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Abstract: The ground deformation rate is an important index for evaluating the stability and degra-
dation of permafrost. Due to limited accessibility, in-situ measurement of the ground deformation of
permafrost areas on the Tibetan Plateau is a challenge. Thus, the technique of time-series interfer-
ometric synthetic aperture radar (InSAR) is often adopted for measuring the ground deformation
rate of the permafrost area, the effectiveness of which is, however, degraded in areas with geometric
distortions in synthetic aperture radar (SAR) images. In this study, a method that integrates InSAR
and the random forest method is proposed for an improved permafrost stability mapping on the
Tibetan Plateau; to demonstrate the application of the proposed method, the permafrost stability
mapping in a small area located in the central region of the Tibetan Plateau is studied. First, the
ground deformation rate in the concerned area is studied with InSAR, in which 67 Sentinel-1 scenes
taken in the period from 2014 to 2020 are collected and analyzed. Second, the relationship between the
environmental factors (i.e., topography, land cover, land surface temperature, and distance to road)
and the permafrost stability is mapped with the random forest method based on the high-quality
data extracted from the initial InSAR analysis. Third, the permafrost stability in the whole study
area is mapped with the trained random forest model, and the issue of data scarcity in areas where
the terrain visibility of SAR images is poor or InSAR results are not available in permafrost stability
mapping can be overcome. Comparative analyses demonstrate that the integration of the InSAR and
the random forest method yields a more effective permafrost stability mapping compared with the
sole application of InSAR analysis.

Keywords: permafrost stability; InSAR; random forest method; Tibetan Plateau; data scarcity

1. Introduction

Global mean surface temperature is increasing at the rate of 0.2 ± 0.1 ◦C per decade,
reaching 1.0 ◦C above the pre-industrial period (reference period 1850–1900) in 2017. Gen-
erally, the burning of fossil fuels is the main source of climate warming [1–3]. Under the
influences of global climate warming and human activities, mountain ecosystems and
cryosphere systems have changed significantly, especially those at high altitudes and high
latitudes [1,4–7]. As the third pole of the Earth, the Tibetan Plateau is sensitive to climate
warming. The warming rate in this plateau is about twice as high as the global climate
warming rate over the past 40 years [8]. As a result, the permafrost on the Tibetan Plateau
has been degraded drastically, manifesting in shrinking of the permafrost extent, change in
permafrost types, increase in the thickness of the active layer, emergence of thermokarst
lakes, and even soil desertification [9–12]. The degradation of the permafrost will have neg-
ative impacts on engineering facilities, ecosystem functions, and hydrogeological processes
on the Tibetan Plateau [13,14]. It is worthwhile noting that due to the permafrost warming
and degradation, the organic carbon stored in the permafrost will be released into the atmo-
sphere, which can further amplify regional and global climate warming [5]. In addition, the
ice in the uppermost permafrost could melt due to climate warming, which causes ground
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deformations and related geohazards (e.g., failed slopes and retrogressive thaw slumps).
These geohazards may affect the stability and operation safety of highways, railways, and
other infrastructure in permafrost areas [6]. Hence, it is particularly important to monitor
the deformation and stability of the permafrost on the Tibetan Plateau.

Permafrost stability is often evaluated based on the mean annual ground tempera-
ture [13], even though it can be influenced by various factors. Note that the permafrost
degradation, manifested by the warming temperatures, could lead to an increase in the
annual active-layer thickness and retreat of the permafrost extent [15,16]. The studies in Ko-
vakov and Shvetsov [17] showed that permafrost stability could be assessed by the amount
of annual increase in the thickness of the active layer. The thickness of the active layer can
be measured directly with grid probing, thaw tubes, and ground penetrating radar [18,19].
Although these measurements are of high quality, they are sparse and the measurement
accuracy is site specific [20]. Indeed, similar problems exist in the monitoring of ground
temperature. With the aid of an analytical model that is based on the heat conduction
equation and the environmental conditions [21], the thickness of the active layer monitored
from the point measurement could be extended to that at a regional scale. A potential
limitation of this interpolation is that too many environmental factors are involved, and
the determination of these factors can be a challenge [22]. Further, permafrost-related
disturbances (e.g., retrogressive thaw slumps) can also indicate permafrost stability. Some
studies have used deep-learning-based models to map retrogressive thaw slumps [10,23,24].
Though the accuracy of the deep-learning-based models is high, the main limitation is that
too many training datasets are needed.

Note that the variation in active-layer thickness can be monitored by the ground
deformation [25]. In addition, under warming or local disturbance, the excess ice or ice-rich
sediment in the uppermost permafrost can lead to additional long-term ground subsidence,
which could be regarded as an indicator of permafrost degradation [14,26]. Thus, the
permafrost stability can be assessed based on the ground deformations. For instance,
larger ground subsidence indicates permafrost instability or degradation, whereas smaller
subsidence indicates permafrost stability. During the past few decades, remote sensing
techniques have become an indispensable tool for monitoring the ground deformation and
evaluating the permafrost stability in permafrost areas owing to their wide coverage and
independence from ground measurements [27–31]. Among the various remote sensing
techniques, interferometric synthetic aperture radar (InSAR), the effectiveness of which
is not affected by the weather conditions, is quite popular because of its high accuracy in
monitoring small ground deformations [6,11]. However, the effectiveness of differential
InSAR in monitoring the ground deformation and the permafrost stability is degraded by
spatial decoherence and atmospheric distortion. Hence, the techniques of time-series InSAR
such as persistent scatterer InSAR (PS-InSAR) and small baseline subset InSAR (SBAS-
InSAR) have been developed recently and applied to monitoring the ground deformation
and permafrost stability on the Tibetan Plateau [9,14,32]. However, side-view imaging
is often adopted to generate SAR images and the terrain visibility of SAR images relies
upon the acquisition direction of the adopted satellite radar with respect to the imaged
terrain [33,34]. In mountainous areas, the geometric distortions caused by side-view
imaging include foreshortening, layover, and shadow, which can degrade the effectiveness
of the time-series InSAR [34]. Although a few image pixels with bright reflectivity in the
foreshortening areas in the SAR image can be detected and monitored by the time-series
InSAR, the monitored ground deformations in foreshortening areas might be inaccurate [34].
In addition, the ground deformation results in layover and shadow areas are also not
accurate [34]. Thus, the geometric distortion areas are regarded as poor terrain visibility
areas, and the rest are good visibility areas. Further, the ground deformation in areas with
dense vegetation and water covering may not be monitored due to decoherence. In other
words, the ground deformation points detected by time-series InSAR may not cover the
entire study area. In this study, data scarcity can be defined as the area where the terrain
visibility is poor or InSAR results are not available.
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In the field of landslide susceptibility mapping, the historical landslide information of
a region is often collected and adopted for training the relationship between environmental
factors and landslide occurrence; the trained relationship is then applied to predict the
probability of landslide occurrence in other regions with similar environmental condi-
tions [35,36]. Inspired by the concept of landslide susceptibility mapping, a method that
integrates the time-series InSAR and machine learning methods is proposed in this paper
for improved permafrost stability mapping on the Tibetan Plateau. The integrated method
could have the advantages of the effectiveness of time-series InSAR (in monitoring the
ground deformation in areas with good visibility of input SAR images) and the machine
learning method (in mapping the relationship between the environmental factors and the
ground deformation). With the aid of the trained relationship between the environmental
factors and permafrost stability, the permafrost stability in the entire study area can be
readily mapped. Thus, the issue of data scarcity can be overcome. Indeed, the method
integrating time-series InSAR and machine learning has shown effectiveness in landslide
susceptibility mapping [37]. Note that the ground deformation in permafrost areas is
correlated with environmental factors [14]; thus, such an integrated method can also be
adopted to map permafrost stability.

