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Abstract: The distinctive polarization information of polarimetric SAR (PolSAR) has been widely
applied to terrain classification but is rarely used for PolSAR target recognition. The target recognition
strategies built upon multi-feature have gained favor among researchers due to their ability to provide
diverse classification information. The paper introduces a robust multi-feature cross-fusion approach,
i.e., a multi-feature dual-stage cross manifold attention network, namely, MF-DCMANet, which
essentially relies on the complementary information between different features to enhance the
representation ability of targets. In the first-stage process, a Cross-Feature-Network (CFN) module
is proposed to mine the middle-level semantic information of monogenic features and polarization
features extracted from the PolSAR target. In the second-stage process, a Cross-Manifold-Attention
(CMA) transformer is proposed, which takes the input features represented on the Grassmann
manifold to mine the nonlinear relationship between features so that rich and fine-grained features
can be captured to compute attention weight. Furthermore, a local window is used instead of the
global window in the attention mechanism to improve the local feature representation capabilities
and reduce the computation. The proposed MF-DCMANet achieves competitive performance on
the GOTCHA dataset, with a recognition accuracy of 99.75%. Furthermore, it maintains a high
accuracy rate in the few-shot recognition and open-set recognition scenarios, outperforming the
current state-of-the-art method by about 2%.

Keywords: PolSAR target; deep learning; feature fusion; transformer; Grassmann manifold

1. Introduction

It is well established that PolSAR target recognition has become increasingly significant
in battlefield surveillance, air and missile defense, and strategic early warning, providing
an important guarantee for battlefield situation awareness and intelligence generation [1].
Multi-polarization SAR data offers an advantage over single-polarization SAR data in that
it not only provides amplitude (intensity) information but also records backward scattering
information of the target under different polarization states, which can be represented
through the polarimetric scattering matrix [2]. The polarimetric scattering matrix unifies
the energy, phase, and polarization characteristics of target scattering, which are highly
dependent on the target’s shape, size, structure, and other factors [3]. It provides a relatively
complete description of the electromagnetic scattering properties of the target. Therefore,
it is essential to make reasonable use of fundamental or further processed polarization
information to enhance the target recognition capability. However, in most studies, polar-
ization information is often applied to terrain classification tasks that assign class labels to
individual pixels in the image possessing semantic information. Zhou et al. [4] extracted
a six-dimensional real-valued feature vector from the polarization covariance matrix and
then fed the six-channel real images into a deep network to learn hierarchical polarimetric
spatial features, achieving satisfactory results in classifying 15 terrains in the Flevoland
data. Zhang et al. [5] employed polarization decomposition to crops in PolSAR scenes and
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then fed the resulting polarization tensors into a tensor decomposition network for dimen-
sion reduction, which achieved better classification accuracy. However, these pixel-scale
terrain classification methods cannot be directly applied to image-scale target recognition
tasks. Therefore, for the PolSAR target recognition tasks, methods that exploit polarization
information at the image scale should be developed.

Despite the promising results of terrain classification based on polarization features,
the efficacy of utilizing a single feature to identify targets in a complex and dynamic battle-
field environment is limited [6,7]. A single feature only portrays the target characteristics
from one aspect, which makes it difficult to describe all the information embedded in the
polarization target. The application of multi-feature fusion recognition methods allows for
the comprehensive exploitation and utilization of diverse information contained in multi-
polarization SAR data, effectively solving the problem of insufficient robustness of a single
feature in complex scenarios [8–10]. Based on human perception and experience accumula-
tion, researchers have designed many distinctive features from the intensity map of PolSAR
targets, which generally have specific physical meanings. At present, various features have
been developed for target recognition tasks, such as monogenic signals [11], computer
vision features [12], and electromagnetic scattering features [13]. The potential feature
extraction process of the monogenic signal has the characteristics of rotation-invariance
and scale-invariance and has been widely investigated and explored in the domain of
PolSAR target recognition. Dong et al. [14–16] and Li et al. [10] introduced monogenic
signal analysis into the task of SAR target recognition, systematically analyzing the advan-
tages of monogenic signal in describing SAR target characteristics. They also designed
multiple feasible classification strategies to improve the target recognition performance.
These handcrafted features have a strong discriminative ability and are not restricted by the
amount of data, so they are more suitable for the PolSAR target recognition field with few
labeled samples; however, they have difficulty in excavating deeper features of the image
and lack universality. Moreover, the distinctive imaging mechanism of PolSAR, coupled
with the diversity of target categories and the challenge of adapting to different datasets,
makes it difficult to fully maximize the discriminative properties of SAR data. Therefore,
artificial feature design remains a challenging task.

