks . The aitlas.tasks act as
a controller and component mediator during the entire workflow. To this end, AiTLAS
can handle a variety of typical workflows, such as training and evaluating a model, data
pre-processing and calculating statistics, extracting features, etc.; while the implemented
tasks can be applied in many different scenarios, they can also serve as a blueprint for
creating and instantiating new, more specific, tasks.

Remote Sens. 2023, 15, 2343 5 of 48

Typically, a task instantiates a specific dataset component as per the configuration and
prepares it for processing. The dataset components, implemented in the aitlas.datasets

module, encapsulate different operations for working with the underlying EO data, such
as reading and writing from and to storage and preparing it for further processing. Each
EO dataset has a separate and specific implementation of its dataset component since the
different datasets have different formats, organizational structures, etc. (Tables 1–5 provide
a list of currently supported datasets). Note that the datasets must be accessible for the
machine that executes AiTLAS. Therefore, it is up to the user to download the datasets
they work with, and organize their access, as AiTLAS only provides the means to access
a dataset.

Once the data access is ready, AiTLAS offers various mechanisms for pre-processing,
handling, and transforming raw EO data into an AI-ready format. These mechanisms
are implemented in the aitlas.transforms module. More specifically, besides standard
functions for handling image data, this module contains specific implementations of aug-
mentations and transformations that can be applied to images, such as rotations, resizing,
cropping, etc. These transformations can be configured to be applied to any raw image
(regardless of a task), including target masks, as in the case of image segmentation. The
processed (AI-ready) data is, in turn, used in the workflow. Moreover, for better reusability
and reproducibility, AiTLAS also annotates and can store the processed data (with the
accompanied meta-data) in an EO data repository such as the AiTLAS semantic data catalog
(http://eodata.bvlabs.ai (accessed on 8 March 2023)), where users can further analyze and
query the available data.

The task component also interacts with the model components within the aitlas.models
module. The models in AiTLAS are based on the PyTorch framework [30]. The model
component wraps the architecture of the deep-learning model and only exposes the op-
erations for controlling their behavior, such as training the model, using it to perform
predictions, saving it, or loading it from storage, etc. The aitlas.models module contains
concrete implementations of the deep-learning models providing the means to work with
individual model architectures (see Table 6 for a current list of implemented architectures).
The concrete implementations are responsible for model instantiation and forwarding the
input data. In the case of pre-trained models, the specific implementation can pull a remote
or local version of the pre-trained model.

The models’ performance is estimated using the metrics components implemented in
the aitlas.metrics module. Depending on the task at hand (classification, segmentation),
the module offers a variety of evaluation measures to assess the performance of the models,
such as accuracy, F1 score, etc. Note that similar to storing processed data, AiTLAS also
supports storing trained models. To this end, the AiTLAS model catalog [3] contains more
than 500 trained models for EO image scene classification, trained and evaluated on 22
different EO datasets.

AiTLAS allows for certain aspects of the workflow to be illustrated, fostering bet-
ter user interaction with the learning process and more interpretable outcomes. This is
enabled via the visualizations components implemented in the aitlas.visualization and
aitlas.dataset.visualization modules. These components provide the means to provide

further inspection and analysis via visualizing datasets (samples and properties), tracking
model performance, and visualizing model predictions.

AiTLAS is built in Python and uses a variety of other libraries related to different parts
of the project. The core underlying library is PyTorch [30]—the AiTLAS model architecture
extends PyTorch’s model class. The extensions add the means for training, evaluating,
predicting, resource utilization, saving, and loading the model from disk. The AiTLAS
dataset management also extends the data module from PyTorch. As previously stated,
AiTLAS can be used both as a standalone application and as a library embedded within
other projects. The remaining dependencies are given in Table A1 in Appendix A, with
further details of their scope of usage.

http://eodata.bvlabs.ai

Remote Sens. 2023, 15, 2343 6 of 48

2.2. EO Data and Common Tasks

The AiTLAS toolbox can be applied for a variety of EO tasks (and datasets). For clarity,
we present and discuss four common types of workflows pertaining to typical EO tasks:
(1) image scene classification, (2) image semantic segmentation, (3) image object detection,
and (4) crop type prediction using satellite time series data.

2.2.1. Image Scene Classification Tasks

The task of image scene classification refers to annotating images. In a typical scenario,
working with large-scale EO images, this task addresses classifying smaller images (patches)
extracted from a much larger remote sensing image. The extracted images can then be
annotated based on the content using explicit semantic classes (e.g. forests, residential
areas, rivers, etc.). Given an image as an input, the output would be single or multiple
annotations with semantic labels, denoting land-use and/or land-cover (LULC) classes
present in that image, as illustrated in Figure 2.

Figure 2. Remote sensing image scene classification: sample image patch provided on the left and
the output (predicted LULC classes) shown on the right subfigure. The image is a sample from the
UC Merced dataset from the MLC task [31].

Based on the number of semantic labels assigned to the images in the datasets, image
scene classification tasks can be further divided into multi-class (MCC) and multi-label
(MLC) classification. In the multi-class classification setting, each image is associated with a
single class (label) from a set of predefined classes. The goal, in this case, is predicting one
(and only one) class for each image in the dataset. In the multi-label classification setting, on
the other hand, images are associated with multiple labels (from a predefined set) based
on the information. The goal is then to predict the complete set of labels for each image in
the dataset at hand [32]. To this end, AiTLAS offers 22 such datasets that can be readily
used for a variety of MLC and MCC modeling tasks. These also serve as a blueprint for
applying AiTLAS to other datasets pertaining to similar tasks. Tables 1 and 2 summarize
the properties of the considered MCC and MLC datasets, respectively. The number of
images across datasets can be quite diverse, ranging from datasets with ∼2 K images to
datasets with ∼500 K images. This also holds for the number of labels per image, ranging
from 2 to 60. Most of the datasets are comprised of aerial RGB images (with only a few
comprised of satellite multi-spectral data) that are different in spatial resolution, size, and
format. Finally, note that AiTLAS also provides standardized procedures for analyzing
these datasets in terms of predefined splits (for training, validation, and testing), which
will ensure reusable and reproducible experiments. A more detailed description of each
dataset can be found in [3].

Remote Sens. 2023, 15, 2343 7 of 48

Table 1. Properties of the multi-class image scene classification (MCC) datasets available in the
AiTLAS toolbox.

Name

Im
ag

e
Ty

pe

#I
m

ag
es

Im
ag

e
Si

ze

Sp
at

ia
lR

es
ol

ut
io

n

#L
ab

el
s

Pr
ed

efi
ne

d
Sp

li
ts

Im
ag

e
Fo

rm
at

UC Merced [33] Aerial RGB 2100 256 × 256 0.3 m 21 No tif
WHU-RS19 [34] Aerial RGB 1005 600 × 600 0.5 m 19 No jpg
AID [35] Aerial RGB 10,000 600 × 600 0.5 m–8 m 30 No jpg
Eurosat [36] Sat. Multispectral 27,000 64 × 64 10 m 10 No jpg/tif
PatternNet [37] Aerial RGB 30,400 256 × 256 0.06 m–4.69 m 38 No jpg
Resisc45 [4] Aerial RGB 31,500 256 × 256 0.2 m–30 m 45 No jpg
RSI-CB256 [38] Aerial RGB 24,747 256 × 256 0.3–3 m 35 No tif
RSSCN7 [39] Aerial RGB 2800 400 × 400 n/a 7 No jpg
SAT6 [40] RGB + NIR 405,000 28 × 28 1 m 6 Yes mat
Siri-Whu [41] Aerial RGB 2400 200 × 200 2 m 12 No tif
CLRS [42] Aerial RGB 15,000 256 × 256 0.26 m–8.85 m 25 No tif
RSD46-WHU [43] Aerial RGB 116,893 256 × 256 0.5 m–2 m 46 Yes jpg
Optimal 31 [44] Aerial RGB 1860 256 × 256 n/a 31 No jpg
Brazilian Coffee Scenes (BSC) [45] Aerial RGB 2876 64 × 64 10 m 2 No jpg
SO2Sat [46] Sat. Multispectral 400,673 32 × 32 10 m 17 Yes h5

Table 2. Properties of the multi-label image scene classification (MLC) datasets available in the
AiTLAS toolbox.

Name

Im
ag

e
Ty

pe

#I
m

ag
es

Im
ag

e
Si

ze

Sp
at

ia
lR

es
ol

ut
io

n

#L
ab

el
s

#L
ab

el
s

pe
r

Im
ag

e

Pr
ed

efi
ne

d
Sp

li
ts

Im
ag

e
Fo

rm
at

UC Merced (mlc) [31] Aerial RGB 2100 256 × 256 0.3 m 17 3.3 No tif
MLRSNet [47] Aerial RGB 109,161 256 × 256 0.1 m–10 m 60 5.0 No jpg
DFC15 [48] Aerial RGB 3342 600 × 600 0.05 m 8 2.8 Yes png

BigEarthNet 19 [13] Sat. Multispectral 519,284

20 × 20
60 × 60
120 × 120

60 m
20 m
10 m 19 2.9 Yes tif, json

BigEarthNet 43 [49] Sat. Multispectral 519,284

20 × 20
60 × 60
120 × 120

60 m
20 m
10 m 43 3.0 Yes tif, json

AID (mlc) [50] Aerial RGB 3000 600 × 600 0.5 m–8 m 17 5.2 Yes jpg
PlanetUAS [51] Aerial RGB 40,479 256 × 256 3 m 17 2.9 No jpg/tiff

2.2.2. Object Detection Tasks

Object detection is another common EO task that focuses on identifying and localizing
objects present in an image. In the typical setting, this relates to annotating the identified
objects with respect to different predefined classes and providing their location on the
image (as a bounding box). Figure 3 illustrates an example of object detection, i.e., detecting
ships at sea.

Remote Sens. 2023, 15, 2343 8 of 48

Figure 3. Remote sensing image object detection: sample image provided on the left and in the
output image on the right, the objects are detected and localized with bounding boxes. The image is
a sample from the HRRSD dataset [52].

Common instances of this task include the detection of specific objects such as build-
ings, vehicles, ships, and planes [53,54] from aerial image datasets. The AiTLAS toolbox
readily supports such tasks and datasets, which follow the Pascal VOC and the COCO
(Common Objects in Context) formatting guidelines for object annotations. To this end,
it offers four such datasets (Table 3) for development and benchmarking object detec-
tion methods.

Table 3. Properties of the object detection datasets available in the AiTLAS toolbox.

Name Image Type #Images #Instances #Labels Image Width Spatial Resolution Image Format

HRRSD [52] Aerial RGB 21,761 55,740 13 152–10,569 0.15–1.2 m jpeg
DIOR [54] Aerial RGB 23,463 192,472 20 800 0.5–30 m jpeg
NWPU VHR-10 [55] Aerial RGB 800 3651 10 ∼800 0.08–2 m jpeg
SIMD [56] Aerial RGB 5000 45,096 15 1024 0.15–0.35 m jpeg

2.2.3. Image Semantic Segmentation Tasks

The tasks of image semantic segmentation aim at the fine-grained identification of
objects in an image. In contrast to object detection, which aims at coarser localization of
the detected objects, segmentation tasks focus on labeling each pixel of an image with
a corresponding class of what the pixel represents. In the typical scenario, the input is
an image, and the output is a mask (overlay) of categorized pixels based on a single
semantic type present in the image. Figure 4 illustrates an example of image semantic
segmentation. The more sophisticated extension of semantic segmentation tasks, referred
to as instance segmentation, takes into account different semantic types and focuses on
delineating multiple objects present in an image.

Remote Sens. 2023, 15, 2343 9 of 48

Figure 4. Remote sensing image semantic segmentation of buildings: sample image provided on the
left and the output, which is the overlay mask of predictions on the right. The image is a sample from
the Massachusetts Buildings dataset [57].

The AiTLAS toolbox offers several such datasets (summarized in Table 4) that can be
readily used for EO image semantic segmentation tasks. All but one of the datasets are
comprised of aerial RGB images (the remaining contains satellite multi-spectral data) with
different spatial resolutions and sizes. The number of semantic labels in these datasets
ranges from 2 to 5.

Table 4. Properties of the semantic segmentation datasets available in the AiTLAS toolbox.

Name

Im
ag

e
Ty

pe

#I
m

ag
es

Im
ag

e
Si

ze

Sp
at

ia
lR

es
ol

ut
io

n

#L
ab

el
s

Im
ag

e
Fo

rm
at

LandCover.ai [58] Aerial RGB 41
4200 × 4700
9000 × 9500 0.25–0.5 m 5 geo tif

Inria [59] Aerial RGB 360 5000 × 5000 0.3 m 2 tif
AIRS [60] Aerial RGB 1047 10,000 × 10,000 0.075 m 2 tif
Amazon Rainforest [61] Aerial RGB 60 512 × 512 n/a 2 geo tif
Chactun [62] Sat. Multispectral 2093 480 × 480 10 m 3 geo tiff
Massachusetts Roads [57] Aerial RGB 1171 1500 × 1500 1 m 2 tiff
Massachusetts Buildings [57] Aerial RGB 151 1500 × 1500 1 m 2 tiff

2.2.4. Crop Type Prediction Tasks

Crop type prediction is a semantic segmentation task that aims to map vegetation
on the crops present in a given area. The main difference with the classical semantic
segmentation task is that crop type prediction necessarily involves a temporal component.
Namely, to properly train a model, it needs to be presented with data of the same area
over different periods in time (preferably covering the whole growing season, e.g., the
periods with longer daytime and more sunlight). The added complexity is that there is
variability between different periods and locations (among different countries or even
within the same country) as there is variability between different years. The key feature of
any crop-type detection method is to utilize both the spatial and temporal data in multi-
temporal satellite imagery. The input in this task is multi-temporal satellite imagery data
for a specific geographic area. The output is a segmented mapping of the present crops in
that geographic area—Figure 5 illustrates an example of this task.

Remote Sens. 2023, 15, 2343 10 of 48

(a) (b)
Figure 5. Crop type prediction: The provided patch is represented by the image (a), and the output is
the overlay mask of predictions (b). The image is a sample from the AiTLAS NLD dataset [63].

Datasets for crop type prediction are generally spatio-temporal, i.e., they contain time
series data in addition to the EO image data. Table 5 presents several datasets available
within the AiTLAS toolbox. On top of the recent Breizhcrops dataset [64], AiTLAS also
presents novel Sentinel 2 imagery for three European countries (Denmark, the Netherlands,
and Slovenia) across three years—2017, 2018, and 2019. These novel datasets are significant
due to their size w.r.t. the geographic area they cover, the number of different parcels (i.e.,
polygons), and the number of distinct crop fields. The datasets are presented in detail
in [63].

Table 5. Properties of the crop type prediction datasets available in the AiTLAS toolbox.

Dataset # of Polygons Area Covered # of Crop Types

AiTLAS SLO [63] 800 k 5000 km2 27
AiTLAS DNK [63] 580 k 26,000 km2 27
AiTLAS NLD [63] 750 k 18,000 km2 27
Breizhcrops [64] 580 k 27,200 km2 9

2.3. Model Architectures

The AiTLAS toolbox contains a catalog of deep learning (DL) model architectures that
support different EO tasks, including image classification, semantic segmentation, object
detection, and crop-type prediction. To this end, AiTLAS implements 24 model architec-
tures, listed in Table 6. For each model, we present the basis of its implementation, technical
characteristics, and supported tasks. In the remainder, we discuss the different available
architectures in AiTLAS, the basis of their implementation and technical characteristics,
and the EO tasks to which they are applicable.

Remote Sens. 2023, 15, 2343 11 of 48

Table 6. Deep neural network architectures implemented in AiTLAS and their usability across the
EO tasks.

Model

Supported Tasks

Based on

Im
.S

ce
ne

C
la

ss
.

Se
m

an
.S

eg
m

.

O
bj

.D
et

ec
ti

on

C
ro

p
Ty

pe
Pr

ed
.

AlexNet [65] X [66]
CNN-RNN [67] X [67]
ConvNeXt [68] X [66]
DenseNet161 [69] X [66]
EfficientNet [70] X [66]
MLPMixer [71] X [72]
ResNet152 [73] X [66]
ResNet50 [73] X [66]
Swin Transformer [74] X [66]
VGG16 [75] X [66]
Vision Transformer [76] X [72]

DeepLabV3 [77] X [66]
DeepLabV3+ [78] X [79]
FCN [80] X [66]
HRNet [81] X [72]
UNet [82] X [79]

RetinaNet [83] X [66]
Faster R-CNN [84] X [66]

InceptionTime [85] X [86]
LSTM [87] X [86]
MSResNet [88] X [86]
OmniScaleCNN [89] X [86]
StarRNN [90] X [86]
TempCNN [91] X [86]
Transformer for time series classification [92] X [86]

Regarding image scene classification tasks, AiTLAS implements a variety of well-
known DL models based on the traditional convolutional architectures, but also the more
recent attention-based and mlp-based architectures. Convolutional DL architectures have
contributed to many advances in computer vision. A convolutional neural network (CNN)
typically consists of many (hidden) layers stacked together, designed to process (image)
data in the form of multiple arrays. The distinctive component in these networks is the
convolutional layers, which apply the convolution operation (passing the data through
a kernel/filter) and forward the output to the next layer. This serves as a mechanism for
constructing feature maps, with former layers typically learning low-level features (such as
edges and contours) and subsequently increasing the complexity of the learned features
with deeper layers in the network.

The convolutional layers are typically followed by pooling operations (serving as
a downsampling mechanism) that aggregate the feature maps through local non-linear
operations. In turn, these feature maps are fed to fully-connected layers which perform
the ML task at hand—in this case, classification. All the layers in a network employ
an activation function. In practice, the intermediate hidden layers employ a non-linear
function such as rectified linear unit (ReLU) or Gaussian Error Linear Unit (GELU) as
common choices. The choice of activation function in the final layer relates to the tasks at
hand—typically, this is a sigmoid function in the case of classification. CNN architectures
can also include different normalization and/or dropout operators embedded among the
different layers, which can further improve the network’s performance. CNNs have been

Remote Sens. 2023, 15, 2343 12 of 48

extensively researched, with models applied in many contexts of remote sensing, and in
particular EO image classification [93–96].