To illustrate the application and effectiveness of the proposed method, the permafrost
stability mapping in a small area located in the central region of the Tibetan Plateau is
analyzed. The novelty of this study is the permafrost stability mapping integrating the
time-series InSAR and machine learning methods, with which the issue of data scarcity
could be overcome. The remainder of this article is organized as follows. First, the study
area is briefly introduced in Section 2. Second, the principle of the proposed method and the
data processing are provided in Section 3. Third, the ground deformation and permafrost
stability mapping results are presented in Section 4. Fifth, the ground deformation and
permafrost stability mapping results obtained are validated and discussed in Section 5.
Finally, the concluding remarks are provided.

2. Information of the Study Area

The Tibetan Plateau has the largest permafrost area in the middle and low lati-
tude regions of the Earth, with an area underlain by a permafrost of approximately
1.06 × 106 km2 [38]. According to the permafrost continuity, the duration of frozen ground,
and the maximum depth of seasonal frost penetration, the permafrost on the Tibetan Plateau
is categorized into six types: predominantly continuous permafrost, predominantly contin-
uous and island permafrost, mountain permafrost, middle-thick seasonally frozen ground,
thin seasonally frozen ground, and short-time frozen ground (http://www.ncdc.ac.cn,
accessed on 19 March 2023). Figure 1a shows that the distribution of different types of per-
mafrost can be affected by latitude. For example, the predominantly continuous permafrost
is mainly located in the central and northwest of the Tibetan Plateau, the predominately
continuous and island permafrost is located in the south of the predominately continuous
permafrost, the mountain permafrost is mainly located in the north, west, and south of the
Tibetan Plateau, and the seasonally frozen ground is primarily scattered in the east of the
Tibetan Plateau. Depending on the complex environmental conditions, the responses of
these six types of permafrost to climate warming can be different.

To illustrate the application and effectiveness of the integrated method proposed, a
small area located in the central region of the Tibetan Plateau, as shown in Figure 1a, is
analyzed in this paper. The reasons for selecting this study area are summarized as follows:
(1) The permafrost stability in the study area cannot be fully monitored by time-series InSAR
due to the terrain visibility and decoherence; thus, the machine learning method is taken
as an effective and necessary supplement to the InSAR analysis in the permafrost stability
mapping. (2) The time-series InSAR and machine learning method are both effective
in the study area; thus, the proposed method is applicable in the study area. (3) This
area is predominately occupied by continuous permafrost and the permafrost stability
has been studied by many studies [39–41], the results of which indicate that permafrost

http://www.ncdc.ac.cn
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degradation occurs frequently in this area under climate warming; thus, this study is
significant in assessing the permafrost stability of this area. (4) This area is covered by
both ascending and descending SAR data (see Figure 1a), as such, the permafrost stability
mapping results obtained can be cross-validated. (5) The Qinghai–Tibet Highway crosses
this area; thus, permafrost stability mapping in this area will be significant for the operation
of this highway.
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Figure 1. General information of the study area: (a) Permafrost types on the Tibetan plateau;
(b) Ground elevation map of the study area.

As can be seen from Figure 1b, the dimensions of the study area are 80 km by 80 km
and the topography mainly consists of mountainous terrain with ground elevations ranging
from 4747 to 5227 m. Note that the variation in the ground elevation in the mountainous
terrain is relatively small. The bedrock of the study area is red or gray sandstone and
mudstone, and lacustrine deposits can also be identified in the study area. The vegetation
cover mainly consists of alpine meadow and desert grassland. The climate is cold and
dry with the mean annual air temperature of about 4.5 ◦C, and the annual precipitation
ranges from 300 to 400 mm. Note that the precipitation is mainly concentrated in the rainy
season (from June to August), and the heavy rainfall in the rainy season often brings about
flooding and surface erosion in the study area [42]. Thus, the water content of the soil is
fairly low and under the effects of freeze–thaw cycles and surface runoff processes; the
study area is prone to suffer from permafrost degradation and desertification [32].

3. Methodology and Data Processing
3.1. Principle of the Integrated Method for Permafrost Stability Mapping

To overcome the data scarcity issue in the InSAR-based permafrost stability mapping,
an integrated method that can take advantage of the effectiveness of InSAR analysis (in
monitoring the ground deformation in areas with good terrain visibility of SAR images)
and that of machine learning (in mapping the relationship between the environmental
factors and the permafrost stability) is proposed in this study. The general principle and
implementation procedures of this integrated method are illustrated in Figure 2.
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Within the context of the integrated method, the ground deformation in the concerned
region is first studied with the time-series InSAR analysis, through which an initial per-
mafrost stability mapping is obtained. It is noted that the ground deformation in this initial
permafrost stability mapping cannot be available in areas with dense vegetation and water
covering, due to the temporal decoherence induced in the processing of input SAR images,
whereas the permafrost stability obtained in areas with poor visibility (of SAR images)
can be problematic. Thus, a screening analysis that is based on the analysis of geometric
distortion (in input SAR images) and the coherence of InSAR analysis results is conducted
to locate the area with high-quality ground deformation data. The screened area is termed
as the high-quality area, whereas the rest of the area is termed as the low-quality area.
Then, the high-quality samples (i.e., unstable and stable ground points) for the permafrost
stability mapping are extracted from the high-quality area based on the ground deformation
rate and Google Earth image characteristics, which are detailed in the results section.

The studies in [14,43] depict that ground deformation and permafrost stability can
be closely correlated with environmental factors, including topography, land cover, land
surface temperature, and distance to road. Note that although the effectiveness of the
time-series InSAR in monitoring the ground deformation in the high-quality area and that
in the low-quality area may be different, the mapping relationship between the environ-
mental factors and the permafrost stability in the high-quality area can be applied to the
low-quality area; indeed, a similar concept is often employed in landslide susceptibility
mapping [35,36]. The machine learning method has been extensively adopted for mapping
the relationship between environmental factors and landslide occurrence. Although per-
mafrost stability and landslide susceptibility can follow different physical mechanisms,
both are correlated with environmental factors and the relationship between permafrost
stability and environmental factors and that between landslide susceptibility and environ-
mental factors can be mapped with similar methods. As such, the relationship between
environmental factors and permafrost stability in this study is mapped with the machine
learning method. Here, the relationship between the environmental factors and permafrost
stability is trained by the data (i.e., permafrost stability and environmental factors) extracted
in the high-quality area using the machine learning method and the trained relationship is
further adopted to map the permafrost stability in the whole study area. As an outcome,
the data scarcity issue in the InSAR-based permafrost stability mapping can be overcome
and an improved permafrost stability mapping can be achieved.