Lately, deep learning has greatly promoted the development of the computer vision
field [17,18]. By leveraging neural networks to automatically discover more abstract features
from input data, deep learning reduces the incompleteness caused by handcrafted features,
leading to more competitive performance compared to traditional methods. Chen et al.
designed a network [19] specifically for SAR images called A-ConvNet. The average
accuracy rate of 10 types of target classification on the MSTAR dataset can reach 99%. The
CV-CNN proposed in [20] uses complex parameters and variables to extract features from
PolSAR data and perform feature classification, effectively utilizing phase information. The
convolution operation in CNNs facilitates the learning and extraction of visual features,
but at the same time, CNN also introduces inductive bias during the process of feature
learning, which limits the receptive fields of the features. This results in CNN being adept
at extracting effective local information but struggling to capture and store long-range
dependent information. The recently developed Vision Transformer (ViT) [21,22] effectively
addresses this problem. ViT models the global dependencies between input and output by
utilizing the self-attention mechanism, resulting in more interpretable models. As a result,
ViT has found applications in the field of PolSAR recognition.

To maximize the utilization of intensity and polarization information obtained from
PolSAR data and take advantage of the great benefits of deep learning in feature extraction,
we propose a robust multi-feature dual-stage cross manifold attention network, namely, MF-
DCMANet, which consists of the Multi-Feature (MF) extraction, the Cross-Feature Network
(CFN) and Cross-Manifold Attention (CMA) modules. In the multi-feature extraction stage,
we extracted monogenic features and polarization features from the PolSAR target. In the
first stage, the CFN module is used for performing cross-fusion feature extraction, followed
by the CMA module in the second stage, thus merging features of different attributes
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to generate deeper high-level semantic features. We conducted a comprehensive set of
comparison experiments on the GOTCHA dataset.

Until now, there has been a scarcity of research on utilizing ViT for extracting features
from PolSAR images in target recognition. This article makes the following contributions:

• A multi-feature extraction method specifically for PolSAR images has been proposed.
The multi-feature extracted by this method can describe the target stably and robustly
and is not affected by the target pose, geometry, and radar parameters as much
as possible;

• A dual-stage feature cross-fusion representation framework is proposed, respectively
named Cross-Feature Network (CFN) and Cross-Manifold Attention (CMA);

• In MF-DCMANet, handcrafted monogenic features and polarization features are
combined with deep features to improve target recognition accuracy;

• By leveraging fusion techniques, the proposed MF-DCMANet enhances recognition per-
formance and achieves the highest accuracy on the fully polarimetric GOTCHA dataset;

• It is often challenging to obtain sufficient and comprehensive samples in practical
PolSAR target recognition applications. Despite this limitation, the proposed method
still achieves satisfactory performance in few-shot and open-set recognition scenarios.

The organizational structure of this paper is as follows. Section 2 presents related
works using CNN and Transformer models. Section 3 presents a detailed exposition of
the proposed MF-DCMANet. Section 4 presents comparative experiments and discussion
analysis, and Section 5 summarizes the content and innovations of the paper.

2. Related Works
2.1. CNN-Based Multi-Feature Target Recognition

The methods of multi-feature target recognition based on CNN can mainly be divided
into two categories: one is the combination of deep features and handcrafted features, while
the other is the combination of deep features learned from different layers of the network
for classification.

In the work of combining deep features and handcrafted features, Xing et al. [8]
fused the scattering center features and CNN features through discriminant correlation
analysis and achieved satisfactory results under the extended operating conditions of the
MSTAR dataset. Zhang et al. concatenated Hog features with multi-scale deep features for
preferable SAR ship classification [23]. Zhou et al. [24] automatically extracted semantic
features from the attributed scattering centers and SAR images through the network and
then simply concatenated the features for target recognition. Note that in the above fusion
methods, different features are extracted independently, and the classification information
contained in the features is only converged in the fusion stage. Zhang et al. [25,26] utilized
polarimetric features as expert knowledge for the SAR ship classification task, performed
effective feature fusion through deep neural networks and achieved advanced classification
performance on the OpenSARShip dataset. Furthermore, Zhang et al. [27] analyzed the
impact of integrating handcrafted features at different layers of the deep neural networks
on recognition rates and introduced various effective feature concatenation techniques.

To effectively use the features learned by different layers of the network, Guo et al. [28]
used convolution kernels of different scales to extract features of different levels in SAR
images. Ai et al. [29] used different sizes of convolutional kernels to extract from images
and then combined them through weighted fusion. The weights were learned via the neural
network and achieved good recognition results on the MSTAR dataset. Zeng et al. [30]
introduced a multi-stream structure combined with an attention mechanism to obtain rich
features of targets and achieved better recognition performance on the MSTAR dataset.
Zhai et al. [31] introduced an attention module into the CNN architecture to connect the
features extracted from different layers and introduced transfer learning to reduce the
demand for the number of training samples.

The methods for multi-feature fusion described above primarily use concatenation to
combine features, which may not be effective in merging features with different attributes
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and can lead to weak fusion generalization. In this paper, we propose a novel multi-feature
cross-fusion framework to enhance the capability of PolSAR target recognition.