Recently, attention-based network architectures have shown state-of-the-art performance
in various vision tasks, including tasks in EO domains. Very prominent in this aspect is
the Vision Transformers (ViT) [76]—they are inspired by the popular NLP (natural language
processing) transformer architecture [97], and leverage the attention mechanism for vision
tasks. Much like the original transformer architecture that seeks to learn implicit relation-
ships in sequences of word tokens via multi-head self-attention, ViTs focus on learning
such relationships between image patches. Typically, ViTs employ a standard transformer
encoder that takes a lower-dimensional (linear) representation of these image patches to-
gether with additional positional embedding from each, in turn feeding the encoder output
to a standard MLP head. More recent and sophisticated attention network architectures
such as the Swin Transformers (SwinT) [74,98] rely on additional visual inductive biases
by introducing hierarchy, translation invariance, and locality in the attention mechanism.
ViT and SwinT variants have shown excellent performance in practice on various vision
tasks, including EO applications [3,99–101], particularly when pre-trained with large
image datasets.

An attention mechanism can be obtained with different approaches, e.g., attending
over channels and/or spatial information, and with convolutional architectures [102–104].
Another alternative is the MLPMixer [71]—it obtains its attention mechanism relying on the
classical MLP architecture. Namely, similarly to a transformer architecture, an MLPMixer
operates on image patches. It consists of two main components: a block of MLP layers for
‘mixing’ the spatial patch-level information on every channel and a block of MLP layers
for ‘mixing’ the channel information of an image. This renders lightweight models, with
performance on par with many much more sophisticated architectures [96,105,106].

The semantic segmentation tasks refer to pixel-wise classification [16]. In this scenario,
segmentation models typically learn to extract meaningful features/representations from
an image and use them to separate the image into multiple segments. In this context,
convolutional architectures are frequently used for performing this task. As in the typical
convolutional setting, the image is first passed through a series of layers (that learn image
features). This process downsamples the image as it passes through a series of pooling
layers. In turn, the image is upsampled/interpolated back to its original size (typically by
using deconvolutional layers), but with some loss of information. The output is typically
passed to a convolutional block with a sigmoid activation, which provides the resulting
pixel-wise classification of the image. This relates to pixel-to-pixel fully convolutional
networks (FCN) [80]. More sophisticated segmentation architectures typically combine
existing architectures at different stages, such as for the model’s downsampling (encoding),
upsampling (decoding), and prediction blocks.

AiTLAS supports segmentation tasks and implements a variety of state-of-the-art
architectures with a track record of successful applications for semantic image segmentation.
This includes UNet [82], a robust, versatile, and accurate segmentation architecture [107].
UNet is a modification of FCN, consisting of encoder and decoder blocks (in a U shape):
the encoder blocks relate the extracted features to the corresponding blocks of the decoder,
with an additional shortcut connection in the decoder. This allows the model to capture
more specific information from the image and retain more information by concatenating
high-level features with low-level ones. AiTLAS also employs HRNet (High-Resolution
Net), another fully convolutional network [81] with parallel architecture and multiple
group convolutions. This allows for leveraging high-resolution images, which leads to
better performance [108].

Common segmentation architectures employ a downsampling block, which broadens
the receptive field (given the input) for the forthcoming filter(s), but at the cost of reduced
spatial resolution. An alternative approach with the same effect but with the ability
to preserve the spatial resolution is atrous (or dilated) convolutions. Here, the filter is
upsampled along each spatial dimension by inserting zero values between two successive

Remote Sens. 2023, 15, 2343 13 of 48

filters. The DeepLab segmentation architectures [109] employ this approach, incorporating
both atrous convolutions and atrous spatial pyramid pooling (ASPP), leading to robust
and accurate performance semantic segmentation of high-resolution images. To this end,
AiTLAS implements DeepLabv3 [77] and DeepLabv3+ [78] architectures that have been
successfully applied in a variety of EO application [110,111].

Another class of common tasks in EO domains is object detection, which aims at
the localization and classification of objects present in an image. Typical deep-learning
approaches that address object detection tasks can be divided into two groups: region
proposal-based and regression-based [54]. Region proposal-based approaches tackle object
detection in two stages. The first stage focuses on generating a series of candidate region
proposals that may contain objects. The second stage classifies the candidate region propos-
als obtained from the first stage into object classes or backgrounds and further fine-tunes
the coordinates of the bounding boxes. In contrast, regression-based approaches transform the
problem to a multi-target regression task, focusing on directly predicting the coordinates of
the (detection) bounding box.

In the domain of EO, object detection approaches are typically applied on aerial
images, which can be challenging due to the significant variation in scale and viewpoint
across the diverse set of object categories [53]. Most studies involving aerial images
use region proposal-based methods to detect multi-class objects. To support these tasks,
AiTLAS implements several state-of-the-art architectures such as the improved Faster R-
CNN model with a ResNet-50-FPN backbone [84,112] and RetinaNet with ResNet-50-FPN
backbone [83].

Finally, AiTLAS also provides approaches for addressing tasks of crop type prediction.
This refers to a multi-dimensional time series classification task where the input is multi-
spectral temporal data and the output is a discrete variable specifying the crop type; while
these tasks have traditionally been tackled using standard machine-learning approaches
(such as Random Forest [113]), more recent deep-learning approaches have shown better
results [64]. These include approaches that build on convolutional, recurrence, and self-
attention-based architectures.

The convolution-based models use a one-dimensional convolutional layer to extract
features from a temporal local neighborhood by convolving the input time series with a
filter bank learned by gradient descent. To this end, AiTLAS provides implementations
of several such architectures that have been successfully used for crop type prediction
and land cover mapping [91,114], including Temporal Convolutional Neural Network
(TempCNN) [91] (TempCNN), Multi-Scale 1D Residual Network (MSResNet) [88], In-
ceptionTime [85], and Omniscale Convolutional Neural Network (OmniscaleCNN) [89].
Recurrent Neural Network (RNN) models process a series of observations sequentially
while maintaining a feature representation from the previous context. AiTLAS provides
implementations for Long Short-Term Memory (LSTM) [115] models, which have been suc-
cessfully used in remote sensing applications, especially for land cover mapping [116,117].
Finally, AiTLAS includes recent state-of-the-art attention-based transformer architectures
based on [92], which can learn and use the most relevant parts of the input sequence via
stacked self-attention layers for sequence-to-label classification.

3. Results and Discussion: Demonstrating the Potential of AiTLAS

In this section, we showcase the potential of the AiTLAS toolbox through a series
of more detailed examples of its various functionalities and capabilities. We present five
use cases that demonstrate the basic principles behind the toolbox, its modularity, and
its flexibility. For each of the types of EO tasks that we highlighted earlier, we discuss
every segment of the analysis pipeline. We start by loading a new dataset and performing
exploratory data analysis, inspection, and pre-processing. Next, we demonstrate the use of a
machine-learning model (provided in AiTLAS) for a given dataset as well as the evaluation
of the model performance (through different evaluation measures, confusion matrices,
and visualizations). Moreover, we show how users can utilize previously trained models

Remote Sens. 2023, 15, 2343 14 of 48

for making predictions on unseen images and quantitatively and qualitatively analyze
the obtained results. Finally, we provide recipes for including new machine-learning
architectures into the AiTLAS toolbox.

3.1. Image Classification

We start with a showcase of image scene classification. Note that the presented
examples (and the obtained results) can be easily reproduced via a Jupyter notebook
presented and further discussed in Appendix C. Moreover, an extensive analysis, performed
using AiTLAS, of more than 500 DL models across a variety of multi-class and multi-label
image classification tasks is presented in [3].

3.1.1. Data Understanding and Preparation

Currently, the aitlas.datasets module includes 22 ready-to-use datasets for EO image
scene classification. To use these datasets, one needs to set the location of the images and a
csv file with the labels for each image. The loaded images can then be transformed (i.e., via
data augmentation), inspected, and visualized (including summaries over the complete
dataset). In the following, we show the process of adding a new dataset and illustrate the
capabilities for exploratory analysis.

For this purpose, we use the CLRS dataset [42] as a running example without loss of
generality of the aitlas.datasets module. The CLRS dataset (available at https://github.
com/lehaifeng/CLRS (accessed on 8 March 2023)) is designed for the task named contin-
ual/lifelong learning for EO image scene classification [42]. It comprises 15,000 remote
sensing images covering over 100 countries divided into 25 scene classes. Each class is
associated with 600 images with a size of 256 × 256 pixels and spatial resolution in the
range of 0.26 m to 8.85 m.

Given that the dataset is shared without predefined splits (for training/validation/test-
ing), we can first create them using the split task within the aitlas.tasks module. The
user needs to only specify the data location and the ratios (in percentages) for the de-
sired splits (e.g., here, we use 60/20/20 splits). The split task will output three separate
csv files for each split, where each row in the csv denotes the relative path of the im-
age (including the sub-folder name and the file name) and its label. For reproducibility,
we provide further details in Appendix B and already prepared dataset (available at
https://github.com/biasvariancelabs/aitlas-arena (accessed on 8 March 2023)).

Next, through the class MultiClassClassificationDataset from the aitlas.datasets mod-
ule, one can load a new dataset as shown in Listing 1. This class also implements additional
data transformations, which can be applied if necessary.

Listing 1. Loading an MCC dataset for remote sensing image scene classification using the Multi-
ClassClassificationDataset class from the AiTLAS toolbox.

1 dataset_config = {
2 "data_dir": "/datasets/CLRS",
3 "csv_file": "/datasets/CLRS/images.csv" }
4 dataset = MultiClassClassificationDataset(dataset_config)

Loading a completely new dataset (beyond the ones currently supported within
AiTLAS) can be achieved by explicitly defining a new data loader class that inherits from
the class MultiClassClassificationDataset. Within the definition of the class, one needs to
manually set the list of the labels/classes (with labels matching the labels provided from
the csv file). One can also provide additional meta-data (such as name and URL) together
with additional methods for data manipulation. Listing 2 provides a recipe for this using
the CLRS dataset.

https://github.com/lehaifeng/CLRS
https://github.com/lehaifeng/CLRS
https://github.com/biasvariancelabs/aitlas-arena

Remote Sens. 2023, 15, 2343 15 of 48

Listing 2. Adding a new MCC dataset in the AiTLAS toolbox.

1 from .multiclass_classification import MultiClassClassificationDataset
2

3 LABELS = ["airport", "bare-land", "beach", "bridge", "commercial",
4 "desert", "farmland", "forest", "golf-course", "highway",
5 "industrial", "meadow", "mountain", "overpass", "park",
6 "parking", "playground", "port", "railway", "railway-station",
7 "residential", "river", "runway", "stadium", "storage-tank"]
8

9 class CLRSDataset(MultiClassClassificationDataset):
10

11 url = "https://github.com/lehaifeng/CLRS"
12 labels = LABELS
13 name = "CLRS dataset"
14

15 def __init__(self, config):
16 super().__init__(config)

Once the dataset is ready, one can use methods from the aitlas.visulizataion module
for data visualization and inspection. For instance, one can easily plot images from the
dataset (as shown in Figure 6) and analyze their properties in terms of data distributions. A
more detailed discussion of data exploration capabilities is given in Appendix C.

Figure 6. Example images with labels from the CLRS dataset.

3.1.2. Definition, Execution, and Analysis of a Machine Learning Pipeline

Given a dataset, we next focus on setting an approach that supports an image scene
classification task. In this use case, we employ the Vision Transformer (ViT) model [76].
Specifically, we use a ViT with an input size of 224 × 224 and a patch resolution of
16 × 16 pixels. We showcase a pipeline with two variants: (i) a model “trained from
scratch” using the CLRS dataset and (2) a pre-trained model on ImageNet-1K and then
fine-tuned on the CLRS dataset. Note that the ViT model is trained/fine-tuned using the
data splits we defined earlier.

We configure the model by setting several configuration parameters, i.e., the number of
classes/labels, the learning rate, and the evaluation metrics. To use the pre-trained variant
of the Vision Transformer (pre-trained on the ImageNet-1k dataset) in the configuration
object, we also set the pre-trained parameter to true. We fine-tune the model on the
CLRS dataset by calling the function train_and_evaluate_model. The code snippet for
instantiating the model and running the training sequence is given in Listing 3.

Remote Sens. 2023, 15, 2343 16 of 48

Listing 3. Creating a model and executing model training.

1 epochs = 100
2 model_directory = "/experiments/CLRS"
3 model_config = {
4 "num_classes": 25,
5 "learning_rate": 0.0001,
6 "pretrained": True,
7 "metrics": ["accuracy", "precision", "recall", "f1_score"]}
8 model = VisionTransformer(model_config)
9 model.prepare()

10 model.train_and_evaluate_model(
11 train_dataset=train_dataset ,
12 epochs=epochs,
13 model_directory=model_directory ,
14 val_dataset=validation_dataset ,
15 run_id=’1’,)

To evaluate the learned model, we load the dataset’s test split, set the evaluation
metrics list, and run the evaluation sequence on the test data (Listing 4). Note that the
predictive performance of the models in this setting is typically assessed by top-n accuracy
score (typically n is set to 1 or 5) [65]. This score calculates the number of correctly predicted
labels among the n most probable labels the model outputs. Besides accuracy, AiTLAS
supports additional prediction performance metrics such as Macro Precision, Weighted
Precision, Macro Recall, Weighted Recall, Macro F1 score, and Weighted F1 score, etc.

Listing 4. Evaluating a trained model using images from the test split.

1 test_dataset_config = {
2 "batch_size": 128,
3 "shuffle": False,
4 "data_dir": "/dataset/CLRS",
5 "csv_file": "/dataset/CLRS/test.csv",
6 "transforms": ["aitlas.transforms.ResizeCenterCropToTensor"]}
7 test_dataset = CLRSDataset(test_dataset_config)
8 model_path = "best_checkpoint.pth.tar"
9 model.metrics = ["accuracy", "precision", "recall", "f1_score"]

10 model.running_metrics.reset()
11 model.evaluate(dataset=test_dataset , model_path=model_path)
12 model.running_metrics.get_scores(model.metrics)

Finally, once the model has been trained and evaluated, users can analyze their
performance. In this particular example, the ViT model that was first pre-trained on
ImageNet-1K achieved an accuracy of 93.20%, substantially outperforming the counterpart
trained from scratch, which obtained an accuracy of 65.47%. The performance can also be
investigated via confusion matrices (Figure 7), allowing for a more fine-grained analysis
of the model performance on individual classes. Finally, using AiTLAS, users can further
analyze the predictions made by the model’s Grad-CAM [118] activation maps. For instance,
Figure 8 presents a sample output obtained from the ViT model, highlighting where the
model focused when making the correct (or incorrect) predictions. This capability allows
for further validation and diagnosis of the models.

Remote Sens. 2023, 15, 2343 17 of 48

ai
rp

or
t

ba
re

-la
nd

be
ac

h

br
id

ge

co
m

m
er

cia
l

de
se

rt

fa
rm

la
nd

fo
re

st

go
lf-

co
ur

se

hi
gh

wa
y

in
du

st
ria

l

m
ea

do
w

m
ou

nt
ai

n

ov
er

pa
ss

pa
rk

pa
rk

in
g

pl
ay

gr
ou

nd po
rt

ra
ilw

ay

ra
ilw

ay
-s

ta
tio

n

re
sid

en
tia

l

riv
er

ru
nw

ay

st
ad

iu
m

st
or

ag
e-

ta
nk

airport

bare-land

beach

bridge

commercial

desert

farmland

forest

golf-course

highway

industrial

meadow

mountain

overpass

park

parking

playground

port

railway

railway-station

residential

river

runway

stadium

storage-tank

97% 0% 0% 0% 1% 0% 0% 0% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 1% 0% 0% 0% 1% 0% 0%

0% 96% 0% 0% 0% 2% 1% 0% 0% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 1% 98% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1% 0% 0% 0%

0% 0% 0% 92% 1% 0% 0% 0% 0% 1% 0% 0% 0% 2% 1% 0% 0% 0% 0% 0% 0% 3% 0% 0% 0%

0% 0% 0% 2% 86% 0% 0% 0% 0% 3% 3% 0% 0% 0% 0% 0% 1% 0% 0% 2% 2% 0% 0% 1% 0%

0% 2% 0% 0% 0% 98% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 0% 0% 0% 0% 0% 99% 0% 0% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 0% 0% 0% 0% 0% 0%100%0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 0% 0% 0% 0% 0% 0% 0% 94% 0% 0% 1% 1% 0% 4% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 1% 0% 0% 2% 0% 1% 0% 0% 88% 1% 0% 0% 4% 0% 1% 2% 0% 0% 0% 0% 0% 1% 0% 1%

0% 1% 0% 0% 4% 0% 0% 0% 0% 0% 86% 0% 0% 1% 0% 0% 0% 1% 0% 1% 4% 2% 0% 0% 1%

0% 1% 0% 0% 0% 0% 1% 0% 0% 0% 0% 98% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 2% 0% 0% 0% 0% 1% 0% 0% 0% 0% 0% 98% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 0% 0% 2% 0% 0% 0% 0% 0% 1% 0% 0% 0% 94% 2% 0% 0% 0% 1% 0% 0% 1% 0% 0% 0%

0% 0% 0% 1% 0% 0% 0% 0% 4% 0% 1% 0% 0% 0% 89% 1% 1% 0% 0% 0% 0% 2% 0% 0% 1%

1% 0% 0% 0% 1% 0% 0% 0% 0% 1% 1% 0% 0% 1% 1% 93% 0% 0% 0% 0% 1% 0% 0% 1% 0%

0% 1% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 1% 0% 0% 96% 0% 0% 0% 1% 0% 0% 1% 0%

0% 0% 1% 2% 2% 0% 0% 0% 1% 0% 0% 0% 0% 1% 1% 0% 0% 90% 0% 0% 1% 1% 0% 0% 0%

0% 0% 0% 0% 0% 0% 0% 0% 0% 1% 0% 0% 0% 0% 1% 0% 0% 0% 89% 8% 0% 0% 0% 0% 1%

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 2% 0% 0% 0% 0% 0% 0% 0% 11%86% 0% 0% 0% 2% 0%

0% 0% 0% 0% 8% 0% 1% 0% 0% 1% 0% 0% 0% 1% 1% 0% 0% 0% 0% 0% 89% 0% 0% 0% 0%

0% 0% 0% 2% 0% 0% 2% 0% 0% 0% 1% 0% 0% 0% 0% 0% 0% 2% 0% 0% 0% 93% 0% 0% 0%

1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 98% 0% 0%

1% 0% 0% 0% 2% 0% 0% 0% 0% 0% 1% 0% 0% 0% 3% 0% 2% 0% 0% 0% 0% 0% 0% 91% 0%

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1% 0% 0% 0% 2% 0% 0% 2% 2% 0% 0% 0% 0% 0% 93%
0

20

40

60

80

100

Figure 7. Confusion matrix obtained from a pre-trained Vision Transformer model applied on the
CLRS dataset. The values denote percentages of correctly/incorrectly predicted labels.