3.2. Data Processing with the Proposed Method
3.2.1. Time-Series InSAR Analysis

To analyze the ground deformations and permafrost stability in the study area,
67 scenes of SAR images, acquired by the descending Sentinel-1 from October 2014 to
August 2020, were downloaded from the European Space Agency (https://earth.esa.int,
accessed on 19 March 2023). Further, 69 scenes of SAR images, acquired by the ascending
Sentinel-1 in the same observation period were downloaded to validate the accuracy of
the permafrost stability mapping obtained from the integrated method. The boundaries
of these SAR images are provided in Figure 1a. Note that although the combination of
descending and ascending SAR images can improve the monitoring ability of ground
deformation, the reasons for only using the descending SAR images as input to train the
permafrost stability mapping model are summarized as follows: (1) the deformation results
obtained from ascending SAR images are adopted for the validations of the ground defor-
mations and the permafrost stability mapping, and if the deformation points obtained from
descending and ascending SAR images are combined to extract the training samples, such
validations would be not convincing and (2) the training samples are extracted from the
high-quality area, which is not affected by the geometric distortions; thus, the deformation
results of these training samples are reliable. Further, these samples are verified through
visual interpretations of Google Earth images to guarantee the accuracy of the training
samples and the permafrost stability mapping model. In this study, the SBAS-InSAR

https://earth.esa.int
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method is employed to reduce the temporal decorrelation caused by the large timespan
of the input SAR images. The ground deformation is analyzed with the following steps:
(1) The signal-to-noise ratio (SNR) in the interferometric SAR images is improved with the
Goldstein radar interferogram filter [44]. (2) The flat-earth phase and the topographic phase
in the interferometric SAR images are removed by the precise orbit determination (POD)
data and the digital elevation model (DEM) data, respectively. In the InSAR processing,
the atmospheric effect is mainly the topography-correlated tropospheric delay. Thus, the
tropospheric delay can be estimated from the correlation between the interferometric phase
and the topography. However, this method assumes a single relationship between phase
and topography over the whole interferogram as it does not account for the spatial variation
in the tropospheric properties [45]. In this study, the tropospheric errors are minimized
through spatial–temporal filtering, which is based on the assumption of Gaussian distribu-
tion of time-series tropospheric delays. This method has been shown effective in reducing
the effect of tropospheric delay on the Tibetan Plateau [25,46]. (3) Phase unwrapping (of
interferometric SAR images obtained in the previous step) is conducted with the minimum
cost flow algorithm (MCF) [47]. (4) The residual phase component and phase ramps (of
interferometric SAR images obtained in the previous step) are removed using the ground
control points (GCPs). (5) The time-series ground deformation along the line of sight (LOS)
direction is retrieved with the inversion model [48]. Note that the GCPs are selected on the
flat terrain with minimal ground deformation, and the GCPs are stable in InSAR images
over the entire observation period.

The main ground deformation in permafrost areas is thaw subsidence or frost heave,
which is manifested in vertical ground deformation. Thus, vertical ground deformation,
rather than the LOS deformation, is adopted in this study for analyzing the permafrost
stability. As shown in Figure 1b, the study area is relatively flat and homogeneous and no
active fault is developed. Thus, the ground deformation in the study area is assumed to
be concentrated in the vertical direction. Based on the incidence angle of the satellite LOS,
the LOS deformation can be easily converted to vertical ground deformation. This kind of
ground deformation transformation is reliable and has been widely adopted [11,19]. Note
that the accuracy of the ground deformation obtained from InSAR analysis can be affected
by the coherent pixels, the coherence values of which range from 0 to 1. In general, a smaller
coherence value indicates that the ground deformation obtained is less reliable, whereas a
larger coherence value indicates the ground deformation obtained is more accurate. Thus,
the coherence threshold is often adopted in InSAR analyses and the threshold adopted
to ranges from 0.4 to 0.9 depending on the topographic complexity [40,49]. In this study,
the threshold value is set at 0.8 for screening the InSAR analysis results, which is mainly
determined through a preliminary sensitivity analysis; this value can yield accurate and
sufficient ground deformation points.

In reference to Daout et al. [9] and Lu et al. [32], the ground deformation of the
permafrost on the Tibetan Plateau under climate warming can be decomposed into two
elements: long-term deformation (mainly induced by the increase in active-layer thickness
under climate warming) and seasonal deformation (mainly induced by the frost heave
and thaw settlement within each freeze–thaw cycle). Thus, the ground deformation of the
permafrost, denoted as S, can be approximated as follows.

S(t) = a× t + b× sin
(

2π

T
× t

)
+ c× cos

(
2π

T
× t

)
+ d (1)

where t represents the time (unit: day); T represents the period of a freeze–thaw cycle, which
is usually set at one year (i.e., T = 1 year); and a, b, c, and d represent the model coefficients.

3.2.2. Analysis of Geometric Distortion in Input SAR Images Using the R-Index Model

The quality of the InSAR analysis results (i.e., ground deformation) can be greatly
affected by geometric distortions in input SAR images, which can be analyzed from the
orientation parameters of the satellite LOS (i.e., incidence angle and azimuth angle) and
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the features of the local terrain (i.e., slope and aspect). For example, the effectiveness of the
InSAR analysis results can be degraded in areas with poor terrain visibility. To locate the
areas with poor visibility (in SAR images) in the study area, the R-index model [34,50,51],
which has been widely adopted for analyzing geometric distortions, is employed in this
paper. This R-index is calculated based on the cosine of the angle between the local terrain
surface and the radar beam, as follows [44],

R− index = sin{θ + arctan[tanα× cos(ϕ− β)]} × La× Sh (2)

where α is the slope of the terrain; β is the aspect of the terrain; θ is the incidence angle of the
satellite LOS; ϕ is the azimuth angle of the satellite LOS; La is the layover coefficient; and Sh
is the shadow coefficient. The coefficients of La and Sh can be calculated using the hillshade
model, with the satellite position representing the sun in GIS software [51]. The geometric
distortion areas in the study area can be determined with the following criteria: (1) if the
R-index is greater than or equal to sin(θ) (i.e., R-index≥ sin(θ)), the related area is categorized
as an area with good visibility, and no geometric distortion exists; (2) if R-index is between
0 and sin(θ) (i.e., 0 < R-index < sin(θ)), the related area is categorized as a foreshortening
region, and geometric distortion exists; and (3) if R-index is not positive (i.e., R-index ≤ 0),
the related area is categorized as a layover or shadow region, and geometric distortion
exists. In this study, the areas with geometric distortions (i.e., foreshortening, layover, and
shadow) are considered as areas with poor visibility. From there, the high-quality areas,
which are defined as the intersection of the areas with InSAR deformation points and good
visibility, in the study area can be located, whereas the rest of the areas are categorized as
low quality.