2.2. Transformer in Target Recognition

CNN has a relatively large advantage in extracting the underlying features and visual
structure. However, the receptive field of CNN is usually small, which is not conducive
to capturing global features [21]. In contrast, the multi-head attention mechanism of the
transformer is more natural and effective in handling the dependencies between long-range
features. Dosovitskiy et al. [22] successfully applied the transformer to the visual field
(ViT). ViT treats the input image as a series of patches, where channels are connected
across all the pixels in the patch and then linearly projected to the desired input dimension,
flattening each patch into a single vector. Zhao et al. [32] applied the transformer to the
few-shot recognition problem in the field of SAR recognition, constructed a support set
and query set from original MSTAR data, and then calculated the attention weight between
them. The attention weight is obtained by computing cosine similarity in Euclidean space.
Wang et al. [33] developed a method combining CNN and transformer, which makes
full use of the local perception capability of CNN and the global modeling capability of
the transformer. Li et al. [34] constructed a multi-aspect SAR sequence dataset from the
MSTAR data. The convolutional autoencoder is used as the basic feature extractor, and the
dependence between sequences is mined through the transformer. The method has good
noise robustness and achieves higher recognition accuracy.

These transformer-based methods calculate the attention weight in Euclidean space,
and the nonlinear relationship between data is not effectively utilized. In contrast to the
traditional transformer that is based on Euclidean space, we extend the transformer to a
new research field, i.e., PolSAR target recognition, and propose a novel transformer based
on manifold space to mine the high-dimensional relationship among features.

3. Methods

The MF-DCMANet is a multi-feature cross-fusion framework, and Figure 1 provides
an overview of the entire framework. The framework encompasses three main modules:
multi-feature extraction, Cross-Feature Network (CFA) module, and Cross-Manifold Atten-
tion (CMA) module. This section provides a detailed elaboration of the MF-DCMANet.

3.1. Problem Formulation

Let
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module, CMA is the second-stage cross-fusion module, ℱ is the prediction network, and 𝑦 is the predicted label. 

3.2. Multi-Feature Extraction 
3.2.1. Monogenic Feature Extraction 

The monogenic signal is a high-dimensional analytic signal derived from the one-
dimensional analytic signal, which extracts rotation- and scale-invariant features from in-
tensity images. The Hilbert transform can construct an analysis signal representation of a 
one-dimensional (1D) signal. Similarly, the Riesz transform can construct an analysis sig-
nal representation of a multi-dimensional signal. This article focuses on discussing the 
two-dimensional (2D) finite-length signal (image); that is, the dimension in the Riesz 

∈ RH×W×C1 and

Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 29 
 

 

 
Figure 1. The overview of the entire framework. First, we extract low-level features from the inten-
sity image and multi-polarization channels of POLSAR data, which are monogenic features 𝓂 and 
polarization features 𝓅, respectively, and then use two fully convolutional neural networks to mine 
the mid-level semantic features contained in the polarization features and monogenic features. The 
extracted mid-level semantic features are fed to the first-stage cross-feature network (CFN) to obtain 
the fused features, followed by feeding the fused features (𝑐𝑟𝑜𝑠𝑠 ) and mid-level semantic features 
(𝑀 ,𝑃 ) into the second-stage cross-manifold-attention (CMA) transformer. In the CMA module, 
these features are first encoded as tokens and then represented on the Grassmann manifold to mine 
the nonlinear correlation between features, which are mutually supplemented through multiple at-
tention fusions. 

3.1. Problem Formulation 
Let 𝓂 ∈ ℝ  and 𝓅 ∈ ℝ  denote the multi-scale monogenic features and 

polarization features extracted from PolSAR targets with 𝐶   and 𝐶   channels, respec-
tively. The objective of MF-DCMANet is to conduct dual-stage cross-fusion on the multi-
features extracted from the target, and fused features are fed into the SoftMax layer after 
dimension reduction to obtain the predicted label of the target: 𝑦 ℱ CMA CFN ℱ 𝓂 ,ℱ 𝓅 , (1)

where ℱ   represents CNN-based feature extractor. CFN is the first-stage cross-fusion 
module, CMA is the second-stage cross-fusion module, ℱ is the prediction network, and 𝑦 is the predicted label. 

3.2. Multi-Feature Extraction 
3.2.1. Monogenic Feature Extraction 

The monogenic signal is a high-dimensional analytic signal derived from the one-
dimensional analytic signal, which extracts rotation- and scale-invariant features from in-
tensity images. The Hilbert transform can construct an analysis signal representation of a 
one-dimensional (1D) signal. Similarly, the Riesz transform can construct an analysis sig-
nal representation of a multi-dimensional signal. This article focuses on discussing the 
two-dimensional (2D) finite-length signal (image); that is, the dimension in the Riesz 

∈ RH×W×C2 denote the multi-scale monogenic features and
polarization features extracted from PolSAR targets with C1 and C2 channels, respectively.
The objective of MF-DCMANet is to conduct dual-stage cross-fusion on the multi-features
extracted from the target, and fused features are fed into the SoftMax layer after dimension
reduction to obtain the predicted label of the target:

y = F
(

CMA
(

CFN
(
F 1

c (

Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 29 
 

 

 
Figure 1. The overview of the entire framework. First, we extract low-level features from the inten-
sity image and multi-polarization channels of POLSAR data, which are monogenic features 𝓂 and 
polarization features 𝓅, respectively, and then use two fully convolutional neural networks to mine 
the mid-level semantic features contained in the polarization features and monogenic features. The 
extracted mid-level semantic features are fed to the first-stage cross-feature network (CFN) to obtain 
the fused features, followed by feeding the fused features (𝑐𝑟𝑜𝑠𝑠 ) and mid-level semantic features 
(𝑀 ,𝑃 ) into the second-stage cross-manifold-attention (CMA) transformer. In the CMA module, 
these features are first encoded as tokens and then represented on the Grassmann manifold to mine 
the nonlinear correlation between features, which are mutually supplemented through multiple at-
tention fusions. 