Figure 8. GradCAM visualizations for images, sampled from the CLRS dataset: (top) input images
with their ground-truth label, (bottom) corresponding activation maps with predicted labels (from a
ViT model).

A detailed discussion on the pipeline is presented in Appendix C, including templates
for model learning, evaluation, and inspection, as well as guidelines on using the learned
models for predicting tasks with unseen images.

3.2. Semantic Segmentation

In this section, we discuss the utility of the AiTLAS toolbox for semantic segmentation
tasks. For this use case, we use the LandCover.ai (Land Cover from Aerial Imagery)
dataset [119] and employ a DeepLabV3 model to perform the semantic segmentation task.
The presented use case (together with the obtained results) can be easily reproduced using
the Jupyter notebook presented and discussed in Appendix D.

Remote Sens. 2023, 15, 2343 18 of 48

3.2.1. Data Understanding and Preparation

LandCover.ai (Land Cover from Aerial Imagery) (available at https://landcover.ai.
linuxpolska.com/download/landcover.ai.v1.zip (accessed on 8 March 2023)) is a dataset
for automatic mapping of buildings, woodlands, water, and roads from aerial images [119].
It contains a selection of aerial images taken over the area of Poland. The images have
a spatial resolution of 25 or 50 cm per pixel with three spectral bands (RGB bands). The
original 41 images and their corresponding masks are split into 512 × 512 tiles. The tiles
are then shuffled and organized into 70%/15%/15% of the tiles for training, validation,
and testing, respectively.

AiTLAS implements data loaders for creating, loading, and preparing datasets for
semantic segmentation. Specifically, the class SemanticSegmentationDataset from the
aitlas.datasets module is the base class for creating a dataset, which loads images and

the corresponding segmentation masks from a csv file. For example, in this case, this is
performed within the instanced LandCoverAiDataset (presented in Listing 5), which sets the
labels and their color mapping (used only for visualization as presented in Figure 9). A
complete example of the data inspection capabilities is given in Appendix D.

Listing 5. Adding a new dataset for semantic segmentation in the AiTLAS toolbox.

1 class LandCoverAiDataset(SemanticSegmentationDataset):
2 url = "https://landcover.ai.linuxpolska.com/"
3 labels = ["Background", "Buildings", "Woodlands", "Water", "Road"]
4 color_mapping = [[255, 255, 0], [0, 0, 0], [0, 255, 0], [0, 0, 255], [200, 200,

200]]
5 name = "Landcover AI"
6

7 def __init__(self, config):
8 super().__init__(config)

(a) (b)
Figure 9. Example images with masks from the LandCover.ai dataset. Each pixel is labeled with one
of the following labels: background (yellow), buildings (black), woodlands (green), water (blue) and
road (gray) (a) and pixel distribution within the labels (b).

3.2.2. Definition, Execution and Analysis of a Machine Learning Pipeline

Once the dataset has been appropriately set, we focus on setting, training, and evalu-
ating the models. For this use case, we train two variants of DeepLabV3 models: (i) one
“trained from scratch” using only the LandCover.ai dataset, and (2) a model with pre-trained
weights on a subset of the COCO dataset [120] (using only the 20 categories also present in
the Pascal VOC dataset [66]), subsequently fine-tuned on LandCover.ai dataset. Listing 6
presents the AiTLAS configuration for setting and executing the training procedure. We
use mean intersection over union (mIoU) as an evaluation measure, which denotes the
area of the overlap between the ground truth and predicted label divided by the total area,
averaged across the different labels.

https://landcover.ai.linuxpolska.com/download/landcover.ai.v1.zip
https://landcover.ai.linuxpolska.com/download/landcover.ai.v1.zip

Remote Sens. 2023, 15, 2343 19 of 48

Listing 6. Creating an instance of a DeepLabv3 model and executing model training.

1 epochs = 100
2 model_directory = "/experiments/landcoverai"
3 model_config = {
4 "num_classes": 5,
5 "learning_rate": 0.0001,
6 "pretrained": True,
7 "threshold": 0.5,
8 "metrics": ["iou"] }
9

10 model = DeepLabV3(model_config)
11 model.prepare()
12 model.train_and_evaluate_model(
13 train_dataset=train_dataset ,
14 val_dataset=validation_dataset ,
15 epochs=epochs,
16 model_directory=model_directory ,
17 run_id=’1’)

Once the training routine has finished, evaluating the model can be performed as
presented in Listing 7.

Listing 7. Evaluating a trained DeepLabv3 model using images from the test split.

1 test_dataset_config = {
2 "batch_size": 4,
3 "shuffle": False,
4 "data_dir": "/dataset/landcoverai/images",
5 "csv_file": "/dataset/landcoverai/test.txt",
6 "transforms": ["aitlas.transforms.MinMaxNormTranspose"],
7 "target_transforms": ["aitlas.transforms.Transpose"]
8 }
9

10 test_dataset = LandCoverAiDataset(test_dataset_config)
11 model_path = "/experiments/landcoverai/best_checkpoint.pth.tar"
12 model.metrics = ["iou"]
13 model.running_metrics.reset()
14 model.evaluate(dataset=test_dataset , model_path=model_path)
15 model.running_metrics.get_scores(model.metrics)

The results presented in Table 7 summarize the segmentation performance of the
trained models. In this example, both DeepLabv3 models resulted in a similar performance,
with the pre-trained model having a (practically) insignificantly better performance than its
counterpart trained from scratch. In general, the values of the IoU for the labels ‘Road’ and
‘Building’ are lower than the other labels since they are usually narrow (roads) and/or often
small (buildings), thus typically challenging for segmentation models. Running additional
experiments with different model architectures, setups, and datasets is straightforward
within AiTLAS, requiring only simple modifications to the presented routines. Additional
templates for this task, including additional visualizations and application of the model to
external images, are given in Appendix D.

Table 7. Label-wise IoU(%) and mIoU for the DeepLabv3 models trained on the Land-
Cover.ai dataset.

Model/Label Background Buildings Woodlands Water Road mIoU Training Time

Trained from scratch 93.813 80.304 91.952 94.877 69.190 86.027 4.5 h
Pre-trained on COCO 93.857 80.650 91.964 95.145 68.846 86.093 5 h

3.3. Object Detection

We next discuss using the AiTLAS toolbox for object detection. In this use case, we
show using a Faster R-CNN model on the HRRSD dataset [52]. All of the necessary details
of the developed resources are further given in Appendix E.

Remote Sens. 2023, 15, 2343 20 of 48

3.3.1. Data Understanding and Preparation

The AiTLAS toolbox supports the representation of the data for the object detection
task through its aitlas.datasets module via the base classes ObjectDetectionPascalDataset
and ObjectDetectionCocoDataset. They implement the two most widely used data represen-
tation formats for object detection: PascalVOC [121] and COCO [120], respectively. More
specifically, the Pascal VOC format includes an XML file for each image in the dataset
containing information about the bounding boxes of the objects present in the image,
together with some additional metadata such as category/label, level of difficulty, and
an indicator of whether the object is truncated (partially visible). On the other hand, the
COCO annotation format stores the annotations in JSON files for the training, testing, and
validation parts of the data. The JSON file contains a list of each object annotation from
every image in the dataset. The annotation includes coordinates for the bounding box, the
area of the bounding box, category/label, and an ‘iscrowd’ indicator for the number of
objects in an image (which is 0 for single objects or 1 for a collection of objects).

The HRRSD (available at https://github.com/CrazyStoneonRoad/TGRS-HRRSD-
Dataset (accessed on 8 March 2023)) [52,122] dataset contains 21,761 color images acquired
from Google Earth with spatial resolution ranging from 0.15 to 1.2 m, and 4961 color images
acquired from Baidu Maps with a spatial resolution ranging from 0.6 to 1.2 m. The dataset
is divided into a training portion (5401 images), a validation portion (5417 images), and a
test portion (10,943 images). An image from the dataset may contain several objects or just
one and may contain objects from the 13 different categories/labels. The total number of
object instances is 55,740.

Similarly to the use cases presented earlier, loading a dataset into AiTLAS involves
instantiating ObjectDetectionPascalDataset, as shown in Listing 8. The class ObjectDetection-
PascalDataset implements additional functionalities for further inspection of the loaded data.
For example, one can visualize images from the dataset (as shown in Figure 10) coupled
with the number of instances for each category within the dataset.

Listing 8. Loading HRRSD dataset using the class ObjectDetectionPascalDataset from the AiTLAS
toolbox.

1 dataset_config = {
2 "image_dir": "/datasets/HRRSD/images",
3 "annotations_dir": "/datasets/HRRSD/annotations",
4 "imageset_file": "/datasets/HRRSD/train.txt", }
5

6 dataset = ObjectDetectionPascalDataset(dataset_config)

Figure 10. Example images with bounding boxes for the objects from the HRRSD dataset.

3.3.2. Definition, Execution and Analysis of a Machine Learning Pipeline

As mentioned earlier, in this use case, we use the Faster R-CNN model with a ResNet-
50-FPN backbone [84]. Specifically, here we also train and evaluate two variants of the
model: “trained from scratch” using the HRRSD dataset and a pre-trained model on the
COCO dataset [66] and then fine-tuned on the HRRSD dataset. The code snippet for

https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset

Remote Sens. 2023, 15, 2343 21 of 48

creating and training these models is shown in Listing 9. To evaluate the models, one needs
to create a configuration object for the training split of the HRRSD data, load the data, set
the path to the trained model, and run the evaluation process (as shown in Listing 10).
As an evaluation measure, we use the mean average precision (mAP) as defined in the
Pascal VOC Challenge [121], computed as the average precision value taken at recall values
ranging from 0 to 1 (i.e., the area under the precision/recall curve) and then averaged over
all classes. The performance of object detection models can also be evaluated using IoU
between the predicted and ground-truth bounding boxes.

Listing 9. Creating an instance of a Faster R-CNN model and executing model training.

1 epochs = 100
2 model_directory = "/experiments/hrrsd"
3 model_config = {
4 "num_classes": 14,
5 "learning_rate": 0.0001,
6 "pretrained": True,
7 "threshold": 0.5,
8 "metrics": ["map"] }
9

10 model = FasterRCNN(model_config)
11 model.prepare()
12 model.train_and_evaluate_model(
13 train_dataset=train_dataset ,
14 val_dataset=validation_dataset ,
15 epochs=epochs,
16 model_directory=model_directory ,
17 run_id=’1’
18)

Listing 10. Testing a trained model with images from the test split.

1 test_dataset_config = {
2 "batch_size": 4,
3 "shuffle": False,
4 "image_dir": "/datasets/HRRSD/images",
5 "annotations_dir": "/datasets/HRRSD/annotations",
6 "imageset_file": "/datasets/HRRSD/test.txt",
7 "joint_transforms": ["aitlas.transforms.ResizeToTensorV2"] }
8

9 test_dataset = ObjectDetectionPascalDataset(test_dataset_config)
10 model_path = "/experiments/hrrsd/best_checkpoint.pth.tar"
11 model.metrics = ["map"]
12 model.running_metrics.reset()
13 model.evaluate(dataset=test_dataset , model_path=model_path)
14 model.running_metrics.get_scores(model.metrics)

The results of this particular use case show that the pre-trained Faster R-CNN model
leads to an mAP of 81.436%, outperforming the variant trained from scratch with an mAP
of 77.412%. Further investigation shows that, in this case, the most challenging objects
to detect are ’Crossroad’ and ’T Junction’ (due to the similarity of both objects). AiTLAS
allows for further quantitative analysis of these results by examining the predicted outputs
(images with the detected objects and the categories/labels for each object) as shown in
Figure 11. Further details for this use case are presented in Appendix E.

Remote Sens. 2023, 15, 2343 22 of 48

Figure 11. Example images with the predicted bounding boxes and object labels (‘ship’, ‘T junction’
and ‘airplane’, respectively) using a Faster R-CNN model.

3.4. Crop Type Prediction

For our last use case, we show the capabilities of the AiTLAS toolbox on the task of
crop type prediction. For this purpose, we train and evaluate an LSTM model applied
to the AiTLAS NLD dataset [63]. Merdjanovska et al. [63] present an extensive analysis
of this task, performed using the AiTLAS toolbox, comparing the performance of several
state-of-the-art deep-learning architectures. All of the developed resources for this use case
are also presented and discussed in Appendix F.

3.4.1. Data Understanding and Preparation

Typically, the data format for crop-type prediction tasks is different compared to data
for the other EO tasks because of their temporal component that needs to be taken into
consideration. The AiTLAS toolbox supports crop-type prediction datasets via the base
class CropsDataset and the EOPatchCrops class (a wrapper for working with EOPatches [23]).
The EOPatch format stores multi-temporal remotely sensed data of a single patch of the
Earth’s surface as constrained by the bounding box in a given coordinate system. The patch
can be a rectangle, polygon, or pixel in space. The same object can also be used to store
derived measures and indices from the patch, such as means, standard deviations, etc.

The AiTLAS NLD dataset [63] consists of Sentinel 2 data, resampled at 10-day intervals
in the periods of March–November of 2017, 2018, and 2019 (resulting in 28 distinct dates for
each year). We use images from 10 m and 20 m bands which contain eight spectral bands:
B3, B4, B5, B6, B7, B8, B11, and B12. Additionally, the dataset contains three calculated
indices: NDVI (normalized difference vegetation index), NDWI (normalized difference
water index), and brightness (euclidean norm). Each polygon observation describes the
temporal profile of a crop field and is associated with multivariate time series obtained
by averaging the reflectance values at a crop-field level extracted from the Sentinel 2 data.
In this way, each polygon is represented as a two-dimensional vector: the first dimension
represents the (11) spectral bands, and the second one the (28) time steps. The crop type
data categorization was created from the Land Parcel Identification System (LPIS). Each
crop type label describes one crop field (or parcel), which in turn is identified with a
polygon border. Figure 12 shows an example of the different field geometry present in
the data.

Remote Sens. 2023, 15, 2343 23 of 48

Figure 12. Example field geometries for the AiTLAS NLD dataset. The different colors of the polygons
in the sample represent different crop types.

The loading configuration (shown on Listing 11) of such data includes mapping the
path to the data, an index file (a separate csv file) which contains the class mappings of
each polygon/patch, as well as the train/validation/test data splits (in terms of regions) for
running the ML pipeline. Users can also specify other attributes for working with datasets,
such as batch size, data shuffling, and the number of workers.

Listing 11. Loading the AiTLAS NLD dataset.

1 dataset_config = {
2 "root": "/home/user/data/CropTypeNetherlands/2019/",
3 "csv_file_path": "index.csv",
4 "batch_size": 128,
5 "shuffle": True,
6 "num_workers": 4,
7 "regions":["train", "test", "val",],
8 }
9 dataset = EOPatchCrops(dataset_config)

3.4.2. Definition and Execution of Machine Learning Tasks

AiTLAS casts the task of crop type prediction as a multi-class classification task,
defined with the BaseMulticlassClassifier class, within the aitlas.base module. To illustrate
the use of AiTLAS for crop type prediction, we use an LSTM model [87]. Specifically, we
perform experiments on the AiTLAS NLD dataset independently for each of the three years.
The goal is to examine the models’ behavior and performance and how it varies across the
years. For measuring the models’ predictive performance, we use standard metrics such as
accuracy, weighted F1 score, and Kappa coefficient. In the context of AiTLAS, initializing
and creating the training routine is straightforward: one needs to set the model parameters
in the configuration object, instantiate the model, and run the training sequence (as shown
in Listing 12).

Remote Sens. 2023, 15, 2343 24 of 48

Listing 12. Creating an instance of an LSTM model and executing model training.

1 epochs = 100
2 model_directory = "./experiments/LSTM"
3 model_config = {
4 "input_dim":11,
5 "num_classes": 10,
6 "learning_rate": 0.001,
7 "dropout" : 0.2,
8 "weight_decay": 0.0001,
9 "metrics":["accuracy","f1_score", "kappa"] }

10 model = LSTM(model_config)
11 model.prepare()
12 model.train_and_evaluate_model(
13 train_dataset=train_dataset ,
14 epochs=epochs,
15 model_directory=model_directory ,
16 val_dataset=validation_dataset ,
17 run_id=’1’,)

Once the model is trained, one can evaluate the model in a predictive setting with
unseen data (Listing 13). In this example, the trained LSTM model shows consistent
performance (across the three datasets/years) with accuracy in the range of ∼84–85%
and a weighted F1 score in the range ∼82–84%. AiTLAS allows for more fine-grained
per-label analysis of the model performance. For instance, in this example, the F1 score for
Temporary grasses and grazings in 2017 is 45.23, while in 2018 raises to 59.34. Such insights can
further help diagnose and improve the model’s performance. Finally, AiTLAS also supports
qualitative prediction analysis through visualizations of the predicted regions (and their
labels). Further details of this use case, including complete results of the experiments, are
given in Appendix F.

Listing 13. Evaluating a trained LSTM model.