3.2.3. Random-Forest-Method-Based Permafrost Stability Mapping

As discussed above, the relationship mapping between the environmental factors and
permafrost stability is fairly similar to that between the environmental factors and landslide
occurrence. There are various models for mapping the relationship between environmental
factors and landslide occurrences, such as neural-network-based deep learning [52,53],
decision trees [54], frequency ratios [55], and fuzzy assessment [36]. These methods could
be readily adopted for mapping the relationship between environmental factors and per-
mafrost stability. Note that although the deep learning method can achieve high accuracy
in landslide susceptibility mapping and permafrost stability mapping, the computational
efficiency might be relatively low. In this study, the random forest model [56] is adopted
for the relationship mapping between the environmental factors and the permafrost sta-
bility, mainly for the following reasons: (1) the random forest method is a non-linear,
non-parametric algorithm that can deal with large datasets containing both categorical and
numerical data and account for complex interactions and non-linearity between variables;
(2) it can handle missing values and maintain accuracy for missing data; (3) compared
with other machine learning methods, such as artificial neural network, the random forest
method does not require much fine-tuning of hyperparameters; in many cases, using de-
fault parameter settings can achieve good performance [57,58]; and (4) compared with other
tree-ensemble methods, the random forest method is computationally light. Therefore,
the random forest method is commonly used in large-scale mapping and classification
applications [58]. Although the random forest method is adopted in this study to map
the relationship between permafrost stability and environmental factors, other machine
learning methods, which have their specific advantages, can also be adopted for mapping
such a relationship. Within the context of the random forest method, the technique of
bootstrap resampling is used for extracting bootstrap samples from the original samples;
each bootstrap sample is then modeled by a decision tree and the predictions obtained from
multiple decision trees are finally combined. As such, the issues caused by the outliers
in the prediction, overfitting, and data missing in the training samples can be overcome.
In addition, the random forest method adopted has been shown effective in mapping the
permafrost degradation-induced thaw settlement susceptibility on the Tibetan Plateau [59].
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Note that the selection of the number of decision trees plays a vital role in the prediction
accuracy of the trained random forest model. For example, an insufficient number of deci-
sion trees may lead to the reduced accuracy of the model prediction, whereas an excessive
number of decision trees may cause data redundancy. In this study, the determination of
the number of decision trees is based on trial-and-error analysis, and when the number of
decision trees is larger than 400, the prediction accuracy does not increase. Thus, based
on a tradeoff analysis between prediction accuracy and data redundancy, the number of
decision trees in this study is set up as 400.

The analyses by Ran et al. [12] and Chen et al. [60] indicated that permafrost stability
can be greatly affected by vegetation coverage (i.e., NDVI) and the topography factors of
ground elevation and slope orientation. The report from Deluigi et al. [61] showed that
permafrost stability can also be affected by other topographic factors such as slope and
curvature, and the analysis in Qin et al. [62] depicted that the land surface temperature
might influence the vegetation coverage and soil water content, which could be a good
indicator for analyzing the permafrost stability. Further, the land cover plays a vital role in
influencing permafrost stability [63]. Apart from the factors discussed above, the permafrost
stability might also be degraded by engineering activities. For example, the construction
and operation of the Qinghai–Tibet Highway has led to an obvious degradation of the
permafrost along this highway [64]; thus, the Qinghai–Tibet Highway is also one of the
important environmental factors in assessing permafrost stability.

Under these circumstances, eight environmental factors, including the ground eleva-
tion, aspect, slope, curvature, land cover, NDVI, land surface temperature, and distance to
the Qinghai–Tibet Highway, are extracted in the study area for mapping the permafrost
stability. Here, the topography factors (i.e., ground elevation, aspect, slope, and curvature)
are calculated from the ALOS DEM, the land cover is generated from the GlobeLand30
product (http://www.globallandcover.com/, accessed on 19 March 2023), the NDVI and
land surface temperature are the annual average NDVI and land surface temperature from
2014 to 2020, which are generated using Landsat 8 Level 2 images on the Google Earth
Engine platform (http://earthengine.google.org/, accessed on 19 March 2023), and the
distance to Qinghai–Tibet Highway is generated by the Euclidean distance function in GIS
software. Plotted in Figure 3 are the environmental factors extracted in the study area,
which are resampled into the 100 m by 100 m spatial grids.
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A multicollinearity analysis indicates that the environmental factors shown in Figure 3
are independent of each other. For ease of screening stable and unstable ground points
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in the initial InSAR analysis results, threshold values for the ground deformation rate are
prespecified, and the determination of these threshold values is detailed in the section
containing the results. In order to train the relationship between the environmental factors
and permafrost stability, 80% of the high-quality samples, which are extracted in the high-
quality area and screened according to the threshold values of the ground deformation
rate and Google Earth image characteristics, are taken as the training samples, whereas
the rest (20%) of the high-quality samples, which are not involved in the model training,
are taken as the validation samples to assess the accuracy of the model. In summary, the
data adopted for training the random forest model are the high-quality samples extracted
in the high-quality area; the inputs to the random forest model are the environmental
factors including the ground elevation, aspect, slope, curvature, land cover, NDVI, land
surface temperature, and distance to the Qinghai–Tibet Highway, whereas the output of the
random forest model is the mapping result in the whole study area, in terms of a probability
of permafrost stability ranging from 0 to 1 (where 0 represents permafrost instability and
1 represents permafrost stability).

In this study, except for the validation samples, the receiver operating characteristics
(ROC) curve is also employed for evaluating the mapping accuracy of the trained random
forest model [65]. The ROC curve plots the true positive rate on the Y-axis and the false
positive rate on the X-axis. The area under the curve (AUC) measures the probability of
correct classification, and an AUC value close to 1 indicates high mapping accuracy. In
addition, the relative importance of each environmental factor to the permafrost stability
is evaluated by the indexes of mean decrease accuracy (MDA) and mean decrease Gini
(MDG), which can be calculated according to the reduction in the prediction accuracy when
values of this environmental factor in a decision tree are permuted randomly [56].

4. Results
4.1. Results of the Ground Deformation with Time-Series InSAR Analysis
4.1.1. Ground Deformations Obtained in the Study Area

Figure 4a shows the vertical ground deformation rate in the study area obtained from
October 2014 to August 2020. As can be seen, the ground deformation rate ranges from
−58 mm/year to 29 mm/year, and the regions with permafrost instability, indicated by
the area with large deformation rates, are mainly distributed in the valley areas with low
altitudes where the water content is relatively high. However, there are areas with high
deformation rates that are distributed in high-altitude mountainous areas. The reason
may be that permafrost stability is affected by various environmental factors. For exam-
ple, the land cover type in some high-altitude mountainous areas is bare lands with no
vegetation coverage, which is susceptible to ice melting and thaw subsidence. In addition,
the ground deformation mainly takes place on the west-facing slopes (see the comparison
in Figure 4b,c), partially because the input SAR images are collected by the descending
satellite. Note that the terrain visibility of the descending SAR images in east-facing slopes
is mainly foreshortening, which means the ground deformation results obtained for east-
facing slopes might be not reliable. Further, the visual interpretations of Google Earth
images indicate that there may be unstable characteristics in east-facing slopes, as shown in
Figure 4d,e. In fact, many studies have shown that the deformation results in foreshort-
ening areas and other poor visibility areas are not accurate [34,66,67]. As such, although
there are many deformation points located on east-facing slopes, the related deformation
results are not reliable and could not be adopted to indicate permafrost degradation. More
deformation points in Figure 4b, compared with Figure 4c, might be attributed to the higher
coherence of the interferograms.
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deformation rate from October 2014 to August 2020 [39]; (b) Ground deformation rate in east-facing
slopes; (c) Ground deformation rate in west-facing slopes; (d,e) Google Earth images for east-facing
slopes (Image from © Google Earth 2020).