3.1. Problem Formulation 
Let 𝓂 ∈ ℝ  and 𝓅 ∈ ℝ  denote the multi-scale monogenic features and 

polarization features extracted from PolSAR targets with 𝐶   and 𝐶   channels, respec-
tively. The objective of MF-DCMANet is to conduct dual-stage cross-fusion on the multi-
features extracted from the target, and fused features are fed into the SoftMax layer after 
dimension reduction to obtain the predicted label of the target: 𝑦 ℱ CMA CFN ℱ 𝓂 ,ℱ 𝓅 , (1)

where ℱ   represents CNN-based feature extractor. CFN is the first-stage cross-fusion 
module, CMA is the second-stage cross-fusion module, ℱ is the prediction network, and 𝑦 is the predicted label. 

3.2. Multi-Feature Extraction 
3.2.1. Monogenic Feature Extraction 

The monogenic signal is a high-dimensional analytic signal derived from the one-
dimensional analytic signal, which extracts rotation- and scale-invariant features from in-
tensity images. The Hilbert transform can construct an analysis signal representation of a 
one-dimensional (1D) signal. Similarly, the Riesz transform can construct an analysis sig-
nal representation of a multi-dimensional signal. This article focuses on discussing the 
two-dimensional (2D) finite-length signal (image); that is, the dimension in the Riesz 

),F 2
c
(

Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 29 
 

 

 
Figure 1. The overview of the entire framework. First, we extract low-level features from the inten-
sity image and multi-polarization channels of POLSAR data, which are monogenic features 𝓂 and 
polarization features 𝓅, respectively, and then use two fully convolutional neural networks to mine 
the mid-level semantic features contained in the polarization features and monogenic features. The 
extracted mid-level semantic features are fed to the first-stage cross-feature network (CFN) to obtain 
the fused features, followed by feeding the fused features (𝑐𝑟𝑜𝑠𝑠 ) and mid-level semantic features 
(𝑀 ,𝑃 ) into the second-stage cross-manifold-attention (CMA) transformer. In the CMA module, 
these features are first encoded as tokens and then represented on the Grassmann manifold to mine 
the nonlinear correlation between features, which are mutually supplemented through multiple at-
tention fusions. 

3.1. Problem Formulation 
Let 𝓂 ∈ ℝ  and 𝓅 ∈ ℝ  denote the multi-scale monogenic features and 

polarization features extracted from PolSAR targets with 𝐶   and 𝐶   channels, respec-
tively. The objective of MF-DCMANet is to conduct dual-stage cross-fusion on the multi-
features extracted from the target, and fused features are fed into the SoftMax layer after 
dimension reduction to obtain the predicted label of the target: 𝑦 ℱ CMA CFN ℱ 𝓂 ,ℱ 𝓅 , (1)

where ℱ   represents CNN-based feature extractor. CFN is the first-stage cross-fusion 
module, CMA is the second-stage cross-fusion module, ℱ is the prediction network, and 𝑦 is the predicted label. 

3.2. Multi-Feature Extraction 
3.2.1. Monogenic Feature Extraction 

The monogenic signal is a high-dimensional analytic signal derived from the one-
dimensional analytic signal, which extracts rotation- and scale-invariant features from in-
tensity images. The Hilbert transform can construct an analysis signal representation of a 
one-dimensional (1D) signal. Similarly, the Riesz transform can construct an analysis sig-
nal representation of a multi-dimensional signal. This article focuses on discussing the 
two-dimensional (2D) finite-length signal (image); that is, the dimension in the Riesz 

))))
, (1)

where Fc represents CNN-based feature extractor. CFN is the first-stage cross-fusion
module, CMA is the second-stage cross-fusion module, F is the prediction network, and y
is the predicted label.
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Figure 1. The overview of the entire framework. First, we extract low-level features from the intensity
image and multi-polarization channels of POLSAR data, which are monogenic features
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3.2.1. Monogenic Feature Extraction

The monogenic signal is a high-dimensional analytic signal derived from the one-
dimensional analytic signal, which extracts rotation- and scale-invariant features from
intensity images. The Hilbert transform can construct an analysis signal representation
of a one-dimensional (1D) signal. Similarly, the Riesz transform can construct an analysis
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the two-dimensional (2D) finite-length signal (image); that is, the dimension in the Riesz
transform is 2 [35]. The Riesz kernel space

(
hx, hy

)
of the original signal in the x-direction

and y-direction is expressed as:

(
hx, hy

)
=

(
x

2π ||x ||3 ,
y

2π ||y ||3

)
, (2)

In practical applications, the image signal is a finite-length two-dimensional signal [36],
and therefore, it is essential to employ a band-pass filter to extend the space domain
infinitely. To maintain the odd symmetry of the Riesz transform kernel [37], the band-pass
filter must satisfy the symmetry condition. Here the Log-Gabor filter is applied to achieve
the effect of band-pass filtering. The 2D monogenic signal IM corresponding to image
I0 εRH×W can be mathematically represented as follows:

IM =
(

I, Ix, Iy
)
=
(

I, hx ∗ I, hy ∗ I
)
, I = I0 ∗ F−1(G(ω)), (3)
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where F−1 represents the inverse transform of the two-dimensional Fourier transform, I is
an extension of I0, Ix and Iy respectively represent the Riesz transform of I in the x and y
direction. The operator ∗ denotes convolution. G(!) represents the frequency response of
the Log-Gabor filter as follows:

G(ω) = exp
{
−[log(ω/w0)]

2/(2∗ [log(σ/w0)]
2)
}

, ω0 =
(

λminµS−1
)−1

, (4)

where S (S = 1, 2, 3) is the scale level index, with S being an integer; ω0 is the central
frequency; σ is the broadband proportional factor; λmin is the minimum wavelength; µ
expresses the wavelength multiplication coefficient. Next, the local amplitude A, local
orientation θ, and local phase P of the input image can be defined as:

A =
√

I2 + I2
x + I2

y , (5)

θ = arctan
Iy

Ix
, θ ∈

(
−π

2
,

π

2

]
, (6)

P = arctan
(∣∣∣√I2

x + I2
y

∣∣∣, I
)

, P ∈ (−π, π], (7)

The L-scale monogenic features {I 1
M, I2

M, . . . , ILM
}

are obtained by changing the scale
level index S as:
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I1
M
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I2
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, · · · , AL, θL, PL}︸ ︷︷ ︸
ILM

∈ RH×W×3L, (8)

where L = 3. Figure 2 shows the monogenic feature maps of the PolSAR target when S is 1,
2, and 3, respectively.

Figure 2. The three-scale monogenic features of a PolSAR target.
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3.2.2. Polarization Feature Extraction

In the single base station PolSAR measurement, considering the reciprocity theorem,
the cross-polarization component Shv = Svh and Equation (9) defines the polarization
scattering vector of the target, where h and v respectively denote the electromagnetic waves
of radar transmission in the horizontal and vertical polarizations, T represents the transpose
operation [38].

k =
[
Shh,
√

2Shv, Svv

]T
, (9)

For PolSAR data after multi-view processing, each pixel can be expressed by a covari-
ance matrix C with the following expression:

C =
1
N ∑N

i=1 kikH
i ∈ C3×3, (10)

where N is the image view number and H represents the Hermitian transpose operation.
The polarization covariance matrix is a symmetric matrix, with all of its elements being

complex numbers except for the diagonal elements. To highlight the capability of the cross-
fusion module in feature extraction and fusion, we simply transform the covariance matrix
into a nine-dimensional real vector [C11, C22, C33, C12r, C12i, C13r, C13i, C23r, C23i] based on
maximizing the preservation of covariance elements. The polarimetric features extracted
from the input image I0 εRH×W are expressed as polarimetric tensors
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The distribution of sample-averaged elements intensities of the nine-dimensional

polarization feature vector is presented in Figure 3 with box plots. Note that the y values
are given in a relative form ranging from 0 to 1. We noticed that the intensity distribution
of polarization features of different target samples lies in different intervals, exhibiting a
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improve recognition performance.

Figure 3. Distribution of relative polarization feature intensities in different target categories.
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In the multi-feature extraction stage, we extracted multi-scale monogenic features
from the intensity image of the PolSAR target and polarization features from the multi-
polarization channels. The monogenic signal characterizes the scattering phenomenon
of PolSAR targets and has the characteristics of rotation-invariance and scale-invariance.
The polarization features extracted from the polarization covariance matrix contain all the
target polarization information obtained from the radar measurement, which can finely
describe the target scattering mechanism from the physical meaning.

3.3. Cross-Feature-Network (CFN)

The performance of convolutional neural networks has been widely verified on various
deep learning tasks [39–45]. Due to the advantages of CNN in feature extraction, we use
CNN to mine middle-level semantic information for low-level features such as monogenic
feature tensor and polarization feature tensor extracted in the multi-feature extraction stage.
Compared with directly extracting features from PolSAR targets, these well-designed
handcrafted features contain richer information, which can be directly input into the
network for secondary information extraction.

This section designs a cross-feature fusion network named CFN. The CFN module
consists of two Ex-nets and a Fu-net, Table 1 lists the configurations of the network, where
Conv, BN, and MP are Convolution, Batch normalization, and Max Pooling, respectively,
while d is the number of channels of the input feature. Also, the output size of each
block is indicated by the last component in that block. The process of fusion in the CFN
module is depicted in Figure 4. With the forward propagation process of the network,
the weights of different feature extraction networks (Ex-nets) are exchanged to mine the
correlation information between features, and the classification information carried by
different features are effectively and compactly fused.

Table 1. Configurations of the CFN module.