1 labels = ["Permanent grassland", "Temporary grasses and grazings", "Green maize",
"Potatoes (including seed potatoes)",

2 "Common winter wheat and spelt", "Sugar beet (excluding seed)", "Other farmland",
"Onions",

3 "Flowers and ornamental plants (excluding nurseries)", "Spring barley",]
4

5 test_dataset_config = {
6 "batch_size": 32,
7 "shuffle": False,
8 "num_workers": 4,
9 "root": "/home/user/data/CropTypeNetherlands/2019/",

10 "csv_file_path": "index.csv",
11 "regions":["test",],}
12

13 test_dataset = EOPatchCrops(test_dataset_config)
14 y_true, y_pred, y_prob = model.predict(dataset=test_dataset ,)
15

16 eopatches_path = "/home/user/data/CropTypeNetherlands/2019/eopatches/"
17 patch = "eopatch_7495"

3.5. Adding a New Machine Learning Model in AiTLAS

In the use cases discussed previously, we showcased the capability of AiTLAS with
the already available methods and model architectures. However, AiTLAS is modular
and easily extensible to new approaches. Here we present a template for adding novel
model architectures into the AiTLAS toolbox. This includes instantiating from one of the
model base classes from the aitlas.base module, which corresponds to a particular EO
task. For instance, adding a new model for image scene classification, such as EfficientNetV2
as implemented in the PyTorch [66] model catalog. The model can be added by creating an
inherited class from BaseMulticlassClassifier, which already implements all the requirements
to train a deep-learning model successfully.

Remote Sens. 2023, 15, 2343 25 of 48

Namely, the implementation (e.g., Listing 14) includes initialization of the model
variable from the base class and overriding the forward function. In the init function,
the model variable is initialized using the efficientnet_v2_m function, which constructs
the EfficientNetV2-M architecture introduced by Tan and Le [123]. Users can also include
pre-trained model variants by setting the variable ’pretrained’, which will lead to setting a
pre-trained model from the ImageNet-1K dataset. The newly added EfficientNetV2 model
can then be used for remote sensing image scene classification in a similar manner as the
use case presented in Section 3.1.

Listing 14. Adding EfficientNetV2 as a new model for remote sensing image scene classification in
the AiTLAS toolbox.

1 import torchvision.models as models
2 import torch.nn as nn
3

4 from ..base import BaseMulticlassClassifier , BaseMultilabelClassifier
5

6 class EfficientNetV2(BaseMulticlassClassifier):
7 name = "EfficientNetV2"
8

9 def __init__(self, config):
10 super().__init__(config)
11 if self.config.pretrained:
12 self.model = models.efficientnet_v2_m(
13 weights=models.EfficientNet_V2_M_Weights.IMAGENET1K_V1 ,
14 progress=False
15)
16 in_features = self.model.classifier[1].in_features
17 self.model.classifier[1] = nn.Linear(
18 in_features , self.config.num_classes
19)
20 else:
21 self.model = models.efficientnet_v2_m(
22 weights=None, progress=False,
23 num_classes=self.config.num_classes
24)
25

26 def forward(self, x):
27 return self.model(x)

4. Conclusions

We present AiTLAS (https://aitlas.bvlabs.ai (accessed on 8 March 2023)), an open-
source, state-of-the-art toolbox for exploratory and predictive analysis of satellite imagery.
AiTLAS is a versatile Python library applicable to a variety of different tasks from EO,
such as image scene classification, image segmentation, object detection, and crop type
prediction (time series classification) tasks. It provides the means for straightforward
construction and execution of complete end-to-end EO pipelines catering to users’ needs
with different goals, domain backgrounds, and levels of expertise.

From an EO perspective, where users typically focus on a particular application, AiT-
LAS supports building complete data analysis pipelines starting from data preparation and
understanding of the data, through leveraging state-of-the-art deep-learning architectures
for various predictive tasks, to quantitative and qualitative analysis of the predicted out-
comes. As such, the capabilities of AiTLAS expand significantly in comparison to other
related libraries such as eo-learn [23], OTB [26], and CANDELA [28]. Namely, in addition
to data handling, AiTLAS implements approaches for model learning, be they training
models from scratch or employing/fine-tuning pre-trained models freely available via the
AiTLAS model catalog. Moreover, AiTLAS provides an additional, more comprehensible,
configuration layer for executing EO data-analysis pipelines that do not require significant
familiarity with the underlining machine-learning technologies. We believe this capability
substantially flattens the learning curve for constructing and executing novel EO data anal-

https://aitlas.bvlabs.ai

Remote Sens. 2023, 15, 2343 26 of 48

ysis pipelines. From an AI perspective, AiTLAS implements the necessary components for
implementing novel methods for EO data analysis, both in terms of (novel) deep-learning
architectures as well as approaches for data handling/transformation. Moreover, it further
facilitates the development of new approaches by providing easy access to formalized
AI-ready data (via the AiTLAS EO data catalog) and their evaluation via standardized and
extensive benchmark framework [3].

The main motivation of AiTLAS is bringing together the AI and EO communities by
providing extensible, easy-to-use, and, more importantly, open-source resources for EO
data analysis. The design principles of AiTLAS, showcased in this work, build on this
motivation by providing:

1. User-friendly, accessible, and interoperable resources for data analysis through easily
configurable and readily usable pipelines. The resources can be easily adapted by
adjusting the configuration (JSON) files to a specific task at hand.

2. Standardized, verifiable, and reusable data handling, wrangling, and pre-processing
approaches for constructing AI-ready data. The AiTLAS datasets are readily avail-
able for use through the toolbox and accessible through its EO data catalog (http:
//eodata.bvlabs.ai) , which incorporates FAIR [124] ontology-based semantic (meta)
data descriptions of AI-ready datasets;

3. Modular and configurable modeling approaches and (pre-trained) models. The im-
plemented approaches can be easily adjusted to different setups and novel analysis
pipelines. Moreover, AiTLAS includes the most extensive open-source catalog of
pre-trained EO deep-learning models (currently with more than 500 models) that
have been pre-trained on a variety of different datasets and are readily available for
practical applications.

4. Standardized and reproducible benchmark protocols (for data and models) that are
essential for developing trustworthy, reproducible, and reusable resources. AiTLAS
provides the resources and the necessary mechanisms for reconciling these protocols
across tasks, models (and model configurations), and processing details of the datasets
being used.

The development of AiTLAS is an ongoing effort. We foresee its evolution in three
primary directions. First, it will continue to keep pace with the growing body of resources
developed by the AI4EO community, continuously extending the catalogs of available
AI-ready EO datasets and novel mode architectures. Second, and more application focused,
we will continue the development of templates for specific use cases and pipelines tailored
for different domains (such as agriculture, urban planning, geology, archaeology, etc.).
Third, we will focus on extending the AiTLAS capabilities with self-supervised learning
(SSL) approaches as a response to various practical challenges akin to costly and tedious
labeling processes of large amounts of unlabeled data [125]. We believe that such extensions
will bring many practical benefits in different downstream applications [99,126–128], which
will undoubtedly further increase the utility of AiTLAS.

Author Contributions: Conceptualization, I.D., N.S. and D.K.; methodology, I.D., I.K. N.S. and
D.K.; software, I.D. and I.K.; validation, I.D., I.K. and N.S.; formal analysis, I.D., I.K., N.S. and
D.K.; investigation, I.D., I.K., N.S. and D.K.; resources, I.D., I.K., N.S.; data curation, A.K. and P.P. ;
writing—original draft preparation, I.D., I.K. and D.K.; writing—review and editing, A.K., P.P., N.S. ;
visualization, I.D. and N.S.; supervision, D.K.; project administration, D.K.; funding acquisition, N.S.,
P.P. and D.K. All authors have read and agreed to the published version of the manuscript.

Funding: The AiTLAS toolbox is developed within the grant from the European Space Agency
(ESRIN): AiTLAS–Artificial Intelligence toolbox for Earth Observation (ESA RFP/3-16371/19/I-NB)
awarded to Bias Variance Labs, d.o.o.

Data Availability Statement: AiTLAS toolbox is available at https://aitlas.bvlabs.ai (accessed on 8
March 2023), together with the accompanying results and the Jupyter notebooks from the use cases.
The datasets used in the use cases are described and available at the AiTLAS EO data repository
http://eodata.bvlabs.ai (accessed on 8 March 2023). Further benchmark experiments, including pre-

http://eodata.bvlabs.ai
http://eodata.bvlabs.ai
https://aitlas.bvlabs.ai
http://eodata.bvlabs.ai

Remote Sens. 2023, 15, 2343 27 of 48

trained models for image scene classification, are available at https://github.com/biasvariancelabs/
aitlas-arena (accessed on 8 March 2023).

Acknowledgments: We thank Žiga Kokalj, Sveinung Loekken, Sara Aparicio, Bertrand Le Saux,
Elena Merdjanovska, Stefan Popov, Stefan Kalabakov and Sašo Džeroski—for their useful feedback
and support during the development of AiTLAS. We also thank Sofija Dimitrovska for her thoughtful
feedback on the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Third-Party Dependencies

Table A1. Third-party libraries used by AiTLAS described with their scope of usage and purpose
within our toolbox.

Library Scope of Usage Purpose

PyTorch Vision [66] aitlas.models Pre-built deep-learning model architectures.
PyTorch Image Models [72] aitlas.models Pre-built deep-learning model architectures.
Segmentation Models Py-
Torch [79]

aitlas.models Pre-built deep-learning model architectures specifically for segmenta-
tion tasks.

Albumentations [129] aitlas.transforms Applying transormations and augmentations.
NumPy [130] aitlas.base General scientific computing
Scikit-learn [131] aitlas.base Used for metric calculations
Scikit-multilearn [132] aitlas.tasks Used for stratified dataset splitting.
Seaborn [133] aitlas.visualizations For visualizations.
Matplotlib [133] aitlas.visualizations For visualizations
TensorBoard [27] aitlas.base Enable logging the train/validation loss during model training as well

as any other supported metrics. This then allows for those statistics to
be visualized in the TensorBoard UI.

zipp [134] aitlas.utils Enables working with zip files.
dill [135] aitlas.utils Extends Python’s pickle module for serializing and de-serializing

Python objects to the majority of the built-in data types.
lmdb [136] aitlas.datasets Enables working with LMDB data.
tifffile [137] aitlas.utils Reads TIFF files from any storage.
h5py [138] aitlas.datasets Provides an interface to the HDF5 binary data format.
click [139] aitlas.base Enables creating command line interfaces.
munch [140] aitlas.base Provides attribute-style access to objects.
marshmallow [141] aitlas.base It is an ORM/ODM/framework-agnostic library for converting com-

plex data types to and from native Python data types.
Pytoch Metrics [142] aitlas.metrics Utility library used for computing performance metrics.

Appendix B. Split Task within the AiTLAS Toolbox for Creating Train, Validation and
Test Splits

When constructing a data analysis pipeline, it is common to split the available data into
separate sets/splits that can be used for model training, validation, and testing. While the
training split is used for training the ML model, the validation split is used for estimating
the optimal hyper-parameters of the model. The test split is then used to evaluate the
model’s performance on new, unseen data. In the context of remote sensing image scene
classification, the AiTLAS toolbox provides an interface for performing the splitting task to
generate these data splits. The task is very convenient as most of the datasets are published
without these splits, and it is up to the practitioner to define the splits.

The split task in the AiTLAS toolbox supports sampling strategies for generating
the splits: random and stratified. The latter method ensures that the distribution of the
target/class variable(s) is the same among the different splits [143]. The configuration
file that can be used to run the AiTLAS toolbox and obtain the required splits for a given
dataset is provided in Listing A1.

https://github.com/biasvariancelabs/aitlas-arena
https://github.com/biasvariancelabs/aitlas-arena

Remote Sens. 2023, 15, 2343 28 of 48

Listing A1. Configuration file for creating train, validation and test splits.

1 {
2 "task": {
3 "classname": "aitlas.tasks.StratifiedSplitTask",
4 "config": {
5 "split": {
6 "train": {
7 "ratio": 60,
8 "file": "./data/CLRS/train.csv"
9 },

10 "val": {
11 "ratio": 20,
12 "file": "./data/CLRS/val.csv"
13 },
14 "test": {
15 "ratio": 20,
16 "file": "./data/CLRS/test.csv"
17 }
18 },
19 "data_dir": "./data/CLRS"
20 }
21 }
22 }

An example csv file generated using the split task is given in Listing A2.

Listing A2. Example csv file with the required format by the AiTLAS toolbox for remote sensing
image scene classification datasets.

1 airport/airport_321_Level1_0.53m.tif,airport
2 storage-tank/storage-tank_489_Level1_0.50m.tif,storage-tank
3 golf-course/golf-course_374_Level3_2.05m.tif,golf-course
4 parking/parking_561_Level1_0.39m.tif,parking
5 residential/residential_77_Level1_0.49m.tif,residential
6 meadow/meadow_5_Level3_1.37m.tif,meadow
7 mountain/mountain_538_Level3_7.60m.tif,mountain
8 mountain/mountain_180_Level2_3.66m.tif,mountain

In the configuration file, the split task has to be set. In Listing A1, in order to perform
a stratified splitting of the data, we have chosen the aitlas.tasks.StratifiedSplitTask . Then,
we include the path to the folder in which the images are stored. Additionally, for the MLC
dataset, a csv file containing one-hot encoded classes or labels must be provided alongside
the images. However, for the MCC dataset, a csv file is not necessary since the images
for different classes or labels are located in separate sub-folders within the main or root
folder. We use ratios to generate the splits required for training, validation, and testing,
used to determine the proportion of images in each split. Based on these ratios, a split-task
automatically generates a csv file that contains the image names for each split. Additional
configuration files for different datasets can be found in the AiTLAS repository (https://
github.com/biasvariancelabs/aitlas/blob/master/examples/ (accessed on 8 March 2023)).

Appendix C. Remote Sensing Image Scene Classification

A Jupyter Notebook for demonstrating remote sensing image scene classification is
available in the AiTLAS repository (https://github.com/biasvariancelabs/aitlas/blob/
master/examples/multiclass_classification_example_clrs.ipynb (accessed on 8 March 2023)).
The notebook contains a step-by-step sample code for running an image scene classification
task. More specifically, we demonstrate the standard steps on how to load and split the data
and examine its label distribution. It also showcases the steps for training and evaluation
of the model and visualizing the prediction.

We use the CLRS multi-class dataset, which consists of 25 land cover classes. To
obtain the dataset, it first has to be downloaded from the repository (https://github.com/
lehaifeng/CLRS (accessed on 8 March 2023) and unzipped, after which we obtain the
data organized in subfolders containing images for each label/class. However, since the

https://github.com/biasvariancelabs/aitlas/blob/master/examples/
https://github.com/biasvariancelabs/aitlas/blob/master/examples/
https://github.com/biasvariancelabs/aitlas/blob/master/examples/multiclass_classification_example_clrs.ipynb
https://github.com/biasvariancelabs/aitlas/blob/master/examples/multiclass_classification_example_clrs.ipynb
https://github.com/lehaifeng/CLRS
https://github.com/lehaifeng/CLRS

Remote Sens. 2023, 15, 2343 29 of 48

CLRS dataset does not come with predefined train, validation, and test splits, the split task
defined within the AiTLAS toolbox is used to generate the splits. More details about the
split task can be found in Appendix B.

Next, we create an instance of the CLRSDataset class from the toolbox. To create the
instance, we provide the folder with the images and a csv file with a list of images and
labels. Additionally, we set the batch size for the data loader, the shuffle parameter to
reshuffle the data at each epoch, and we set the number of workers/sub-processes to load
the data. Listing A3 provides a code snippet illustrating how to create the instance. The
created instance loads the image data from the dataset and offers additional functionalities
for inspection and visualization.

Listing A3. Load a dataset using the AiTLAS toolbox, inspect images and calculate the class distribu-
tion.

1 dataset_config = {
2 "data_dir": "/datasets/CLRS",
3 "csv_file": "/datasets/CLRS/train.csv",
4 "batch_size": 128,
5 "shuffle": True,
6 "num_workers": 4
7 }
8 dataset = CLRSDataset(dataset_config)
9 fig = dataset.show_image(340)

10 dataset.data_distribution_table()

We can use the show_image function to display images from the dataset. To inspect the
label distribution in the dataset, we can use the data_distribution_table function. The
class distribution of the train, test, and validation splits can be calculated and presented as
shown in Figure A1.

ai
rp

or
t

ba
re

-la
nd

be
ac

h
br

id
ge

co
m

m
er

cia
l

de
se

rt
fa

rm
la

nd
fo

re
st

go
lf-

co
ur

se
hi

gh
wa

y
in

du
st

ria
l

m
ea

do
w

m
ou

nt
ai

n
ov

er
pa

ss
pa

rk
pa

rk
in

g
pl

ay
gr

ou
nd po
rt

ra
ilw

ay
ra

ilw
ay

-s
ta

tio
n

re
sid

en
tia

l
riv

er
ru

nw
ay

st
ad

iu
m

st
or

ag
e-

ta
nk

0

50

100

150

200

250

300

350

#i
m

ag
es

Train Val Test

Figure A1. Class distribution for the CLRS dataset across the training, validation, and testing splits
of the data.

In the next step, we continue specifying the model learning task by providing the
training and validation data and a deep-learning model. The code snippet for creating train
and validation datasets is given in Listing A4. Additionally, Listing A4 shows an example
of specifying the data transformation parameter. Transformations are used to process the
data to make it suitable for training. They can also augment the data to represent a more
comprehensive set of possible data points, resulting in better performance and model
generalization to address overfitting. Here we give an example of applying the ResizeRan-

Remote Sens. 2023, 15, 2343 30 of 48

domCropFlipHVToTensor on the training data, which first resizes all the images to 256 × 256,
selects a random crop of size 224 × 224, and then applies random horizontal and/or vertical
flips. On the test data, we apply the ResizeCenterCropToTensor transformation, which resizes
the images to 256 × 256 and then applies a central crop of size 224 × 224.

Listing A4. Load the training and validation dataset.