As described above, the ground deformation of permafrost areas can be decomposed
into two elements: long-term deformation and seasonal deformation. Note that the long-
term ground subsidence induced by the thawing permafrost could lead to permafrost
instability or degradation. Here, the ground deformations at three points (in terms of
points P1, P2, and P3 in Figure 4a) are adopted to analyze the ground deformations using
the empirical model established in Equation (1). According to the ground deformations
monitored from October 2014 to August 2020, the model coefficients are estimated with the
least squares method. Although deviations exist in the estimated deformation trend, and the
errors caused by such deviations may come from processing errors (e.g., phase unwrapping
errors) and human disturbance that cause the low R-square of P1, the overall trend of the
ground deformations is not much affected. For example, the R-squares of P2 and P3 are
relatively high (i.e., 0.80 and 0.83), indicating that the ground deformations in the study area
can be well captured by the empirical model shown in Equation (1), as shown in Figure 5a.
Indeed, such an empirical model has been excessively adopted for the decomposition
of ground deformations in permafrost areas [9,32]. Moreover, the decomposition of the
ground deformation using the empirical model is mainly conducted to determine the
periods of thawing and frozen seasons, and the inputs to the built random forest model are
the unstable and stable ground points determined through the ground deformation rate
estimated from time-series InSAR analyses and Google Earth images. Thus, the accuracy of
the permafrost stability mapping in the study area would not be degraded by the deviations
in the empirical models shown in Figure 5a. The plots in Figure 5a indicate that the ground
surface exhibits heaves in the frozen season (from September to March, attributed to the
freezing of the active layer) and exhibits subsidence in the thawing season (from April
to August, attributed to the thaws of the active layer). Hence, the maximum ground
settlement of the permafrost each year occurs around the month of August. Figure 5b
depicts that the seasonal deformations (calculated as the total deformation minus the long-
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term deformation, expressed as S(t) − a × t) tend to be negatively correlated with the air
temperature, which confirms that the seasonal deformation is mainly caused by the frost
heave and thaw settlement within each freeze–thaw cycle, similar phenomena were also
observed by Lu et al. [32] and Zhao et al. [43].
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Figure 5. Fitting analysis of the ground deformation in the period from 2014 to 2020: (a) Fitting
analysis between the ground deformation and the time; (b) Correlation analysis between the seasonal
deformation and the air temperature (note: the air temperature is from the 2.0 m air temperature
dataset from the European Centre for Medium-Range Weather Forecasting—Fifth-Generation Reanal-
ysis (ECMWF ERA5)).

Figure 6 depicts that the maximum ground deformations of the study area occurred
during the thawing periods in 2015, 2017, 2018, and 2019. It is found that the magnitude
of the maximum seasonal thaw subsidence increases from 2015 to 2019, which is quite
evident in the northern region of the study area, though there may be some exceptions due
to the accuracy of the ground deformation results. To quantitively assess the subsidence
trend, the study area is evenly divided into three regions (i.e., the northern, middle, and
southern regions shown in Figure 6), then the average seasonal thaw subsidence of the
whole study area and the three regions in 2015, 2017, 2018, and 2019 are estimated; the
results are depicted in Figure 7. Note that the seasonal thaw subsidence consists of the
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ground deformations that occurred in the thawing season (i.e., from April to August) and
the average seasonal thaw subsidence values shown in Figure 7 are estimated in the whole
study area, the northern region, the middle region, and the southern region, respectively.
It shows that the subsidence in the whole study area and the northern region increases
from 2015 to 2019, whereas that in the middle and southern regions is not evident. Note
that the ground elevation of this study area tends to decrease from south to north, except
along the Qinghai–Tibet Highway, as shown in Figure 1b. Therefore, the regions with a
lower altitude have a higher risk of permafrost instability or degradation; this inference
is in general agreement with the observations by Huang et al. [10] and Lu et al. [32]. For
example, more thermokarst lakes, retrogressive thaw slumps, and failed slopes are detected
in regions with low altitudes [10,32].
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4.1.2. Influences of Ground Elevation and NDVI on the Seasonal Thaw Subsidence

It is known that the watershed and river network in an area are mainly determined
by the topography [60]; thus, the distribution of the water content in the ground can be
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strongly affected by the local topography. To analyze the influence of the topography on
the seasonal thaw subsidence of the permafrost areas, the river network in the study area
is generated from the DEM, which is then superimposed onto the average seasonal thaw
subsidence that took place in the period from 2015 to 2019, as shown in Figure 8a. Note
that the average seasonal thaw subsidence shown in Figure 8a is the average value of the
seasonal thaw subsidence from 2015 to 2019. In addition, in the InSAR processing, the
topography-correlated tropospheric delay has been minimized through spatial–temporal
filtering; thus, the atmospheric condition could not affect this analysis. As can be seen, the
regions with large thaw subsidence are mainly located in the river valleys where the soil is
typically fully saturated and the ground ice is rich [60,68], whereas the regions with small
thaw subsidence are mainly located in the hill ridges where the water content in the ground
is relatively low. Further, the elevation could affect the distribution of water content; thus,
the influence of elevation on the seasonal thaw subsidence is also analyzed. To illustrate
this analysis more intuitively, a profile, AB, which is along the highway, is delineated (see
Figure 8a), and the study results are shown in Figure 8b,c. Figure 8b depicts the relationship
between the acquired average seasonal thaw subsidence and the ground elevation. Plotted
in Figure 8c are the variations of the seasonal thaw subsidence and the ground elevation
along profile AB. As can be seen, a larger ground elevation tends to yield smaller thaw
subsidence; however, there are exceptions. For example, the thaw subsidence in Zone
I matches the ground elevation well, whereas that in Zone II cannot match the ground
elevation. A detailed survey of the topography suggests that Zone I is located in a river
valley, whereas Zone II is located on a north-facing slope (see Figure 8d). Although the
ground elevation in Zone II is lower than that in Zone I, the solar radiation in Zone II may
be much weaker and thus the ice in the ground is more difficult to melt. This phenomenon
could also explain the low Pearson’s coefficient between the elevation and the ground
deformations shown in Figure 8b. Indeed, ground deformation can be affected by many
environmental factors, and when other environmental factors are dominant, the impact of
the ground elevation may be not significant. Although the Pearson’s coefficient is very low,
it still indicates that the elevation could have an impact on the ground deformation.
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Figure 8. The influence of the topography on the seasonal thaw subsidence of the permafrost:
(a) Average seasonal thaw subsidence of the study area took place in the period from 2015 to 2019;
(b) Relationship between the seasonal thaw subsidence and the ground elevation along profile AB;
(c) Variations in the seasonal thaw subsidence and the ground elevation with the distance measured
from A to B along profile AB; (d) A detailed survey of the topography (Zone I is located in a river
valley; Zone II is located on a north-facing slope).
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The vegetation coverage is also taken as an important index of the soil water con-
tent [12]. The influence of the vegetation coverage on the seasonal thaw subsidence in
the study area is herein investigated. In reference to Figure 9a, the vegetation coverage in
the study area is dominated by grasslands and bare lands. The NDVI is employed in this
study to represent vegetation coverage, and a larger NDVI value signals denser vegetation
coverage. The influence of NDVI on the ground deformation (i.e., the average seasonal
thaw subsidence that took place in the period from 2015 to 2019, see Figure 8a) is studied
based on the data collected along the profile AB, and the results are illustrated in Figure 9b,c.
Similar to that in Figure 8c, the change in the magnitude of the seasonal thaw subsidence
is in good agreement with the change in NDVI: a larger NDVI value tends to result in
smaller thaw subsidence, partially due to the protective effect of the vegetation coverage
(on the ground) in terms of the ice melting (in the ground). The study by Jin et al. [69]
confirmed that vegetation coverage has important impacts on the ground thermal regime
by influencing the energy transfer between the atmosphere and ground surface and thus
affects the seasonal thaw subsidence. Figure 9b,c depict that a smaller NDVI value tends
to result in larger thaw subsidence, and the bare lands with smaller NDVI values tend to
have larger thaw subsidence; however, the seasonal thaw subsidence can be affected by
various factors (e.g., elevation, slope, and ice content), making the relationship between the
seasonal thaw subsidence and the NDVI values not statistically significant. As such, the
bare lands with smaller NDVI values do not always yield significant deformations.
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Figure 9. The influence of the vegetation coverage on the seasonal thaw subsidence of the permafrost:
(a) Vegetation coverage in the study area; (b) Relationship between the seasonal thaw subsidence and
the NDVI along profile AB; (c) Variations in the seasonal thaw subsidence and the NDVI with the
distance measured from A to B along profile AB.