Input
Ex-Net Fu-Net

Block1 Block2 Block3 Block4 Block5

5 × 5 Conv 5 × 5 Conv 5 × 5 Conv 5 × 5 Conv 1 × 1 Conv
BN BN BN BN BN

20 × 20 × d Relu Relu Relu Relu Relu
2 × 2 MP

20 × 20 × 16 10 × 10 × 32 10 × 10 × 64 10 × 10 × 128 10 × 10 × 128

Figure 4. The CFN framework.
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where N represents the training sample size, and t represents the last layer of the Ex-net.
We can consider the output of the Ex-net as the updated input, which can then be input
into the Fu-net. For instance, in the case of the i-th image, the fusion representation can be
described as follows:
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where t + 1 represents the first layer of Fu-net, F(·) is the nonlinear mapping function
concerning the learnable weights W and biases b of all layers in the Ex-net and Fu-net, The
subscripts 1 and 2 denote the monogenic and polarization feature extraction networks,
respectively.

The outputs of the CFN module are mid-level monogenic features, mid-level polariza-
tion features, and cross-fusion features, which are named Md, Pd, and crossMP, respectively.

3.4. Cross-Manifold-Attention (CMA)

The latest advances in machine learning and computer vision [46] show that non-
Euclidean-based subspace learning (e.g., Grassmann manifold space) is more conducive to
solving multi-classification problems in various fields. Compared with the conventional
self-attention mechanism, CMA transforms the feature vectors of Euclidean space onto
the Grassmann manifold to form feature patches and measures the similarity between
feature patches through the distance measure defined on the Grassmann manifold. Figure 5
presents the framework of CMA.

As shown in Figure 5, to ensure that Md and Pd are not limited to the information
carried by themselves, the CMA module takes crossMP as the rich prior in the form of
keys/values and take Md or Pd as query, then the CMA module represents key and query
on the Grassmann manifold and performs multi-head attention to refine input feature
patches via cross-attention. To reduce the computational cost and hardware requirements,
we use local windows [47] instead of global windows in the self-attention mechanism to
enhance the ability to represent local features. The global window allows each pixel to
attend to every other pixel, whereas the local window localizes attention for each pixel to a
neighborhood around itself. Therefore, each pixel’s attention span is usually different from
the next. Specifically, given input feature tensors Md, crossMP ∈ RH0×W0×C0 with height
H0, width W0, and C0 channels. The input feature is partitioned into non-overlapping
rectangular patches of size S × S in ViT and these patches are projected linearly into
the D-dimensional hidden space. The result is a set of vectors of patch embeddings
Md, crossMP ∼ X ∈ RL×D, where L = H0W0/S2 is the sequence length.

Given query Q ∈ RL×D and key K ∈ RL×D, under the self-attention mechanism, the
attention weight A is computed based on the pairwise cosine similarity between the query
Qi ∈ R1×D and key Kj ∈ R1×D on the Euclidean manifold,

A(Q, K) = so f tmax
(

1√
D

QKT
)
∈ RL×L. (14)

The cosine similarity evaluates the similarity between two vectors by computing
the cosine value of the angle between them, which varies between +1 (most similar) and
−1 (least similar).
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Figure 5. The CMA framework. (a) Transformer encoder with local window. (b) Cross-manifold-
attention mechanism. (c) The calculation process for attention weight, where Q1Kρ1(1) denotes the
projection distance between Q1 and Kρ1(1) calculated according to Equation (17), ρτ(i) denotes i′s
τ-th neighbor.

Next, we convert the attention weight calculation process from the Euclidean space to
the Grassmann manifold space in two steps: (1) represent the features onto the Grassmann
manifold (see Section 3.4.1); (2) calculate the attention weight using the projection distance
(see Section 3.4.2).

3.4.1. Feature Representation on Grassmann Manifold

Equation (15) shows the mathematical definition of the Grassmann manifold [48],
which is composed of an orthonormal basis of n× k dimensional matrix X.

G(n, k) =
{

span(X) : X ∈ Rn×k, XXT = Ik

}
, (15)

where span(X) ∈ G(n, k) denotes the subspace spanned by columns of X. Given query
Q ∈ RL×D and key K ∈ RL×D, we first expand the D-dimensional features to a two-
dimensional plane to form a feature patch, although the column vectors of Qi ∈ Rn×k,
i = 1, · · · , L and Kj ∈ Rn×k, j = 1, · · · , L are not orthogonal, it is easy to implement
the orthogonalization constraint with the help of mathematical techniques such as Gram-
Schmidt orthogonalization [49,50] so that the Qi and Kj are considered as elements of the
Grassmann manifold G(n, k), where D = n× k.

3.4.2. Distance Metrics on Grassmann Manifold

The normalization metric between two elements Qi, Kj ∈ G(n, k) can be obtained by

computing the principal angles {θl}k
l=1 between them [41]. The principal angle can be

described mathematically by
cosθl = max

ul∈span(Qi)
max

vl∈span(Kj)
uT

l vl ,

subject to uT
l ul = 1, vT

l vl = 1, f or l = 1, · · · , k
subject to uT

l um = 0, vT
l vm = 0, ∀ m < l.