1 train_dataset_config = {
2 "batch_size": 128,
3 "shuffle": True,
4 "data_dir": "/datasets/CLRS",
5 "csv_file": "/datasets/CLRS/train.csv",
6 }
7

8 train_dataset = CLRSDataset(train_dataset_config)
9 train_dataset.transform = ResizeRandomCropFlipHVToTensor()

10

11 validation_dataset_config = {
12 "batch_size": 128,
13 "shuffle": False,
14 "data_dir": "/datasets/CLRS",
15 "csv_file": "/datasets/CLRS/val.csv",
16 "transforms": ["aitlas.transforms.ResizeCenterCropToTensor"]
17 }
18

19 validation_dataset = CLRSDataset(validation_dataset_config)

For learning, we use the Vision Transformer model, available in the toolbox. We
configure the model by setting several configuration parameters, i.e., the number of class-
es/labels, the learning rate, and the evaluation metrics. To use the pre-trained variant of
the Vision Transformer (pre-trained on the ImageNet-1k dataset) in the configuration object,
we also set the pre-trained parameter to true. We fine-tune the model on the CLRS dataset
by calling the function train_and_evaluate_model. The code snippet for instantiating the
model and running the training sequence is given in Listing A5.

Listing A5. Creating a model and start of model training.

1 epochs = 100
2 model_directory = "/experiments/CLRS"
3 model_config = {
4 "num_classes": 25,
5 "learning_rate": 0.0001,
6 "pretrained": True,
7 "metrics": ["accuracy", "precision", "recall", "f1_score"]
8 }
9 model = VisionTransformer(model_config)

10 model.prepare()
11 model.train_and_evaluate_model(
12 train_dataset=train_dataset ,
13 epochs=epochs,
14 model_directory=model_directory ,
15 val_dataset=validation_dataset ,
16 run_id=’1’,
17)

We use ReduceLROnPlateau as a learning scheduler—it reduces the learning rate when
the loss has stopped improving. Namely, models often benefit from reducing the learning
rate by a factor once learning stagnates: ReduceLROnPlateau tracks the values of the
loss measure, reducing the learning rate by a given factor when there is no improvement
for a certain number of epochs (denoted as ’patience’). In our experiments, we track the
value of the validation loss with patience set to 5 and a reduction factor set to 0.1 (the new
learning rate will thus be lr ∗ f actor). The maximum number of epochs is set to 100. We also
apply early stopping criteria if no improvements in the validation loss are observed over
10 epochs. The best checkpoint/model found (with the lowest validation loss) is saved and
then applied to the test part to obtain the final assessment of the predictive performance.

Remote Sens. 2023, 15, 2343 31 of 48

To evaluate the learned model, we load the test split of the dataset, set the list of
evaluation metrics, and run the evaluation sequence on the test data (Listing A6). The
predictive performance of the models for MCC is typically assessed by reporting the top-n
accuracy score (typically n is set to 1 or 5) [65]. This score is calculated by checking whether
the correct label is placed among the n most probable labels outputted by the model. In
this use case, we report top-1 accuracy, denoted as ’Accuracy’, Macro Precision, Weighted
Precision, Macro Recall, Weighted Recall, Macro F1 score, and Weighted F1 score. Note that
since for MCC tasks, the micro-averaged measures such as F1 score, Micro Precision, and
Micro Recall have values equal to accuracy, we do not report them separately.

Listing A6. Testing the model using the images from the test split.

1 test_dataset_config = {
2 "batch_size": 128,
3 "shuffle": False,
4 "data_dir": "/dataset/CLRS",
5 "csv_file": "/dataset/CLRS/test.csv",
6 "transforms": ["aitlas.transforms.ResizeCenterCropToTensor"]
7 }
8

9 test_dataset = CLRSDataset(test_dataset_config)
10 model_path = "best_checkpoint.pth.tar"
11 model.metrics = ["accuracy", "precision", "recall", "f1_score"]
12 model.running_metrics.reset()
13 model.evaluate(dataset=test_dataset , model_path=model_path)
14 model.running_metrics.get_scores(model.metrics)

The results from the ViT models trained from scratch, pre-trained on ImageNet-1K,
and then fine-tuned on the specific dataset are given in Table A2. From the presented
results, it is evident that leveraging pre-trained models can lead to significant performance
improvements on image classification tasks [144], and in particular on tasks in EO do-
mains [145]. The results also show the average training time per epoch, the total training
time, and the epoch in which the lowest value for the validation loss has been obtained.

Table A2. Detailed results for the ViT models trained on the CLRS dataset.

Model/Metric A
cc

ur
ac

y

M
ac

ro
Pr

ec
is

io
n

W
ei

gh
te

d
Pr

ec
is

io
n

M
ac

ro
R

ec
al

l

W
ei

gh
te

d
R

ec
al

l

M
ac

ro
F1

sc
or

e

W
ei

gh
te

d
F1

Sc
or

e

A
vg

.T
im

e/
Ep

oc
h

(s
)

To
ta

lT
im

e
(s

)

B
es

tE
po

ch

Trained from scratch 65.47 66.41 66.41 65.47 65.47 65.49 65.49 24.96 1173 32
Pre-trained on ImageNet-1K 93.20 93.29 93.29 93.20 93.20 93.22 93.22 25.32 785 21

The performance of the ViT model for the individual classes from the CLRS dataset
can be analyzed from the results presented in Table A3 and Figure 7. Table A3 gives
the precision, recall, and F1 score at a class level for the pre-trained ViT model on the
CLRS dataset, and Figure 7 shows the confusion matrix. We can note that the F1 score of
most classes is over 90%. The confusion matrix shows the effect of class similarity for the
classes ‘railway’ and ‘railway-station’ to the overall performance—the model has difficulty
discerning between these two classes.

Remote Sens. 2023, 15, 2343 32 of 48

Table A3. Per class results for the pre-trained Vision Transformer model on the CLRS dataset.

Label Precision Recall F1 Score

airport 97.48 96.67 97.07
bare-land 92.00 95.83 93.88
beach 99.15 97.50 98.32
bridge 90.91 91.67 91.29
commercial 79.84 85.83 82.73
desert 97.50 97.50 97.50
farmland 93.70 99.17 96.36
forest 100.00 100.00 100.00
golf-course 94.96 94.17 94.56
highway 92.11 87.50 89.74
industrial 88.79 85.83 87.29
meadow 96.72 98.33 97.52
mountain 99.15 97.50 98.32
overpass 89.68 94.17 91.87
park 85.60 89.17 87.35
parking 98.25 93.33 95.73
playground 95.04 95.83 95.44
port 94.74 90.00 92.31
railway 86.29 89.17 87.70
railway-station 88.79 85.83 87.29
residential 90.68 89.17 89.92
river 90.32 93.33 91.80
runway 98.33 98.33 98.33
stadium 95.61 90.83 93.16
storage-tank 96.55 93.33 94.92

Additionally, the learned model can be used for predicting the labels of unseen images
using the predict_image function. The function takes the image, the labels, and the
transformation instance as arguments and returns the predicted class and the confidence
score of the prediction for the given image. The output of this function is shown in Figure A2.
The code snippet to obtain the prediction for a given image is shown in Listing A7.

Figure A2. Example image with the predicted class and probability using the Vision Trans-
former model.

Listing A7. Getting predictions for images from external source.

1 labels = ["airport", "bare-land", "beach", "bridge", "commercial", "desert", "
farmland", "forest", "golf-course", "highway", "industrial", "meadow", "
mountain", "overpass", "park", "parking", "playground", "port", "railway", "
railway-station", "residential", "river", "runway", "stadium", "storage-tank"
]

2 transform = ResizeCenterCropToTensor()
3 image = image_loader(’/images/image1.tif’)
4 fig = model.predict_image(image, labels, transform)

Remote Sens. 2023, 15, 2343 33 of 48

Appendix D. Semantic Segmentation of Remote Sensing Images

A Jupyter Notebook for demonstrating the task of semantic segmentation of remote
sensing images is available in the AiTLAS repository (https://github.com/biasvariancelabs/
aitlas/blob/master/examples/semantic_segmentation_example_landcover_ai.ipynb (ac-
cessed on 8 March 2023)). The notebook provides the code needed for loading a semantic
segmentation dataset and examining the distribution of the pixels across the semantic
labels/classes. The notebook also provides instructions on how to train and evaluate
the DeepLabv3 model and how to use the learned model for running predictions on
unseen data.

In this example, we use the LandCover.ai image classification dataset. To obtain
the dataset, we download it from the repository (https://landcover.ai.linuxpolska.com/
download/landcover.ai.v1.zip (accessed on 8 March 2023)) and unzip it, after which we
obtain folders with images and masks, as well as separate files containing information
about the train, validation, and test splits.

Next, we create an instance of the class LandCoverAiDataset available in the toolbox. To
create the instance, we provide the folder with the images and masks and a file that contains
the list of images to be loaded. The class LandCoverAiDataset has all the functionalities
to load the images and masks for processing and training. Additionally, in the data
configuration object, we set the batch size, the shuffle parameter, and the number of
workers for loading the data (see Listing A8).

Listing A8. Load the LandCoverAiDataset dataset from the AiTLAS toolbox, inspect images and
masks, and calculate the pixel distribution across the labels.

1 dataset_config = {
2 "data_dir": "/dataset/landcoverai/images",
3 "csv_file": "/dataset/landcoverai/train.txt",
4 "batch_size": 128,
5 "shuffle": True,
6 "num_workers": 4
7 }
8 dataset = LandCoverAiDataset(dataset_config)
9 dataset.show_image(2000);

10 dataset.data_distribution_table()
11 dataset.data_distribution_barchart();

We use the show_image function to display images from the dataset. In the displayed
image, the different semantic regions in the mask are color coded with the colors from the class
definition of the dataset. To inspect the distribution of the pixels across the labels in the dataset,
we use the data_distribution_table and/or data_distribution_barchart function.

We continue with the model learning task by creating the training and validation
datasets and training the deep-learning model. The code snippet for creating train and
validation datasets is given in Listing A9. Additionally, Listing A9 shows an example
of specifying the data transformation parameter. In the AiTLAS toolbox, three different
transformations are available: transformation on the images, transformations on the targets
(i.e., labels, masks, or bounding boxes), and joint transformations that are simultaneously
applied on the input images and the targets. For example, in the case of semantic segmen-
tation, if the input image is horizontally flipped, the mask should also be flipped. During
training, in this use case, we perform data augmentation by random horizontal and/or verti-
cal flips on the input images and the masks. For the input images, min-max normalization
is applied, and the targets/masks are transposed. During evaluation/testing, we do not
use joint transformations.

https://github.com/biasvariancelabs/aitlas/blob/master/examples/semantic_segmentation_example_landcover_ai.ipynb
https://github.com/biasvariancelabs/aitlas/blob/master/examples/semantic_segmentation_example_landcover_ai.ipynb
https://landcover.ai.linuxpolska.com/download/landcover.ai.v1.zip
https://landcover.ai.linuxpolska.com/download/landcover.ai.v1.zip

Remote Sens. 2023, 15, 2343 34 of 48

Listing A9. Load the training and validation dataset for semantic segmentation.

1 train_dataset_config = {
2 "batch_size": 16,
3 "shuffle": True,
4 "csv_file": "/dataset/landcoverai/train.txt",
5 "data_dir": "/dataset/landcoverai/images",
6 "joint_transforms": ["aitlas.transforms.FlipHVRandomRotate"],
7 "transforms": ["aitlas.transforms.MinMaxNormTranspose"],
8 "target_transforms": ["aitlas.transforms.Transpose"]
9 }

10 train_dataset = LandCoverAiDataset(train_dataset_config)
11

12 validation_dataset_config = {
13 "batch_size": 16,
14 "shuffle": False,
15 "csv_file": "../dataset/landcoverai/val.txt",
16 "data_dir": "../dataset/landcoverai/images",
17 "transforms": ["aitlas.transforms.MinMaxNormTranspose"],
18 "target_transforms": ["aitlas.transforms.Transpose"]
19 }
20 validation_dataset = LandCoverAiDataset(validation_dataset_config)

We use the DeepLabv3 model, which is available in the AiTLAS toolbox. We configure
the model by setting several configuration parameters, i.e., the number of classes/labels,
the learning rate, the pretraining mode, and the evaluation metrics. The code snippet for
instantiating the model and running the training sequence is given in Listing A10.

Listing A10. Creating a DeepLabv3 model and starting the training.

1 epochs = 100
2 model_directory = "/experiments/landcoverai"
3 model_config = {
4 "num_classes": 5,
5 "learning_rate": 0.0001,
6 "pretrained": True,
7 "threshold": 0.5,
8 "metrics": ["iou"]
9 }

10

11 model = DeepLabV3(model_config)
12 model.prepare()
13 model.train_and_evaluate_model(
14 train_dataset=train_dataset ,
15 val_dataset=validation_dataset ,
16 epochs=epochs,
17 model_directory=model_directory ,
18 run_id=’1’
19)

We train two variants of DeepLabV3: (i) model “trained from scratch” using only the
dataset at hand and initialized with random weights at the start of the training procedure,
and (2) model with pre-trained weights on a subset of the COCO dataset, using only the
20 categories that are also present in the Pascal VOC dataset [66] and then fine-tuned on the
dataset at hand. The DeepLabv3 model is trained or fine-tuned on the train set of images,
including data augmentation operations such as random horizontal and/or vertical flips and
random rotations. Using the validation set of images, we perform a hyper-parameter search
over different values for the learning rate: 0.01, 0.001, and 0.0001. We use fixed values for
some of the hyper-parameters: batch size is set to 16, Adam optimizer [146] without weight
decay, and ReduceLROnPlateau as a learning scheduler which reduces the learning rate
when the loss has stopped improving (same as for the image scene classification task as
discussed in Section 3.1.2). Furthermore, to prevent over-fitting, we perform early stopping
on the validation set—the model with the lowest validation loss is saved and then applied
on the original test set to obtain the estimate of the model’s predictive performance. Finally,
we use mean intersection over union (mIoU) as an evaluation measure: mIoU is a widely

Remote Sens. 2023, 15, 2343 35 of 48

used measure for semantic segmentation and is calculated as the average of intersection
over union (IoU) across all labels. Note that IoU is defined as the area of the overlap
between the ground truth and predicted label divided by the area of their union (a value of
0 for IoU means no overlap, while a value of 1 means complete overlap).

The train and validation learning curves are shown in Figure A3. After the 50 epoch,
the value of the loss function is very stable, and the model starts to over-fit. The stop criteria
prevent over-fitting. At this point, we save the model from the 49th epoch (with the lowest
validation loss) and evaluate its performance on the test set.

0 10 20 30 40 50 60
Epoch

0.04

0.06

0.08

0.10

0.12

Lo
ss

Train
Validation

Figure A3. Train and validation learning curves for the DeepLabv3 model pre-trained on COCO and
fine-tuned on the LandCover.ai dataset.

To evaluate the model, we load the test split of the dataset, set the path to the learned
model, and set the list of evaluation metrics. In this example, we use IoU as an evaluation
measure. We then proceed with running the evaluation sequence on the test data (see
Listing A11).

Listing A11. Testing the model using the images from the test split.

1 test_dataset_config = {
2 "batch_size": 4,
3 "shuffle": False,
4 "data_dir": "/dataset/landcoverai/images",
5 "csv_file": "/dataset/landcoverai/test.txt",
6 "transforms": ["aitlas.transforms.MinMaxNormTranspose"],
7 "target_transforms": ["aitlas.transforms.Transpose"]
8 }
9

10 test_dataset = LandCoverAiDataset(test_dataset_config)
11 model_path = "/experiments/landcoverai/best_checkpoint.pth.tar"
12 model.metrics = ["iou"]
13 model.running_metrics.reset()
14 model.evaluate(dataset=test_dataset , model_path=model_path)
15 model.running_metrics.get_scores(model.metrics)

The results summarizing the segmentation performance of the DeepLabV3 model
on the LandCover.ai dataset are given in Table A4. The DeepLabv3 model trained from
scratch yields a mIoU score of 86.027%, while the pre-trained one yields a score of 86.093%.
Hence, there is no clear benefit of using the pre-trained weights for this particular dataset
because the results in the different setups are very similar. The values of the IoU for the
labels ‘Road’ and ‘Building’ are lower compared to the other labels. These labels are more
challenging in the context of semantic segmentation because they are usually narrow, in
the case of roads, or often small, in the case of buildings. Additionally, they are sometimes
obscured by other objects, such as trees.

Remote Sens. 2023, 15, 2343 36 of 48

Table A4. Label-wise IoU(%) and mIoU for the DeepLabv3 models trained on the LandCover.ai
dataset.

Model/Label Background Buildings Woodlands Water Road mIoU A
vg

.T
im

e/
Ep

oc
h

(s
)

To
ta

lT
im

e
(s

)

B
es

tE
po

ch

Trained from scratch 93.813 80.304 91.952 94.877 69.190 86.027 299.241 16159 44
Pre-trained on COCO 93.857 80.650 91.964 95.145 68.846 86.093 300.58 17734 49

Additionally, the learned model can be used for predicting the segmentation masks
of unseen images by using the predict_masks function. The function takes the image,
the labels, and the transformation instance as arguments and returns separate masks for
each semantic label for the given image. An example output of this function is shown
in Figure A4. The code snippet to obtain the prediction for a given image is shown in
Listing A12.

Listing A12. Getting predictions for images from external source.

1 labels = ["Background", "Buildings", "Woodlands", "Water", "Road"]
2 transform = MinMaxNormTranspose()
3 model_path = "/experiments/landcoverai/best_checkpoint.pth.tar"
4 model.load_model(model_path)
5 image = image_loader(’/images/image1.png’)
6 fig = model.predict_masks(image, labels, transform)

Figure A4. Example image with the predicted masks for each semantic label using the
DeepLabv3 model.

Appendix E. Remote Sensing Image Object Detection

An example Jupyter Notebook for object detection in remote sensing images is avail-
able at the AiTLAS toolbox (https://github.com/biasvariancelabs/aitlas/blob/master/
examples/object_detection_example_hrrsd.ipynb (accessed on 8 March 2023)). The note-
book provides step-by-step code on how to load an object detection dataset and inspect the
number of object instances for each object category. The notebook also demonstrates how
to train and validate the Faster R-CNN model on the predefined test split, as well as how
to use the learned model for inference on unseen data.