4.2. Results of Screening and Permafrost Stability Mapping with the Proposed Method
4.2.1. Screening Results of the High-Quality and Low-Quality Areas

As mentioned previously, the coherence threshold is set at 0.8 in the processing of
SAR images. As a result, only the high-quality InSAR deformation points could be kept
in the initial InSAR analysis of the ground deformations, whereas the InSAR deformation
points where the coherence is less than the threshold value of 0.8 are not displayed. Thus,
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the initial map of the obtained ground deformation cannot cover the entire study area, as
shown in Figure 4a. Here, the areas that do not have ground deformation are categorized
as the low-quality areas.

The geometric distortion analysis results are sketched in Figure 10a. As can be seen,
most areas can be categorized as good visibility areas, and the east-facing slopes are mainly
located in the regions with geometric distortions (see Figure 10b). The areas with geometric
distortions are then categorized as the low-quality areas. From there, the high-quality
areas, defined as the intersection of the areas with InSAR deformation points (see Figure 4a)
and good visibility (see Figure 10a), can be located. Figure 10c depicts the zonation of
the high-quality and low-quality areas in the study area. Here, the ground deformation
monitored in the high-quality areas is reliable, whereas that monitored in the low-quality
areas can be problematic.
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Figure 10. Screening analysis of the InSAR analysis results of ground deformation in the study area:
(a) Geometric distortion analysis results; (b) A detailed survey of the geometric distortions on an
east-facing slope; (c) Zonation of the high-quality and low-quality areas.

According to the Google Earth images, the permafrost instability areas with obvious
unstable characteristics (e.g., retrogressive thaw slumps and failed slopes) are usually
located in areas with a ground deformation rate smaller than −40 mm/year. Thus, in this
study, the ground points with a deformation rate smaller than −40 mm/year and obvious
unstable characteristics are classified as unstable ground points. In reference to Zhang
et al. [70], the maximum subsidence rate of the permafrost instability area that is located in
the central Tibetan Plateau is about −30 mm/year. In other words, the threshold value of
−40 mm/year adopted in this study is relatively conservative. The stable ground points
are also determined according to the ground deformation rate and the image characteristics.
In general, the areas with a ground deformation rate close to 0 mm/year could be classified
as stable, thus the threshold value of the ground deformation rate for stable ground points
should be set at a value close to 0 mm/year. Additionally, an equal number of stable ground
points should be identified in the high-quality area to avoid potential bias in the selection
of samples. Based on these two criteria, the threshold value of the ground deformation
rate for the stable ground points is set at ±0.15 mm/year. Thus, the ground points with a
deformation rate ranging from −0.15 mm/year to 0.15 mm/year and no obvious unstable
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characteristics are classified as stable ground points. Based on these criteria, a total number
of 1172 high-quality samples (i.e., 586 unstable ground points and 586 stable ground points)
(shown in Figure 10c) are included in the initial InSAR analysis results.

4.2.2. Permafrost Stability Mapping in the Study Area with the Random Forest Method

In order to train the relationship between the environmental factors and permafrost
stability, 80% of the 1172 high-quality samples screened above (i.e., 80% of 586 unstable
ground points and 80% of 586 stable ground points) are taken as the training samples and
the other 20% of the 1172 high-quality samples are taken as the validation samples. The
outcome of the permafrost stability mapping by the trained random forest model is a value
ranging from 0 to 1, which indicates the probability of permafrost stability. For example,
0 represents permafrost instability whereas 1 represents permafrost stability. For ease of
visual interpretation, this value is then categorized into five classes of permafrost stability
(i.e., very low, low, medium, high, and very high) with the Jenks optimization method [71],
and the resulting values of the five classes are [0, 0.36), [0.36, 0.56), [0.56, 0.72), [0.72, 0.86),
and [0.86, 1], respectively.

Figure 11a depicts the results of the permafrost stability mapping in the study area
with the trained random forest model. Figure 12 shows the validation of the trained random
forest model using the ROC curve based on the descending dataset; the AUC value of
the permafrost stability mapping results is 0.975, indicating the high mapping accuracy
of the trained random forest model using the descending dataset. Meanwhile, among the
234 validation samples, 82.05% of the unstable ground points are located in areas with
very low and low permafrost stability. Therefore, the mapping accuracy of the permafrost
stability can be quantitatively validated.
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Figure 11. Permafrost stability mapping in the study area: (a) Results of the permafrost stability
mapping with the trained random forest model; (b) Ground deformation rate obtained by the Kriging
interpolation of initial InSAR analysis (Note: Profiles AB and CD are delineated to compare the two
permafrost stability results).

To illustrate the effects of different classification schemes on permafrost stability classes,
other classification schemes including equal intervals and standard deviations are also
adopted to categorize permafrost stability; the results are shown in Figure 13. Compared
with Figure 11a, although different classification schemes can generate different permafrost
stability classes, the spatial distribution of the permafrost stability class is similar. For
example, the very low and low permafrost stability is mainly distributed along the highway
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and the river valleys. In fact, the Jenks optimization method seeks to reduce the variance
within classes and maximize the variance between classes, which can effectively categorize
a continuous variable into different classes using natural breaks in the data values. This
method has been widely adopted in classification tasks [59,72]. Figure 14 shows the relative
importance of the environmental factors for permafrost stability. In general, larger values
of these two indexes (i.e., MDA and MDG) could signal the greater importance of the
related environmental factor. As can be seen, the permafrost stability is mostly affected
by the slope and the aspect, whereas the least impact is from the curvature. The other
environmental factors yield similar importance in the permafrost stability mapping. It is
noted that although the curvature yields the least impact on permafrost stability, it cannot
be ignored in permafrost stability mapping.
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5. Verifications and Discussions
5.1. Verifications of the Ground Deformations Obtained with InSAR Analysis