(16)



Remote Sens. 2023, 15, 2292 11 of 28

In practice, the principal angles between Qi, Kj ∈ G(n, k) are calculated by singular
value decomposition, where the singular values of QT

i Kj are the cosines of the principal
angles. Based on the definition of the principal angle, scholars have proposed various
Grassmann manifold distances, such as Projection distance, Binet-Cauchy distance, and
Procrustes distance [51,52]. The projection distance is the sum of the square of the sine of
the principal angle:

d2
pj
(
Qi, Kj

)
= ∑k

l=1 sin2(θl) = m−∑k
l=1 cos2(θl) = QiQT

i − KKT
j

2
F, (17)

where ||· ||F denotes the matrix Frobenius norm. The CMA module uses a w× w local
window instead of a

√
L×
√

L global window, we define attention weight for the i-th input
Qi with neighborhood window size w2, Aτ

i as the projection distance of Qi and Kj:

Aτ
i = so f tmax

 1√
k


||QiQT

i − Kρ1(i)K
T
ρ1(i)
||F

||QiQT
i − Kρ2(i)K

T
ρ2(i)
||F

...
||QiQT

i − Kρτ(i)K
T
ρτ(i)
||F


, i = 1 : L, τ = 1 : w2 (18)

where
√

k is the scaling factor, ρτ(i) denotes i′s τ-th neighbor, The dimension of attention
weight A is RL×w2

, correspondingly, the dimension of value V corresponding to Qi is
Rw2×D. By converting the feature vectors into feature patches and representing them on
the Grassmann manifold, we fully exploit the nonlinear geometric characteristics inside
the data.

The above procedures are formulated as

x0 =
[

x1
pE; x2

pE; · · · ; xN
p E
]
, E ∈ R(S2∗c0)×D (19)

z0 =
[
z1

pE; z2
pE; · · · ; zN

p E
]
, (20)

x′l = CMA
(

LN
(

xl−1

)
, LN(z0)

)
+ xl−1, l = 1, · · · , T (21)

xl = MLP
(

LN
(

x′l
))

+ x′l, (22)

y = LN(xl), (23)

where E represents the linear projection layer for mapping patches to a D-dimensional
latent embedding space, xi

p, zi
p ∈ R1×(S2·c0). Due to its special design, the CMA module

can capture the local structure and long-range relationship of features, and the specific
calculation follows the formulas below:

Qµ = orth
(

LN(z0)Eq
)
, (24)

Kµ = LW(orth(LN(xι)Ek)), (25)

Vµ = LW(LN(xι)Ev), (26)

Attµ(Qµ, Kµ, Vµ) = AV, µ = 1, 2, · · · , H (27)

x′ι = concat
(
{Attµ(Qµ, Kµ, Vµ)}H

µ=1

)
Eout (28)
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where Eq, Ek, Ev ∈ RD×Dh , orth(·) denotes the Gram-Schmidt orthogonalization, LW(·)
indicates a local windowing operation, Eout ∈ R(H·Dh)×D, H is the head number of multi-
head attention. To keep compute and number of parameters constant when changing H, Dh
is typically set to D/H.

3.5. Predictor

The prediction network concats the output features of the two CMA modules in
the channel dimension. The primary purpose of the prediction network is to reduce the
dimensionality of the features outputted by the CMA module into a nine-dimensional
vector that is used for predicting the target labels. Figure 6 details the structure of the
prediction network.

Figure 6. The Prediction network architecture.

4. Experiments

In this chapter, we conducted numerous target recognition experiments using the
GOTCHA measurement dataset to perform validation of the rationality of the proposed
method and verified the feasibility and scalability of the proposed MF-DCMANet through
comparison with other advanced methods.

The experiment hardware configuration includes an AMD Ryzen 5800H CPU, Nvidia
RTX3060 GPU, and 16GB memory. The software environment is composed of Matlab
2021b, Python 3.7, CUDA 11.2, and Tensorflow 2.11. The monogenic and polarization
features are extracted using Matlab 2021b, and the network training is completed in the
Python environment.

4.1. Data Description

To support the study, a GOTCHA dataset for PolSAR target recognition is constructed
using raw data from the “Gotcha Volumetric SAR Data Set V1.0” [53]. The GOTCHA
dataset is an airborne 360◦ circular SAR dataset constructed by researchers from AFRL
and Ohio State University for numerous civilian vehicles parked in the internal parking
lot [54]. The original dataset comprises SAR phase history data that were obtained in
the X-band, possessing a bandwidth of 640 MHz and consisting of data collected at eight
different elevation angles (eight circular passes). The raw data of all flight passes are
stored in Matlab binary form under eight folders. Each folder contains four corresponding
polarization channel data (HH, HV, VH, and VV polarization channels, respectively),
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and each polarization channel contains pulse data of the whole parking lot from 0 to
360 degrees azimuth.

We selected regions of interest containing the desired targets from the original scene,
as shown in Figure 7. The optical images of the targets of interest are presented in Figure 8.

Figure 7. Scene regions containing nine categories of targets of interest.

Figure 8. Optical images of vehicle targets in the GOTCHA dataset.
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To construct a dataset suitable for PolSAR target recognition from scene imaging maps,
the 360◦ circular aperture was partitioned into 90 sub-apertures with 4◦ azimuth angles.
The four polarization channels under each circular pass are then superimposed to generate
90 imaging maps containing regions of interest with targets. Then, based on the positions
of the nine target categories in the scene, we extracted PolSAR images of these nine target
categories from the scene imaging maps, uniformly cropped to a size of 50 × 50.