To prepare the HRRSD object detection dataset, we need to download the data from the
repository (https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset (accessed on
8 March 2023)) and unzip it. This generates a folder with images in .jpg format, annotations
in .xml format, and separate files containing information about the train, validation, and
test splits. The Pascal VOC object annotation format is used in this example. Thus, we
create an instance of the ObjectDetectionPascalDataset class defined within the AiTLAS
toolbox. To instantiate the class, we specify the path to the folders containing the images
and annotations and the file containing the list of images. We also set the batch size for the
data loader during training, the shuffle parameter, and the number of workers to specify
the number of sub-processes used for data loading (see Listing A13).

https://github.com/biasvariancelabs/aitlas/blob/master/examples/object_detection_example_hrrsd.ipynb
https://github.com/biasvariancelabs/aitlas/blob/master/examples/object_detection_example_hrrsd.ipynb
https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset

Remote Sens. 2023, 15, 2343 37 of 48

Listing A13. Load a dataset using the AiTLAS toolbox, inspect images and calculate the number of
object instances for each category/label.

1 dataset_config = {
2 "image_dir": "/datasets/HRRSD/images",
3 "annotations_dir": "/datasets/HRRSD/annotations",
4 "imageset_file": "/datasets/HRRSD/train.txt"
5 "batch_size": 16,
6 "shuffle": True,
7 "num_workers": 4
8 }
9 dataset = ObjectDetectionPascalDataset(dataset_config)

10 dataset.show_image(2458);
11 dataset.show_batch(15);
12 dataset.data_distribution_table()
13 dataset.data_distribution_barchart();

We use the show_image function to display images from the dataset. The function
displays the image with the bounding boxes and labels for each object present in the
image. The function show_batch displays a batch of images with the bounding boxes of
the objects in the image. The statistics for the number of object instances for each catego-
ry/label in the dataset can be calculated using the functions data_distribution_table or
data_distribution_barchart.

In the next step, we continue with the model learning part. First, we create the con-
figuration objects for the training and validation data and specify the data transformation
method we wish to be applied. For this use case, we apply the joint transformation Re-
sizeToTensorV2 to resize the images to a resolution of 480 × 480 pixels and convert them to
tensors. This transformation also resizes the bounding boxes for the object to fit the new
resolution of the images. After defining the data configuration objects, we load the data
(see Listing A14).

Listing A14. Load the training and validation dataset.

1 train_dataset_config = {
2 "image_dir": "/datasets/HRRSD/images",
3 "annotations_dir": "/datasets/HRRSD/annotations",
4 "imageset_file": "/datasets/HRRSD/train.txt",
5 "joint_transforms": ["aitlas.transforms.ResizeToTensorV2"]
6 "batch_size": 16,
7 "shuffle": True,
8 "num_workers": 4
9 }

10 train_dataset = ObjectDetectionPascalDataset(train_dataset_config)
11

12 validation_dataset_config = {
13 "image_dir": "/datasets/HRRSD/images",
14 "annotations_dir": "/datasets/HRRSD/annotations",
15 "imageset_file": "/datasets/HRRSD/val.txt",
16 "joint_transforms": ["aitlas.transforms.ResizeToTensorV2"]
17 "batch_size": 16,
18 "shuffle": True,
19 "num_workers": 4
20 }
21 validation_dataset = ObjectDetectionPascalDataset(validation_dataset_config)

We train two variants of the model: (i) model “trained from scratch” using only the
dataset at hand and initialized with random weights at the start of the training procedure,
and (2) model with pre-trained weights on the COCO dataset [66] and then fine-tuned on
the dataset at hand. The Faster R-CNN model is trained or fine-tuned using the training
part of the images, with parameters selection/search performed using the validation part.
Namely, we search over different values for the learning rate: 0.01, 0.001, and 0.0001. We use
fixed values for some of the hyper-parameters: batch size is set to 16, Adam optimizer [146]
without weight decay, and ReduceLROnPlateau as a learning scheduler which reduces the
learning rate when the loss has stopped improving.

Remote Sens. 2023, 15, 2343 38 of 48

Furthermore, to prevent over-fitting, we perform early stopping on the validation
set—the model with the best value for the evaluation measure is saved and then applied to
the original test set to obtain the estimate of the model’s predictive performance. Finally,
as an evaluation measure, we use mean Average Precision (mAP) as defined in the Pascal
VOC Challenge [121]. Average Precision (AP) is computed as the average precision value
taken at recall values ranging from 0 to 1 (i.e., the area under the precision/recall curve).
mAP is the average of AP over all classes. Next, IoU is crucial in determining true positives
and false positives, and its threshold is set to 0.5. More details on the evaluation measures
for object detection are provided in [121,142].

Next, we use the Faster R-CNN model, which is implemented in the AiTLAS toolbox.
To configure the model, create a model configuration object and set several configuration
parameters, i.e., the number of classes/labels, the learning rate, the pretraining mode,
and the evaluation metrics. The code snippet for instantiating the model and running the
training sequence is given in Listing A15.

Listing A15. Creating a Faster R-CNN model and start of model training.

1 epochs = 100
2 model_directory = "/experiments/hrrsd"
3 model_config = {
4 "num_classes": 14,
5 "learning_rate": 0.0001,
6 "pretrained": True,
7 "threshold": 0.5,
8 "metrics": ["map"]
9 }

10 model = FasterRCNN(model_config)
11 model.prepare()
12 model.train_and_evaluate_model(
13 train_dataset=train_dataset ,
14 val_dataset=validation_dataset ,
15 epochs=epochs,
16 model_directory=model_directory ,
17 run_id=’1’
18)

Table A5 summarizes the results of the object detection task. The Faster R-CNN model
trained from scratch yields 77.412% of mAP, while the pre-trained model yields 81.436% of
mAP, as estimated using the test dataset. The results show the clear benefit of using the
pre-trained weights for this particular dataset. The most challenging objects to detect are
‘Crossroad’ and ‘T Junction’ (due to the similarity of both objects).

Table A5. Mean average precision (mAP%) of the Faster R-CNN models trained from scratch and
pre-trained for the HRRSD dataset.

Label Faster R-CNN (Pretrained) Faster R-CNN

Airplane 96.86 94.71
Baseball Diamond 79.75 80.13
Basketball Court 59.25 44.96
Bridge 82.22 78.55
Crossroad 77.06 71.78
Ground Track Field 95.62 92.84
Harbor 89.00 88.61
Parking Lot 53.80 51.22
Ship 86.61 78.50
Storage Tank 93.56 89.67
T Junction 66.83 69.12
Tennis Court 87.97 79.31
Vehicle 90.14 86.96

Mean AP 81.436 77.412
Avg. time / epoch (s) 221.96 244.63
Total time (s) 5993 10030
Best epoch 17 31

Remote Sens. 2023, 15, 2343 39 of 48

To evaluate the model, we create a configuration object for the training split of the
HRRSD data, load the data, set the path to the trained model, and run the evaluation
process (see Listing A16).

Listing A16. Testing the model using the images from the test split.

1 test_dataset_config = {
2 "batch_size": 4,
3 "shuffle": False,
4 "image_dir": "/datasets/HRRSD/images",
5 "annotations_dir": "/datasets/HRRSD/annotations",
6 "imageset_file": "/datasets/HRRSD/test.txt",
7 "joint_transforms": ["aitlas.transforms.ResizeToTensorV2"]
8 }
9

10 test_dataset = ObjectDetectionPascalDataset(test_dataset_config)
11 model_path = "/experiments/hrrsd/best_checkpoint.pth.tar"
12 model.metrics = ["map"]
13 model.running_metrics.reset()
14 model.evaluate(dataset=test_dataset , model_path=model_path)
15 model.running_metrics.get_scores(model.metrics)

Additionally, the model can be used for predicting the bounding boxes and labels for
the objects in new, unseen images from an external source by using the predict_objects
function. The function takes the image, the labels, and the transformation instance as
arguments and returns an image with the bounding boxes and labels for the detected object
in the image. Figure A5 shows an example output of this function. The code snippet to
obtain the prediction for a given image is shown in Listing A17.

Listing A17. Getting bounding boxes and labels for images from external source.

1 labels = [None, ’T junction’, ’airplane’, ’baseball diamond’, ’basketball court’,
2 ’bridge’, ’crossroad’, ’ground track field’, ’harbor’, ’parking lot’,
3 ’ship’, ’storage tank’, ’tennis court’, ’vehicle’]
4 transform = Resize()
5 model.load_model(model_path)
6 image = image_loader(’../data/HRRSD/JPEGImages/00042.jpg’)
7 fig = model.detect_objects(image, labels, transform)

Figure A5. Example image with the predicted bounding boxes and labels for the objects using the
Faster R-CNN model.

Appendix F. Crop Type Prediction Using Satellite Time Series Data

We have added a Jupyter Notebook (https://github.com/biasvariancelabs/aitlas/
blob/master/examples/crop_type_prediction_example_netherlands.ipynb (accessed on 8

https://github.com/biasvariancelabs/aitlas/blob/master/examples/crop_type_prediction_example_netherlands.ipynb
https://github.com/biasvariancelabs/aitlas/blob/master/examples/crop_type_prediction_example_netherlands.ipynb

Remote Sens. 2023, 15, 2343 40 of 48

March 2023)) in the AiTLAS toolbox that contains a step-by-step sample code for running
through a crop type prediction task. As previously, we will demonstrate the standard steps
to load and inspect the data, load, configure, train, and evaluate the models, and visualize
predictions.

We use the AiTLAS NLD dataset for the year 2019. First, we set the configuration for
the dataset and initiate with the EOPatchCrops class, which is a wrapper for working with
EOPatches. We need to set the path to the root folder containing the patches. The patches
are also folders containing detailed EO data. We need to specify the index, which is a csv
file containing the class mappings for the polygons and patches they belong to, as well
as the split (train, validation, or test). We also specify the standard PyTorch attributes for
working with datasets, such as batch size, shuffle, and number of workers. The regions
configurations specify which splits we should load from the index. Sample code is shown
in Listing A18.

Listing A18. Load the dataset.

1 dataset_config = {
2 "root": "/home/user/data/CropTypeNetherlands/2019/",
3 "csv_file_path": "index.csv",
4 "batch_size": 128,
5 "shuffle": True,
6 "num_workers": 4,
7 "regions":["train", "test", "val",],
8 }
9 dataset = EOPatchCrops(dataset_config)

To display the time series values of the bands of a specific polygon, we can use the func-
tion show_timeseries(index). Furthermore, to show sample data from the underlying
index, we can use the show_samples() function (Listing A19).

Listing A19. Inspect the dataset.

1 fig = dataset.show_timeseries(0)
2 dataset.show_samples()

An example of the data representation for a selected polygon labeled as permanent
grassland is illustrated in Figure A6.

Figure A6. Examples of the input time series of reflectances ρ for the spectral bands of the Sentinel 2
satellite and calculated indices for the crop type Permanent grassland.

Once, we have a sense of the data, we load the train and validation splits of the dataset
(Listing A20).

Remote Sens. 2023, 15, 2343 41 of 48

Listing A20. Load train and validation the dataset.

1 train_dataset_config = {
2 "root": "/home/user/data/CropTypeNetherlands/2019/",
3 "csv_file_path": "index.csv",
4 "batch_size": 128,
5 "shuffle": True,
6 "num_workers": 4,
7 "regions":["train",],
8 }
9

10 train_dataset = EOPatchCrops(train_dataset_config)
11

12 validation_dataset_config = {
13 "batch_size": 32,
14 "shuffle": False,
15 "num_workers": 4,
16 "root": "/home/user/data/CropTypeNetherlands/2019/",
17 "csv_file_path": "index.csv",
18 "regions":["val",],
19 }
20

21 validation_dataset = EOPatchCrops(validation_dataset_config)

In the next step, we need to initialize and create the model. For this task, we will use the
LSTM model supported by the toolbox. We set the model parameters in the configuration
object, instantiate the model, and run the training sequence (Listing A21).

Listing A21. Train the model.

1 epochs = 100
2 model_directory = "./experiments/LSTM"
3 model_config = {
4 "input_dim":11,
5 "num_classes": 10,
6 "learning_rate": 0.001,
7 "dropout" : 0.2,
8 "weight_decay": 0.0001,
9 "metrics":["accuracy","f1_score", "kappa"]

10 }
11 model = LSTM(model_config)
12 model.prepare()
13 model.train_and_evaluate_model(
14 train_dataset=train_dataset ,
15 epochs=epochs,
16 model_directory=model_directory ,
17 val_dataset=validation_dataset ,
18 run_id=’1’,
19)

We can use the model to run predictions and visualize them. We can load the test split
of the dataset. Then, use the model to run predictions on that dataset (Listing A22). Finally,
we can pick a sample patch and visualize its predicted polygons (Figure A7).

Remote Sens. 2023, 15, 2343 42 of 48

Figure A7. Example patch with the predicted polygons using the LSTM model.

Listing A22. Test the model.

1 labels = ["Permanent grassland", "Temporary grasses and grazings", "Green maize",
"Potatoes (including seed potatoes)",

2 "Common winter wheat and spelt", "Sugar beet (excluding seed)", "Other farmland",
"Onions",

3 "Flowers and ornamental plants (excluding nurseries)", "Spring barley",]
4

5 test_dataset_config = {
6 "batch_size": 32,
7 "shuffle": False,
8 "num_workers": 4,
9 "root": "/home/user/data/CropTypeNetherlands/2019/",

10 "csv_file_path": "index.csv",
11 "regions":["test",],
12 }
13

14 test_dataset = EOPatchCrops(test_dataset_config)
15

16 y_true, y_pred, y_prob = model.predict(dataset=test_dataset ,)
17

18 eopatches_path = "/home/user/data/CropTypeNetherlands/2019/eopatches/"
19 patch = "eopatch_7495"
20

21 fig = display_eopatch_predictions(
22 eopatches_path ,
23 patch,
24 y_pred,
25 test_dataset.index,
26 y_true,
27 test_dataset.mapping,
28)

The results summarizing the predictive performance on the AiTLAS NLD dataset
across the different years are presented in Table A6. Using LSTM, we obtain a weighted F1
score in the range of ∼82–84% for the different years.

Remote Sens. 2023, 15, 2343 43 of 48

Table A6. Results for the crop type prediction on the AiTLAS NLD dataset using the LSTM model.

Dataset Year Accuracy Weighted F1 Score Kappa

2017 84.28 82.48 77.22
2018 84.49 84.32 78.79
2019 85.25 84.10 79.55

We also present the per class F1 scores across all years in Table A7. We can note that
the per-class performance is generally consistent between different years. The F1 score
does not change significantly for any class across the different years. The only exception
is the Temporary grasses and grazings class, where for 2017, the F1 score is 45.23, while for
2018, it is 59.34, which is around a 14% difference. The performance for this class is also the
lowest compared to the other classes. The model performs best on the classes Green maize,
Common winter wheat and spelt, Potatoes (including seed potatoes), and Sugar beet (excluding
seed). For these classes, the F1 score is consistent across the different years with score ∼95%.
We provide the resources and explanations on the execution of this use case, including
additional visualizations and application of the model to external images in Appendix F.

Table A7. Per class F1 score for the crop type prediction on the AiTLAS NLD dataset for every year
with LSTM

Crop Type 2017 2018 2019

Permanent grassland 86.72 85.78 86.82
Temporary grasses and grazings 45.23 59.34 53.66
Green maize 96.10 95.09 96.14
Potatoes (including seed potatoes) 95.37 94.84 95.45
Common winter wheat and spelt 94.86 95.75 96.28
Sugar beet (excluding seed) 95.62 92.36 95.28
Other farmland 62.45 61.81 60.05
Onions 89.76 93.68 92.51
Flowers and ornamental plants (excluding nurseries) 83.18 78.30 79.67
Spring barley 92.30 91.12 90.80

References
1. Christopherson, J.; Chandra, S.N.R.; Quanbeck, J.Q. 2019 Joint Agency Commercial Imagery Evaluation—Land Remote Sensing Satellite

Compendium; Technical Report; US Geological Survey: Reston, VA, USA, 2019.
2. Tupin, F.; Inglada, J.; Nicolas, J.M. Remote Sensing Imagery; John Wiley & Sons: Hoboken, NJ, USA, 2014.
3. Dimitrovski, I.; Kitanovski, I.; Kocev, D.; Simidjievski, N. Current trends in deep learning for Earth Observation: An open-source

benchmark arena for image classification. ISPRS J. Photogramm. Remote Sens. 2023, 197, 18–35. [CrossRef]
4. Cheng, G.; Han, J.; Lu, X. Remote Sensing Image Scene Classification: Benchmark and State of the Art. Proc. IEEE 2017,

105, 1865–1883. [CrossRef]
5. Tang, L.; Shao, G. Drone remote sensing for forestry research and practices. J. For. Res. 2015, 26, 791–797. [CrossRef]
6. Roy, P.; Ranganath, B.; Diwakar, P.; Vohra, T.; Bhan, S.; Singh, I.; Pandian, V. Tropical forest typo mapping and monitoring using

remote sensing. Remote Sens. 1991, 12, 2205–2225. [CrossRef]
7. Sunar, F.; Özkan, C. Forest fire analysis with remote sensing data. Int. J. Remote Sens. 2001, 22, 2265–2277. [CrossRef]
8. Poursanidis, D.; Chrysoulakis, N. Remote Sensing, natural hazards and the contribution of ESA Sentinels missions. Remote Sens.

Appl. Soc. Environ. 2017, 6, 25–38. [CrossRef]
9. Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of remote sensing in precision agriculture: A review. Remote Sens. 2020, 12, 3136.