As formulated above, the high-quality samples (i.e., the basic inputs to the proposed
permafrost stability mapping) are derived from the time-series InSAR analysis. Thus, the
verification is vital for the accuracy of the time-series InSAR analysis results. Note that the
InSAR analysis results and the field measurements often cover different temporal and spa-
tial scales. Hence, a direct verification by the field measurements might be impossible [60].
Further, ground-based deformation measurement is fairly limited within the study area. In
this study, the time-series InSAR analysis results are mainly verified through comparing
them with the leveling data and InSAR analysis results outlined by Wu et al. [39]. As only
one leveling site is located in the study area, only one leveling datapoint is provided in
this study. The location of the leveling observation site is labeled in Figure 4a. Figure 15
shows the InSAR analysis results obtained in this study together with the leveling data and
InSAR analysis results obtained by Wu et al. [39]. As can be seen, the InSAR analysis results
obtained in this study are in general agreement with the leveling data and InSAR analysis
results obtained by Wu et al. [39], even though an inconsistency exists in the frozen season
from 2015 to 2016. In our study, frost heave is observed in this frozen season, whereas thaw
settlement was detected by Wu et al. [39]. The InSAR analysis results obtained in this study
appear to be more consistent with the available knowledge of ground deformations in the
study area than those outlined by Wu et al. [39]. In addition, limited by the resolution of the
adopted SAR images, the deformation point obtained in this study is only the closest point
near the leveling data, and they do not overlap. Further, the leveling site may be disturbed
by human activity, which could also cause the inconsistency shown in Figure 15. In general,
there are negative correlations between ground deformations and air temperature [43]; thus,
the relationships between the ground deformations and the air temperature are analyzed
to further verify the effectiveness of the time-series InSAR analysis results obtained in this
study. Note that the air temperature is from the 2.0 m air temperature dataset from the
European Centre for Medium-Range Weather Forecasting—Fifth-Generation Reanalysis
(ECMWF ERA5); this reanalysis data combines model data with observations from across
the world into a globally complete and consistent dataset. Here, three ground points (points
P1, P2, and P3 in Figure 4a) are studied, and the resulting relationships between the ground
surface deformations and the air temperature are plotted in Figure 16a. As expected, the
ground deformations in the thawing seasons are large (caused by thaw settlement), whereas
those in the frozen seasons are small (caused by frost heave), and the air temperature in the
thawing seasons is high, whereas in the frozen season it is low. Figure 16b–d show that the
Pearson’s coefficients between ground deformation and the air temperature of points P1,
P2, and P3 reach −0.53, −0.50, and −0.51, respectively, which quantitatively confirms the
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negative correlations between the ground deformations and the air temperature and thus
verifies the accuracy of the InSAR analysis results.
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Copyright Sciences in Cold and Arid Regions).
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Figure 16. Relationships between the ground deformation and the air temperature: (a) Relationships
between the ground deformation and the air temperature at points P1, P2, and P3; (b–d) Correlations
between the ground deformation and the air temperature at points P1, P2, and P3.

Note that the comparison of the ground deformations over flat areas obtained from
both descending and ascending data can also be adopted for verifying the deformation
signals. Thus, the ground deformations in the study area are further analyzed with the
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ascending Sentinel-1 SAR images, and the results are illustrated in Figure 17. It is noted that
the same procedures are adopted for processing the ascending and descending SAR images.
Figure 17a shows the ground deformation rate obtained from the ascending Sentinel-1 SAR
images. As can be seen, the ground deformation rates in the study area obtained from the
ascending SAR images are in general agreement with those obtained from the descending
SAR images (see Figure 4a). To quantitatively compare the two ground deformation results,
the vertical ground deformation rates obtained from the ascending and descending SAR
images are both extracted from good visibility areas, then the two deformation results are
resampled to a grid of 100 × 100 m to avoid spatial mismatch. Figure 18a depicts that
Pearson’s coefficient reaches 0.84, which confirms the accuracy of the ground deformation
results and time-series InSAR processing. Further, Figure 18b shows that the difference
in ground deformation rates obtained from the ascending and descending SAR images
obeys a normal distribution, with a mean of 0.02 mm/year and a standard deviation of
0.01 mm/year, and that this distribution quantitatively verifies the accuracy of the InSAR
analysis results.
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and descending SAR images; (b) Distribution of the ground deformation rate differences between
ascending and descending SAR images.
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5.2. Verifications of Permafrost Stability Mapping with Ascending SAR Images

Figure 17b shows the geometric distortion analysis results of the ascending SAR
images, which suggests that most regions in the study area can be categorized as having
good visibility. To verify the permafrost stability mapping results shown in Figure 11a, the
permafrost stability mapping results obtained with the proposed method and the ground
deformations obtained from the ascending SAR images (see Figure 17a) are compared in
Test Area 1, and the comparison results are illustrated in Figure 19. The permafrost stability
in the bottom-right corner of this test area is low and very low (see Figure 19a). Note
that this corner is mainly occupied by good visibility areas in the ascending SAR images
(see Figure 17b), whereas it is occupied by geometric distortion areas in the descending
SAR images (see Figure 10a); thus, the ground deformations in this corner obtained from
the ascending SAR images are reliable, whereas those obtained from the descending SAR
images might be problematic. Figure 19b shows the ground deformations in this corner
obtained from the ascending SAR images, whereas Figure 19c shows those obtained from
the descending SAR images. In Figure 19b, the bottom-right corner of Test Area 1 shows a
trend of subsidence, which is in general agreement with the low or very low permafrost
stability shown in Figure 19a, whereas only limited points with ground deformations could
be obtained from the descending SAR images (see Figure 19c). From there, the accuracy
of the permafrost stability mapping results obtained with the proposed method could
be qualitatively validated based on this visual interpretation. Note that the quantitative
comparison between the ground deformation results obtained from the ascending SAR
images and the permafrost stability results is not carried out. The reason is that it is difficult
to quantitatively measure the correspondence between the ground deformation results and
the results of the permafrost stability. In addition, the comparisons in Figure 19 could also
indicate that the combination of descending and ascending SAR images can improve the
monitoring ability of ground deformation and thus provide an alternative for improving
the permafrost stability mapping in some complex areas. However, in regions where the
datasets are strongly degraded by terrain visibility, the ground deformation cannot be fully
monitored by the combination of ascending and descending datasets. In such situations, the
combination of InSAR and the machine learning method for permafrost stability mapping
is still a topic worthy of investigation.
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Figure 19. Comparisons between the permafrost stability mapping results in Test Area 1 obtained
with the proposed method and the ground deformations obtained from the ascending SAR images:
(a) Permafrost stability mapping results obtained with the proposed method; (b) Vertical ground
deformation rates obtained from the ascending SAR images; (c) Vertical ground deformation rates
obtained from the descending SAR images.

5.3. Superiority of the Proposed Method over the Sole Application of InSAR Analysis

To demonstrate the superiority of the proposed method over the sole adoption of
InSAR analysis in permafrost stability mapping, a comparative analysis is carried out
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between the permafrost stability zonation obtained by the proposed method and the ground
deformation rate obtained from InSAR analyses (with descending Sentinel-1 SAR images as
inputs). For ease of comparison, the ground deformation rate in the areas where the InSAR
analysis results are not available is interpolated here using the Kriging method [73], and the
results of this interpolation are plotted in Figure 11b. Though the interpolated deformation
results may have deviations from the real deformation results, this interpolation method
has been widely adopted for handling missing data [74,75] and the deviations could not
affect the comparative results. As can be seen, the permafrost stability zonation obtained by
the proposed method is in general agreement with the ground deformation rate obtained
by InSAR analysis (see Figure 11a,b). However, due to the interpolated accuracy of the
ground deformations there are exceptions. For example, the permafrost stability zonation
is not consistent with the ground deformation rates in Zones III, IV, V, and VI. Figure 20
shows a detailed comparison between the permafrost stability zonation obtained by the
proposed method and the ground deformation rate obtained by InSAR analysis along the
profiles AB and CD (note: these two profiles are depicted in Figure 11a,b).
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Figure 20. Comparisons between the proposed method and the sole application of InSAR analysis:
(a) Permafrost stability zonation obtained by the proposed method versus the ground deformation
rate obtained by the Kriging interpolation of initial InSAR analysis along profile AB; (b) Permafrost
stability zonation obtained by the integrated method versus the ground deformation rate obtained
by the Kriging interpolation of initial InSAR analysis along profile CD; (c) A detailed survey of the
permafrost stability in Zones III, IV, V, and VI with the Google Earth images (note: Zones III and VI
are located in areas with medium and high permafrost stability and Zones IV and V are located in
areas with low permafrost stability. Image from © Google Earth 2019).