[CrossRef]
10. Cox, H.; Kelly, K.; Yetter, L. Using remote sensing and geospatial technology for climate change education. J. Geosci. Educ. 2014,

62, 609–620. [CrossRef]
11. Collis, R.T.; Creasey, D.; Grasty, R.; Hartl, P.; deLoor, G.; Russel, P.; Salerno, A.; Schaper, P. Remote Sensing for Environmental

Sciences; Springer Science & Business Media: Berlin, Germany, 2012; Volume 18.
12. Christie, G.; Fendley, N.; Wilson, J.; Mukherjee, R. Functional Map of the World. In Proceedings of the 2018 IEEE/CVF Conference

on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6172–6180. [CrossRef]

http://doi.org/10.1016/j.isprsjprs.2023.01.014
http://dx.doi.org/10.1109/JPROC.2017.2675998
http://dx.doi.org/10.1007/s11676-015-0088-y
http://dx.doi.org/10.1080/01431169108955253
http://dx.doi.org/10.1080/01431160118510
http://dx.doi.org/10.1016/j.rsase.2017.02.001
http://dx.doi.org/10.3390/rs12193136
http://dx.doi.org/10.5408/13-040.1
http://dx.doi.org/10.1109/CVPR.2018.00646

Remote Sens. 2023, 15, 2343 44 of 48

13. Sumbul, G.; de Wall, A.; Kreuziger, T.; Marcelino, F.; Costa, H.; Benevides, P.; Caetano, M.; Demir, B.; Markl, V. BigEarthNet-MM:
A Large-Scale, Multimodal, Multilabel Benchmark Archive for Remote Sensing Image Classification and Retrieval [Software and
Data Sets]. IEEE Geosci. Remote Sens. Mag. 2021, 9, 174–180. [CrossRef]

14. Long, Y.; Xia, G.S.; Li, S.; Yang, W.; Yang, M.Y.; Zhu, X.X.; Zhang, L.; Li, D. On Creating Benchmark Dataset for Aerial Image
Interpretation: Reviews, Guidances and Million-AID. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4205–4230. [CrossRef]

15. Bastani, F.; Wolters, P.; Gupta, R.; Ferdinando, J.; Kembhavi, A. Satlas: A Large-Scale, Multi-Task Dataset for Remote Sensing
Image Understanding. arXiv 2022, arXiv:2211.15660. https://doi.org/10.48550/ARXIV.2211.15660.

16. Neupane, B.; Horanont, T.; Aryal, J. Deep Learning-Based Semantic Segmentation of Urban Features in Satellite Images: A
Review and Meta-Analysis. Remote Sens. 2021, 13, 808. [CrossRef]

17. Xia, G.S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. DOTA: A Large-Scale Dataset for Object
Detection in Aerial Images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt
Lake City, UT, USA, 18–23 June 2018.

18. Pearlman, J.; Barry, P.; Segal, C.; Shepanski, J.; Beiso, D.; Carman, S. Hyperion, a space-based imaging spectrometer. IEEE Trans.
Geosci. Remote Sens. 2003, 41, 1160–1173. [CrossRef]

19. King, M.; Herring, D. SATELLITES | Research (Atmospheric Science). In Encyclopedia of Atmospheric Sciences; Holton, J.R., Ed.;
Academic Press: Oxford, UK, 2003; pp. 2038–2047. . [CrossRef]

20. Osco, L.P.; Marcato Junior, J.; Marques Ramos, A.P.; de Castro Jorge, L.A.; Fatholahi, S.N.; de Andrade Silva, J.; Matsubara, E.T.;
Pistori, H.; Gonçalves, W.N.; Li, J. A review on deep learning in UAV remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2021,
102, 102456. [CrossRef]

21. Roy, D.; Wulder, M.; Loveland, T.; C.E., W.; Allen, R.; Anderson, M.; Helder, D.; Irons, J.; Johnson, D.; Kennedy, R.; et al. Landsat-8:
Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [CrossRef]

22. Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al.
Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36.

23. Sentinel Hub: Cloud API For Satellite Imagery. 2023. Available online: https://www.sentinel-hub.com/ (accessed on 8 March 2023).
24. UP42: Simplified Access to Geospatial Data and Processing. 2023. Available online: https://up42.com/ (accessed on 8 March 2023).
25. De Vroey, M.; Radoux, J.; Zavagli, M.; De Vendictis, L.; Heymans, D.; Bontemps, S.; Defourny, P. Performance Assessment of the

Sen4CAP Mowing Detection Algorithm on a Large Reference Data Set of Managed Grasslands. In Proceedings of the 2021 IEEE
International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 743–746. [CrossRef]

26. Grizonnet, M.; Michel, J.; Poughon, V.; Inglada, J.; Savinaud, M.; Cresson, R. Orfeo ToolBox: open source processing of remote
sensing images. Open Geospat. Data Softw. Stand. 2017, 2, 15. [CrossRef]

27. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. arXiv 2015, arXiv:1603.04467.

28. Rolland, J.F.o.; Castel, F.; Haugommard, A.; Aubrun, M.; Yao, W.; Corneliu.; Dumitru, O.; Datcu, M.; Bylicki, M.; Tran, B.H.; et al. Candela:
A Cloud Platform for Copernicus Earth Observation Data Analytics. In Proceedings of the IGARSS 2020—2020 IEEE International
Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 3104–3107. [CrossRef]

29. Stewart, A.J.; Robinson, C.; Corley, I.A.; Ortiz, A.; Lavista Ferres, J.M.; Banerjee, A. TorchGeo: Deep Learning with Geospatial
Data. In Proceedings of the SIGSPATIAL ’22: 30th International Conference on Advances in Geographic Information Systems;
Association for Computing Machinery: Seattle, WA, USA, 2022; pp. 1–12. [CrossRef]

30. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Curran
Associates, Inc.: Red Hook, NY, USA, 2019; pp. 8024–8035.

31. Chaudhuri, B.; Demir, B.; Chaudhuri, S.; Bruzzone, L. Multilabel Remote Sensing Image Retrieval Using a Semisupervised
Graph-Theoretic Method. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1144–1158. [CrossRef]

32. Tsoumakas, G.; Katakis, I. Multi-Label Classification: An Overview. Int. J. Data Warehous. Min. 2009, 3, 1–13. [CrossRef]
33. Yang, Y.; Newsam, S. Bag-of-Visual-Words and Spatial Extensions for Land-Use Classification. In Proceedings of the GIS ’10: 18th

SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 2–5 November 2010;
Association for Computing Machinery: New York, NY, USA, 2010; pp. 270–279.

34. Xia, G.S.; Yang, W.; Delon, J.; Gousseau, Y.; Sun, H.; Maître, H. Structural High-resolution Satellite Image Indexing. Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2010, 38, 1–6.

35. Xia, G.S.; Hu, J.; Hu, F.; Shi, B.; Bai, X.; Zhong, Y.; Zhang, L.; Lu, X. AID: A Benchmark Data Set for Performance Evaluation of
Aerial Scene Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3965–3981. [CrossRef]

36. Helber, P.; Bischke, B.; Dengel, A.; Borth, D. Eurosat: A novel dataset and deep learning benchmark for land use and land cover
classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2217–2226. [CrossRef]

37. Zhou, W.; Newsam, S.; Li, C.; Shao, Z. PatternNet: A benchmark dataset for performance evaluation of remote sensing image
retrieval. ISPRS J. Photogramm. Remote Sens. 2018, 145, 197–209. [CrossRef]

38. Li, H.; Dou, X.; Tao, C.; Wu, Z.; Chen, J.; Peng, J.; Deng, M.; Zhao, L. RSI-CB: A Large-Scale Remote Sensing Image Classification
Benchmark Using Crowdsourced Data. Sensors 2020, 20, 1594. [CrossRef] [PubMed]

39. Zou, Q.; Ni, L.; Zhang, T.; Wang, Q. Deep Learning Based Feature Selection for Remote Sensing Scene Classification. IEEE Geosci.
Remote Sens. Lett. 2015, 12, 2321–2325. [CrossRef]

http://dx.doi.org/10.1109/MGRS.2021.3089174
http://dx.doi.org/10.1109/JSTARS.2021.3070368
http://dx.doi.org/10.3390/rs13040808
http://dx.doi.org/10.1109/TGRS.2003.815018
http://dx.doi.org/10.1016/B0-12-227090-8/00363-8
http://dx.doi.org/10.1016/j.jag.2021.102456
http://dx.doi.org/10.1016/j.rse.2014.02.001
https://www.sentinel-hub.com/
https://up42.com/
http://dx.doi.org/10.1109/IGARSS47720.2021.9553269
http://dx.doi.org/10.1186/s40965-017-0031-6
http://dx.doi.org/10.1109/IGARSS39084.2020.9323966
http://dx.doi.org/10.1145/3557915.3560953
http://dx.doi.org/10.1109/TGRS.2017.2760909
http://dx.doi.org/10.4018/jdwm.2007070101
http://dx.doi.org/10.1109/TGRS.2017.2685945
http://dx.doi.org/10.1109/JSTARS.2019.2918242
http://dx.doi.org/10.1016/j.isprsjprs.2018.01.004
http://dx.doi.org/10.3390/s20061594
http://www.ncbi.nlm.nih.gov/pubmed/32178463
http://dx.doi.org/10.1109/LGRS.2015.2475299

Remote Sens. 2023, 15, 2343 45 of 48

40. Basu, S.; Ganguly, S.; Mukhopadhyay, S.; DiBiano, R.; Karki, M.; Nemani, R. DeepSat: A Learning Framework for Satellite
Imagery. In SIGSPATIAL ’15: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information
Systems; Association for Computing Machinery: New York, NY, USA, 2015.

41. Zhu, Q.; Zhong, Y.; Zhao, B.; Xia, G.S.; Zhang, L. Bag-of-Visual-Words Scene Classifier with Local and Global Features for High
Spatial Resolution Remote Sensing Imagery. IEEE Geosci. Remote Sens. Lett. 2016, 13, 747–751. [CrossRef]

42. Li, H.; Jiang, H.; Gu, X.; Peng, J.; Li, W.; Hong, L.; Tao, C. CLRS: Continual Learning Benchmark for Remote Sensing Image Scene
Classification. Sensors 2020, 20, 1226. [CrossRef]

43. Long, Y.; Gong, Y.; Xiao, Z.; Liu, Q. Accurate Object Localization in Remote Sensing Images Based on Convolutional Neural
Networks. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2486–2498. [CrossRef]

44. Wang, Q.; Liu, S.; Chanussot, J.; Li, X. Scene Classification With Recurrent Attention of VHR Remote Sensing Images. IEEE Trans.
Geosci. Remote Sens. 2019, 57, 1155–1167. [CrossRef]

45. Penatti, O.A.; Nogueira, K.; Dos Santos, J.A. Do deep features generalize from everyday objects to remote sensing and aerial
scenes domains? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA,
USA, 7–12 June 2015; pp. 44–51.

46. Zhu, X.X.; Hu, J.; Qiu, C.; Shi, Y.; Kang, J.; Mou, L.; Bagheri, H.; Haberle, M.; Hua, Y.; Huang, R.; et al. So2Sat LCZ42: A
Benchmark Data Set for the Classification of Global Local Climate Zones [Software and Data Sets]. IEEE Geosci. Remote Sens. Mag.
2020, 8, 76–89. [CrossRef]

47. Qi, X.; Zhu, P.; Wang, Y.; Zhang, L.; Peng, J.; Wu, M.; Chen, J.; Zhao, X.; Zang, N.; Mathiopoulos, P.T. MLRSNet: A multi-label high
spatial resolution remote sensing dataset for semantic scene understanding. ISPRS J. Photogramm. Remote Sens. 2020, 169, 337–350.
[CrossRef]

48. Hua, Y.; Mou, L.; Zhu, X.X. Recurrently exploring class-wise attention in a hybrid convolutional and bidirectional LSTM network
for multi-label aerial image classification. ISPRS J. Photogramm. Remote Sens. 2019, 149, 188–199. [CrossRef]

49. Sumbul, G.; Charfuelan, M.; Demir, B.; Markl, V. Bigearthnet: A Large-Scale Benchmark Archive for Remote Sensing Image
Understanding. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium
Yokohama, Japan, 28 July–2 August 2019; pp. 5901–5904.

50. Hua, Y.; Mou, L.; Zhu, X.X. Relation Network for Multilabel Aerial Image Classification. IEEE Trans. Geosci. Remote Sens. 2020,
58, 4558–4572. [CrossRef]

51. Kaggle. Planet: Understanding the Amazon from Space. 2022. Available online: https://www.kaggle.com/c/planet-
understanding-the-amazon-from-space (accessed on 8 March 2023).

52. Zhang, Y.; Yuan, Y.; Feng, Y.; Lu, X. Hierarchical and Robust Convolutional Neural Network for Very High-Resolution Remote
Sensing Object Detection. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5535–5548. [CrossRef]

53. Ding, J.; Xue, N.; Xia, G.S.; Bai, X.; Yang, W.; Yang, M.Y.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; et al. Object Detection in
Aerial Images: A Large-Scale Benchmark and Challenges. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 7778–7796. [CrossRef]

54. Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object detection in optical remote sensing images: A survey and a new benchmark.
ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. . [CrossRef]

55. Cheng, G.; Han, J.; Zhou, P.; Guo, L. Multi-class geospatial object detection and geographic image classification based on
collection of part detectors. ISPRS J. Photogramm. Remote Sens. 2014, 98, 119–132. [CrossRef]

56. Haroon, M.; Shahzad, M.; Fraz, M.M. Multisized object detection using spaceborne optical imagery. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 2020, 13, 3032–3046. [CrossRef]

57. Mnih, V. Machine Learning for Aerial Image Labeling. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2013.
58. Boguszewski, A.; Batorski, D.; Ziemba-Jankowska, N.; Dziedzic, T.; Zambrzycka, A. LandCover.ai: Dataset for Automatic

Mapping of Buildings, Woodlands, Water and Roads from Aerial Imagery. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops, Nashville, TN, USA, 19–25 June 2021; pp. 1102–1110.

59. Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Can Semantic Labeling Methods Generalize to Any City? The Inria Aerial
Image Labeling Benchmark. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS),
Fort Worth, TX, USA, 23–28 July 2017.

60. Chen, Q.; Wang, L.; Wu, Y.; Wu, G.; Guo, Z.; Waslander, S.L. Aerial imagery for roof segmentation: A large-scale dataset towards
automatic mapping of buildings. ISPRS J. Photogramm. Remote Sens. 2019, 147, 42–55. [CrossRef]

61. Bragagnolo, L.; da Silva, R.V.; Grzybowski, J.M.V. Amazon Rainforest Dataset for Semantic Segmentation. 2019. Available online:
https://zenodo.org/record/3233081#.ZENXKc5ByUk (accessed on 8 March 2023).

62. Kocev, D.; Simidjievski, N.; Kostovska, A.; Dimitrovski, I.; Kokalj, Z. Discover the Mysteries of the Maya: Selected Contributions
from the Machine Learning Challenge: The Discovery Challenge Workshop at ECML PKDD 2021. arXiv 2022, arXiv:2208.03163.
https://doi.org/10.48550/arXiv.2208.03163.

63. Merdjanovska, E.; Kitanovski, I.; Kokalj, Ž.; Dimitrovski, I.; Kocev, D. Crop Type Prediction Across Countries and Years: Slovenia,
Denmark and the Netherlands. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing
Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 5945–5948.

64. Rußwurm, M.; Lefèvre, S.; Körner, M. Breizhcrops: A satellite time series dataset for crop type identification. In Proceedings of
the International Conference on Machine Learning Time Series Workshop, Long Beach, CA, USA, 9–15 June 2019; Volume 3.

http://dx.doi.org/10.1109/LGRS.2015.2513443
http://dx.doi.org/10.3390/s20041226
http://dx.doi.org/10.1109/TGRS.2016.2645610
http://dx.doi.org/10.1109/TGRS.2018.2864987
http://dx.doi.org/10.1109/MGRS.2020.2964708
http://dx.doi.org/10.1016/j.isprsjprs.2020.09.020
http://dx.doi.org/10.1016/j.isprsjprs.2019.01.015
http://dx.doi.org/10.1109/TGRS.2019.2963364
https://www.kaggle.com/c/planet-understanding-the-amazon-from-space
https://www.kaggle.com/c/planet-understanding-the-amazon-from-space
http://dx.doi.org/10.1109/TGRS.2019.2900302
http://dx.doi.org/10.1109/TPAMI.2021.3117983
http://dx.doi.org/10.1016/j.isprsjprs.2019.11.023
http://dx.doi.org/10.1016/j.isprsjprs.2014.10.002
http://dx.doi.org/10.1109/JSTARS.2020.3000317
http://dx.doi.org/10.1016/j.isprsjprs.2018.11.011
https://zenodo.org/record/3233081#.ZENXKc5ByUk

Remote Sens. 2023, 15, 2343 46 of 48

65. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105. [CrossRef]

66. Marcel, S.; Rodriguez, Y. Torchvision the machine-vision package of torch. In Proceedings of the 18th ACM International
Conference on Multimedia, Firenze, Italy, 25–29 October 2010; pp. 1485–1488.

67. Wang, J.; Yang, Y.; Mao, J.; Huang, Z.; Huang, C.; Xu, W. CNN-RNN: A Unified Framework for Multi-label Image Classification.
In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30
June 2016; IEEE Computer Society: Los Alamitos, CA, USA, 2016; pp. 2285–2294.

68. Liu, Z.; Mao, H.; Wu, C.Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A ConvNet for the 2020s. arXiv 2022, arXiv:2201.03545.
69. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.
70. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International

Conference on Machine Learning (PMLR), Long Beach, CA, USA, 10–15 June 2019; pp. 6105–6114.
71. Tolstikhin, I.O.; Houlsby, N.; Kolesnikov, A.; Beyer, L.; Zhai, X.; Unterthiner, T.; Yung, J.; Steiner, A.; Keysers, D.; Uszkoreit, J.; et al.

MLP-mixer: An all-mlp architecture for vision. Adv. Neural Inf. Process. Syst. 2021, 34, 24261–24272.
72. Wightman, R. PyTorch Image Models. 2019. Available online: https://github.com/rwightman/pytorch-image-models (accessed

on 8 March 2023).
73. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
74. Liu, Z.; Hu, H.; Lin, Y.; Yao, Z.; Xie, Z.; Wei, Y.; Ning, J.; Cao, Y.; Zhang, Z.; Dong, L.; et al. Swin Transformer V2: Scaling Up

Capacity and Resolution. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
New Orleans, LA, USA, 18–24 June 2022; pp. 11999–12009. [CrossRef]

75. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
76. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;

Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.
77. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017,

arXiv:1706.05587.
78. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic

Image Segmentation. In Computer Vision—ECCV 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer
International Publishing: Cham, Switzerland, 2018; pp. 833–851.

79. Iakubovskii, P. Segmentation Models Pytorch. 2019. Available online: https://github.com/qubvel/segmentation_models.pytorch
(accessed on 8 March 2023).

80. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [CrossRef]

81. Sun, K.; Zhao, Y.; Jiang, B.; Cheng, T.; Xiao, B.; Liu, D.; Mu, Y.; Wang, X.; Liu, W.; Wang, J. High-Resolution Representations for
Labeling Pixels and Regions. arXiv 2019, arXiv:1904.04514.

82. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image
Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer
International Publishing: Cham, Switzerland, 2015; pp. 234–241.

83. Lin, T.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020,
42, 318–327. [CrossRef]

84. Li, Y.; Xie, S.; Chen, X.; Dollar, P.; He, K.; Girshick, R. Benchmarking Detection Transfer Learning with Vision Transformers. arXiv
2021, arXiv:2111.11429. https://doi.org/10.48550/arXiv.2111.11429.

85. Ismail Fawaz, H.; Lucas, B.; Forestier, G.; Pelletier, C.; Schmidt, D.F.; Weber, J.; Webb, G.I.; Idoumghar, L.; Muller, P.A.; Petitjean, F.
InceptionTime: Finding AlexNet for time series classification. Data Min. Knowl. Discov. 2020, 34, 1936–1962. [CrossRef]

86. Rußwurm, M.; Pelletier, C.; Zollner, M.; Lefèvre, S.; Körner, M. BreizhCrops: A Time Series Dataset for Crop Type Mapping.
arXiv 2020, arXiv:1905.11893.

87. Rußwurm, M.; Körner, M. Multi-Temporal Land Cover Classification with Sequential Recurrent Encoders. ISPRS Int. J. Geo-Inf.
2018, 7, 129. [CrossRef]

88. Wang, Z.; Yan, W.; Oates, T. Time series classification from scratch with deep neural networks: A strong baseline. In Proceedings
of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 1578–1585.

89. Tang, W.; Long, G.; Liu, L.; Zhou, T.; Jiang, J.; Blumenstein, M. Rethinking 1D-CNN for Time Series Classification: A Stronger
Baseline. arXiv 2021, arXiv:2002.10061.

90. Turkoglu, M.O.; D’Aronco, S.; Wegner, J.; Schindler, K. Gating Revisited: Deep Multi-layer RNNs That Can Be Trained. IEEE
Trans. Pattern Anal. Mach. Intell. 2021, 44, 4081–4092. [CrossRef]

91. Pelletier, C.; Webb, G.I.; Petitjean, F. Temporal Convolutional Neural Network for the Classification of Satellite Image Time Series.
Remote Sens. 2019, 11, 523. [CrossRef]

92. Rußwurm, M.; Körner, M. Self-attention for raw optical Satellite Time Series Classification. ISPRS J. Photogramm. Remote Sens.
2020, 169, 421–435. [CrossRef]

http://dx.doi.org/10.1145/3065386
https://github.com/rwightman/pytorch-image-models
http://dx.doi.org/10.1109/CVPR52688.2022.01170
https://github.com/qubvel/segmentation_models.pytorch
http://dx.doi.org/10.1109/CVPR.2015.7298965
http://dx.doi.org/10.1109/TPAMI.2018.2858826
http://dx.doi.org/10.1007/s10618-020-00710-y
http://dx.doi.org/10.3390/ijgi7040129
http://dx.doi.org/10.1109/TPAMI.2021.3064878
http://dx.doi.org/10.3390/rs11050523
http://dx.doi.org/10.1016/j.isprsjprs.2020.06.006

Remote Sens. 2023, 15, 2343 47 of 48

93. Chen, H.; Chandrasekar, V.; Tan, H.; Cifelli, R. Rainfall Estimation From Ground Radar and TRMM Precipitation Radar Using
Hybrid Deep Neural Networks. Geophys. Rese. Lett. 2019, 46, 10669–10678. [CrossRef]

94. Weng, Q.; Mao, Z.; Lin, J.; Guo, W. Land-Use Classification via Extreme Learning Classifier Based on Deep Convolutional
Features. IEEE Geosci. Remote Sens. Lett. 2017, 14, 704–708. [CrossRef]

95. Castelluccio, M.; Poggi, G.; Sansone, C.; Verdoliva, L. Land Use Classification in Remote Sensing Images by Convolutional Neural
Networks. arXiv 2015, arXiv:1508.00092. https://doi.org/10.48550/arXiv.1508.00092.

96. Papoutsis, I.; Bountos, N.I.; Zavras, A.; Michail, D.; Tryfonopoulos, C. Efficient deep learning models for land cover image
classification. arXiv 2022, arXiv:2111.09451.

97. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

98. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using
Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC,
Canada, 11–17 October 2021; pp. 9992–10002. [CrossRef]

99. Scheibenreif, L.; Hanna, J.; Mommert, M.; Borth, D. Self-supervised Vision Transformers for Land-cover Segmentation and
Classification. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), New Orleans, LA, USA, 19–20 June 2022; pp. 1421–1430. [CrossRef]

100. Zhang, C.; Wang, L.; Cheng, S.; Li, Y. SwinSUNet: Pure Transformer Network for Remote Sensing Image Change Detection. IEEE
Trans. Geosci. Remote Sens. 2022, 60, 5224713. [CrossRef]

101. Wang, D.; Zhang, J.; Du, B.; Xia, G.S.; Tao, D. An Empirical Study of Remote Sensing Pretraining. IEEE Trans. Geosci. Remote Sens.
2022, Early Access. [CrossRef]

102. Liu, S.; He, C.; Bai, H.; Zhang, Y.; Cheng, J. Light-weight attention semantic segmentation network for high-resolution remote
sensing images. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium,
Waikoloa, HI, USA, 26 September–2 October 2020; pp. 2595–2598.

103. Xu, Z.; Zhang, W.; Zhang, T.; Yang, Z.; Li, J. Efficient Transformer for Remote Sensing Image Segmentation. Remote Sens. 2021,
13, 3585. [CrossRef]

104. Alhichri, H.; Alswayed, A.S.; Bazi, Y.; Ammour, N.; Alajlan, N.A. Classification of Remote Sensing Images Using EfficientNet-B3
CNN Model With Attention. IEEE Access 2021, 9, 14078–14094. [CrossRef]

105. Meng, Z.; Zhao, F.; Liang, M. SS-MLP: A Novel Spectral-Spatial MLP Architecture for Hyperspectral Image Classification. Remote
Sens. 2021, 13, 4060. [CrossRef]

106. Gong, N.; Zhang, C.; Zhou, H.; Zhang, K.; Wu, Z.; Zhang, X. Classification of hyperspectral images via improved cycle-MLP. IET
Comput. Vis. 2022, 16, 468–478. [CrossRef]

107. Solórzano, J.V.; Mas, J.F.; Gao, Y.; Gallardo-Cruz, J.A. Land Use Land Cover Classification with U-Net: Advantages of Combining
Sentinel-1 and Sentinel-2 Imagery. Remote Sens. 2021, 13, 3600. [CrossRef]

108. Cheng, Z.; Fu, D. Remote Sensing Image Segmentation Method based on HRNET. In Proceedings of the IGARSS 2020—2020 IEEE
International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 6750–6753. [CrossRef]

109. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A. DeepLab: Semantic Image Segmentation with Deep Convolutional
Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 40, 834–848. [CrossRef]

110. Ramirez, W.; Achanccaray, P.; Mendoza, L.F.; Pacheco, M.A.C. Deep Convolutional Neural Networks for Weed Detection in
Agricultural Crops Using Optical Aerial Images. In Proceedings of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing
Conference (LAGIRS), Santiago, Chile, 22–26 March 2020; pp. 133–137. [CrossRef]

111. Liu, M.; Fu, B.; Xie, S.; He, H.; Lan, F.; Li, Y.; Lou, P.; Fan, D. Comparison of multi-source satellite images for classifying marsh
vegetation using DeepLabV3 Plus deep learning algorithm. Ecol. Indic. 2021, 125, 107562. [CrossRef]

112. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In
NIPS’15: Proceedings of the 28th International Conference on Neural Information Processing Systems—Volume 1; MIT Press: Cambridge,
MA, USA, 2015; pp. 91–99.

113. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
114. Zhong, L.; Hu, L.; Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019, 221, 430–443.

[CrossRef]
115. Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
116. Sun, Z.; Di, L.; Fang, H. Using long short-term memory recurrent neural network in land cover classification on Landsat and

Cropland data layer time series. Int. J. Remote Sens. 2018, 40, 593–614. [CrossRef]
117. Ndikumana, E.; Ho Tong Minh, D.; Baghdadi, N.; Courault, D.; Hossard, L. Deep Recurrent Neural Network for Agricultural

Classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sens. 2018, 10, 1217. [CrossRef]
118. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks

via Gradient-Based Localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice,
Italy, 22–29 October 2017; pp. 618–626.

119. Boguszewski, A.; Batorski, D.; Ziemba-Jankowska, N.; Zambrzycka, A.; Dziedzic, T. LandCover.ai: Dataset for Automatic
Mapping of Buildings, Woodlands and Water from Aerial Imagery. arXiv 2020, arXiv:2005.02264.

http://dx.doi.org/10.1029/2019GL084771
http://dx.doi.org/10.1109/LGRS.2017.2672643
http://dx.doi.org/10.1109/ICCV48922.2021.00986
http://dx.doi.org/10.1109/CVPRW56347.2022.00148
http://dx.doi.org/10.1109/TGRS.2022.3221492
http://dx.doi.org/10.1109/TGRS.2022.3176603
http://dx.doi.org/10.3390/rs13183585
http://dx.doi.org/10.1109/ACCESS.2021.3051085
http://dx.doi.org/10.3390/rs13204060
http://dx.doi.org/10.1049/cvi2.12104
http://dx.doi.org/10.3390/rs13183600
http://dx.doi.org/10.1109/IGARSS39084.2020.9324289
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://dx.doi.org/10.1109/LAGIRS48042.2020.9165562
http://dx.doi.org/10.1016/j.ecolind.2021.107562
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.rse.2018.11.032
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1080/01431161.2018.1516313
http://dx.doi.org/10.3390/rs10081217

Remote Sens. 2023, 15, 2343 48 of 48

120. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollar, P.; Zitnick, L. Microsoft COCO: Common Objects in Con-
text. In Proceedings of the Computer Vision—ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014;
Springer: Cham, Switzerland, 2014.

121. Everingham, M.; Gool, L.V.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J.
Comput. Vis. 2009, 88, 303–308. [CrossRef]

122. Lu, X.; Zhang, Y.; Yuan, Y.; Feng, Y. Gated and Axis-Concentrated Localization Network for Remote Sensing Object Detection.
IEEE Trans. Geosci. Remote Sens. 2020, 58, 179–192. [CrossRef]

123. Tan, M.; Le, Q.V. EfficientNetV2: Smaller Models and Faster Training. In Proceedings of the 38th International Conference on
Machine Learning (ICML 2021), Virtual Event, 18–24 July 2021; 2021; Volume 139, pp. 10096–10106.

124. Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.W.; da Silva Santos, L.B.;
Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [CrossRef]

125. Wang, Y.; Albrecht, C.; Ait Ali Braham, N.; Mou, L.; Zhu, X. Self-Supervised Learning in Remote Sensing: A Review. IEEE Geosci.
Remote Sens. Mag. 2022, 10, 213–247. [CrossRef]

126. Akiva, P.; Purri, M.; Leotta, M. Self-Supervised Material and Texture Representation Learning for Remote Sensing Tasks.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA,
18–24 June 2022; pp. 8203–8215.

127. Manas, O.; Lacoste, A.; i Nieto, X.G.; Vazquez, D.; Rodriguez, P. Seasonal Contrast: Unsupervised Pre-Training from Uncurated
Remote Sensing Data. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC,
Canada, 11–17 October 2021; IEEE Computer Society: Los Alamitos, CA, USA, 2021; pp. 9394–9403. [CrossRef]

128. Wang, Y.; Braham, N.A.A.; Xiong, Z.; Liu, C.; Albrecht, C.M.; Zhu, X.X. SSL4EO-S12: A Large-Scale Multi-Modal, Multi-Temporal
Dataset for Self-Supervised Learning in Earth Observation. arXiv 2022, arXiv:2211.07044.

129. Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and flexible image
augmentations. Information 2020, 11, 125. [CrossRef]

130. Oliphant, T.E. A Guide to NumPy; Trelgol Publishing: Austin, TX, USA, 2006; Volume 1.
131. Kramer, O. Scikit-learn. In Machine Learning for Evolution Strategies; Springer: Cham, Switzerland, 2016; pp. 45–53.
132. Szymanski, P.; Kajdanowicz, T. Scikit-multilearn: A scikit-based Python environment for performing multi-label classification. J.

Mach. Learn. Res. 2019, 20, 209–230.
133. Bisong, E. Matplotlib and seaborn. In Building Machine Learning and Deep Learning Models on Google Cloud Platform; Springer:

Berkeley, CA, USA, 2019; pp. 151–165.
134. zipp: A pathlib-Compatible Zipfile Object Wrapper. 2023. Available online: https://doc.sagemath.org/html/en/reference/spkg/

zipp.html (accessed on 8 March 2023).
135. dill: Serialize All of Python. 2023. Available online: https://pypi.org/project/dill/ (accessed on 8 March 2023).
136. Lmdb: A Universal Python Binding for the LMDB ‘Lightning’ Database. 2023. Available online: https://lmdb.readthedocs.io/

en/release/ (accessed on 8 March 2023).
137. tifffile: Storing NumPY Arrays in TIFF and Read Image and Metadata from TIFF-Like Files. 2023. Available online: https:

//pypi.org/project/tifffile/ (accessed on 8 March 2023).
138. h5py: A Pythonic Interface to the HDF5 Binary Data Format. 2023. Available online: https://www.h5py.org/ (accessed on

8 March 2023).
139. Click: Command Line Interface Creation Kit. 2023. Available online: https://click.palletsprojects.com/en/8.1.x/ (accessed on

8 March 2023).
140. Munch: A Dictionary Supporting Attribute-Style Access. 2023. Available online: https://morioh.com/p/bbdd8605be66

(accessed on 8 March 2023).
141. Marshmallow: Simplified Object Serialization. 2023. Available online: https://marshmallow.readthedocs.io/en/stable/ (ac-

cessed on 8 March 2023).
142. Detlefsen, N.S.; Borovec, J.; Schock, J.; Harsh, A.; Koker, T.; Liello, L.D.; Stancl, D.; Quan, C.; Grechkin, M.; Falcon, W.

TorchMetrics—Measuring Reproducibility in PyTorch. J. Open Source Softw. 2022, 7, 4101. [CrossRef]
143. Sechidis, K.; Tsoumakas, G.; Vlahavas, I. On the Stratification of Multi-Label Data. In Proceedings of the 2011 European

Conference on Machine Learning and Knowledge Discovery in Databases—Volume Part III, Athens, Greece, 5–9 September 2011;
Springer: Berlin/Heidelberg, Germany, 2011; pp. 145–158.

144. Zhai, X.; Puigcerver, J.; Kolesnikov, A.; Ruyssen, P.; Riquelme, C.; Lucic, M.; Djolonga, J.; Pinto, A.S.; Neumann, M.; Dosovitskiy, A.;
et al. A Large-scale Study of Representation Learning with the Visual Task Adaptation Benchmark. arXiv 2019, arXiv:1910.04867.

145. Risojevic, V.; Stojnic, V. Do we still need ImageNet pre-training in remote sensing scene classification? arXiv 2021, arXiv:2111.03690.
[CrossRef]

146. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1109/TGRS.2019.2935177
http://dx.doi.org/10.1038/sdata.2016.18
http://dx.doi.org/10.1109/MGRS.2022.3198244
http://dx.doi.org/10.1109/ICCV48922.2021.00928
http://dx.doi.org/10.3390/info11020125
https://doc.sagemath.org/html/en/reference/spkg/zipp.html
https://doc.sagemath.org/html/en/reference/spkg/zipp.html
https://pypi.org/project/dill/
https://lmdb.readthedocs.io/en/release/
https://lmdb.readthedocs.io/en/release/
https://pypi.org/project/tifffile/
https://pypi.org/project/tifffile/
https://www.h5py.org/
https://click.palletsprojects.com/en/8.1.x/
https://morioh.com/p/bbdd8605be66
https://marshmallow.readthedocs.io/en/stable/
http://dx.doi.org/10.21105/joss.04101
http://dx.doi.org/10.5194/isprs-archives-XLIII-B3-2022-1399-2022

	Introduction
	Materials and Methods
	Design and Implementation of the AiTLAS Toolbox
	EO Data and Common Tasks
	Image Scene Classification Tasks
	Object Detection Tasks
	Image Semantic Segmentation Tasks
	Crop Type Prediction Tasks

	Model Architectures

	Results and Discussion: Demonstrating the Potential of AiTLAS
	Image Classification
	Data Understanding and Preparation
	Definition, Execution, and Analysis of a Machine Learning Pipeline

	Semantic Segmentation
	Data Understanding and Preparation
	Definition, Execution and Analysis of a Machine Learning Pipeline

	Object Detection
	Data Understanding and Preparation
	Definition, Execution and Analysis of a Machine Learning Pipeline

	Crop Type Prediction
	Data Understanding and Preparation
	Definition and Execution of Machine Learning Tasks

	Adding a New Machine Learning Model in AiTLAS

	Conclusions
	Third-Party Dependencies
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	References