It can be seen from Figure 20a,b that Zones III and VI are located in areas with medium
and high permafrost stability according to the permafrost stability mapping obtained by the
proposed method. The permafrost stability in Zones III and VI can be visually confirmed
by the Google Earth images, as depicted in Figure 20c. However, the ground deformation
rate (obtained by a combination of InSAR analysis and Kriging interpolation) in Zones
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III and VI could reach −10 mm/year, indicating instability of the permafrost. Similarly,
according to the permafrost stability zonation obtained by the proposed method, Zones IV
and V are located in areas with low permafrost stability. In reference to the Google Earth
images shown in Figure 20c, the stability of the permafrost in Zones IV and V is fairly
poor, as evidenced by retrogressive thaw slumps and failed slopes. However, the ground
deformation rate (obtained by the combination of InSAR analysis and Kriging interpolation)
in Zones IV and V is larger than −5 mm/year, indicating stability of the permafrost. Hence,
the proposed method is shown to be more effective in permafrost stability mapping than
the sole adoption of InSAR analysis and the data scarcity issue of InSAR analysis in the
low-quality areas could be surmounted.

5.4. Discussion on the Influence of Environmental Factors on the Permafrost Stability

It is worthwhile mentioning that the transfers of water and heat in the frozen soil
could be strongly affected by environmental factors and that the transfers of water and
heat can lead to phase changes in the water in the active layer, which consequently affects
the permafrost stability [43]. In addition, the seasonal thaw subsidence in permafrost
areas is highly related to the distribution of ice or water content in the active layer [60].
However, the ice or water content of the soil in a large area is challenging to monitor. Thus,
only the influences of topography and vegetation coverage, which have great impacts
on the distribution of the ice or water content in the soil [12,60], on the seasonal thaw
subsidence are studied to analyze the influences of the environmental factors on permafrost
stability. In this study, the reasons for only analyzing the influence of elevation on the
ground deformations among these topography factors are as follows: (1) the occurrence
of permafrost on the Tibetan Plateau is mainly affected by the high altitude [76]; thus, the
permafrost stability can be more affected by the ground elevation; (2) it is known that the
soil water content and the river network could affect the permafrost stability [60] and the
river network can be generated from DEM; thus, the ground elevation could be the key
parameter to assess permafrost stability.

In addition, the plots in Figure 9c indicate that for the same NDVI value, the seasonal
thaw subsidence may vary with the position along the profile AB, implying that the
influence of the vegetation coverage on seasonal thaw subsidence can be rather complicated.
In most cases, the relationship between permafrost stability and vegetation might be
interdependent or symbiotic [30,67]. On one hand, the vegetation coverage could shade
from direct sunshine in summer and intercept snowfall in winter, as such, the vegetation
could help cool the ground and thus protect the underlying permafrost. On the other hand,
the shallow thickness of the active layer and the low temperature of the ground can prevent
the growth of vegetation.

It is worthwhile mentioning that the heat flux in permafrost areas is also an important
factor affecting permafrost thaw and permafrost stability and that it can be varied over
several years. The heat flow can affect the permafrost soil temperature and thus affect
permafrost stability [77–79]. However, this study area is only a small area located in the
central region of the Tibetan Plateau, and it can be expected that the long-range variation
of heat flow is the same over this area. Thus, the physical interpretation of the permafrost
stability by considering the effect of heat flux is not achieved in this study.

In summary, this study proposes an integrated permafrost stability mapping method.
It can be further applied to other permafrost areas on the Tibetan Plateau. This study
is significant in assessing permafrost stability and predicting the potential permafrost
degradation-related geohazards on the Tibetan Plateau under climate warming. Further,
with the increase in engineering activities on the Tibetan Plateau, the permafrost stability
mapping results could provide scientific support for engineering construction.
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6. Conclusions

This paper presents a method that integrates InSAR and the random forest method
for an improved permafrost stability mapping on the Tibetan Plateau. This method could
overcome the problem of the data scarcity of InSAR analysis in low-quality areas (i.e., where
InSAR analysis results are not available due to the coherence of InSAR analysis results
and geometric distortions in input SAR images). To demonstrate the application of this
proposed method, the permafrost stability mapping is studied in a small area located in the
central region of the Tibetan Plateau. The results obtained are validated through qualitative
and quantitative verifications, and comparative analyses are conducted to illustrate the
superiority of this integrated method over the sole adoption of InSAR analysis in permafrost
stability mapping. Based upon the results presented, the following conclusions are reached.

1. The initial InSAR analysis of the ground deformation shows that the maximum
ground settlement of the permafrost occurs around the month of August each year,
due to the frost heave of the active layer in the frozen season and subsidence in the
thawing season, and the magnitude of the ground deformations tends to increase
from 2015 to 2019, which might be taken as a sign of the degradation of the permafrost.
The initial InSAR analysis also confirms that the seasonal thaw subsidence is strongly
affected by the ground elevation topography and vegetation coverage.

2. According to the analysis of geometric distortion and coherence of the InSAR results,
the high-quality areas could be recognized, in which high-quality samples can be
readily located based on the threshold values of the ground deformation rate and
Google Earth image characteristics. The permafrost stability and associated environ-
mental factors for these high-quality samples can then be extracted for the permafrost
stability mapping of the entire study area. The random-forest-based mapping analysis
suggests that the permafrost stability (in the study area) is mostly affected by the slope
and aspect, whereas the least impact is from the curvature. The factors of ground
elevation, land cover, NDVI, land surface temperature, and distance to the highway
yield similar importance in the permafrost stability mapping analysis.

3. The validation analysis of the obtained permafrost stability zonation, which is based
on the ROC curve and the unstable ground points in the validation samples, indicates
that this integrated method could yield high mapping accuracy in the study area.
Through qualitative and quantitative verifications, the ground deformations and the
permafrost stability mapping results obtained with the time-series InSAR analysis
and the proposed method, respectively, could be validated. Compared with the sole
adoption of InSAR analysis, this integrated method is shown to be more effective in
permafrost stability mapping of the study area; meanwhile, the issue of data scarcity
of InSAR analysis in the low-quality areas could be overcome.

It should be mentioned that although the proposed method has shown to be promising
in the permafrost stability mapping of the study area, there is room for improvement. For
example, research to further validate the permafrost stability zonation with ground-based
measurements is warranted. Moreover, the InSAR analysis in the study is based on the
Sentinel-1 C-band SAR images with a 6-day revisiting time, the effectiveness of which is
often degraded in mountainous and vegetated areas. Hence, research is also warranted on
data fusion methods that could integrate different sources of SAR images.
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