So far, each circular pass contains nine categories of targets, with 90 images per
category. We select the targets from pass1, pass3, pass5, and pass7 for training and the
targets from the remaining passes for testing. The composition of the dataset is presented
in Table 2.

Table 2. The composition of the dataset.

Dataset Category Pass Number

Training set 1~9 1, 3, 5, 7 360 × 9

Test set 1~9 2, 4, 6, 8 360 × 9

4.2. Implementation Details

First of all, we perform a unified Z-Score normalization operation on the GOTCHA
dataset, which can be defined as: x∗ = (x− x)/σ, where x and σ represent the mean and
standard deviation of an image x, respectively. Its primary objective is to normalize the
data to the same magnitude and solve the comparability problem between the data. After
the data is normalized, the network can converge to the optimal solution more quickly. For
GOTCHA data, each polarization channel is independently normalized.

Prior to the monogenic feature extraction, the intensity image is formed by taking
the complex-valued images of the four polarization channels as amplitude values. To
speed up network training, the image size is compressed to 20× 20 in the experiment. We
extract the three-scale monogenic feature tensor from the intensity image. In Formula (4),
the scale level index S of the monogenic signal is set to 1, 2, 3; in turn, the broadband
proportional factor σ is set to 0.48, the minimum wavelength λmin is set to 8, and the
wavelength multiplication coefficient µ is set to 2.5. Then, the monogenic features obtained
from the intensity image are arranged as a feature tensor
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one-dimensional (1D) signal. Similarly, the Riesz transform can construct an analysis sig-
nal representation of a multi-dimensional signal. This article focuses on discussing the 
two-dimensional (2D) finite-length signal (image); that is, the dimension in the Riesz 

∈ R20×20×9.
We extract the polarization covariance matrix for every pixel in the image of the

GOTCHA data and convert it to a nine-dimensional real vector to form the polarization
feature tensor
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3.2. Multi-Feature Extraction 
3.2.1. Monogenic Feature Extraction 

The monogenic signal is a high-dimensional analytic signal derived from the one-
dimensional analytic signal, which extracts rotation- and scale-invariant features from in-
tensity images. The Hilbert transform can construct an analysis signal representation of a 
one-dimensional (1D) signal. Similarly, the Riesz transform can construct an analysis sig-
nal representation of a multi-dimensional signal. This article focuses on discussing the 
two-dimensional (2D) finite-length signal (image); that is, the dimension in the Riesz 

∈ R20×20×9.
The training parameter settings in the MF-DCMANet are shown in Table 3. The

outputs of the CFN module are: Md, Pd, crossMP ∈ R10×10×128. In the CMA module, the
local window size w is fixed as 3, and the head number H of multi-head attention is
configured as 4. In the CMA module, we set the parameters on the Grassmann manifold
G(n, k) to n = 8, k = 4. The parameters n and k can be adjusted according to the actual
input size and only need to satisfy the condition n ≥ k > 0.

Table 3. Training settings on the MF-DCMANet.

Batch size 64

Optimizer Adam

Initialized learning rate 0.01

Learning Rate Decay Exponential-decay

Momentum 0.9

Weight decay 0.0001

Epochs 100
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4.3. Evaluation Metrics
4.3.1. Overall Accuracy (OA)

Overall accuracy (OA) refers to the proportion of correctly classified samples to the
total samples:

OA = ∑C
i=1 Nii/ ∑C

i=1 ∑C
j=1 Nij, (29)

where C represents the total of all categories, Nij represents the number of samples that
belong to category i but are misclassified to be category j and Nii is the quantity of samples
being correctly classified.

4.3.2. Receiver Operation Characteristics (ROC)

The ROC curve [55] is an important and common statistical analysis method in ma-
chine learning. It is a graphical representation of the relationship between the true positive
rate (TPR) and the false positive rate (FPR) for a given classification model. If two ROC
curves intersect, it is difficult to assert their relative performance in a general sense. There-
fore, the AUC value is introduced as a measure of the overall performance of the model.
AUC can be obtained by integrating the ROC curve, and the value of AUC is usually
between 0.5 and 1. A larger AUC represents better performance. TPR and FPR can be
calculated by the following formulas:

TPR = TP/(TP + FN), (30)

FPR = FP/(FP + TN). (31)

4.4. Quantitative Analysis

The proposed MF-DCMANet is evaluated on the fully polarimetric GOTCHA datasets.
The ablation experiments are used to study the impact of crucial components of the pro-
posed MF-DCMANet on the overall performance.

4.4.1. Classification Results and Analysis

Figure 9 displays the confusion matrix of MF-DCMANet on the training set divided ac-
cording to different proportions, allowing for a straightforward assessment of the proposed
method’s ability to classify different categories. The diagonal values represent elements
where the predicted value equals the true value, while the off-diagonal values represent
elements where the classifier made an incorrect prediction. A higher ratio of values on the
diagonal compared to the off-diagonal indicates better performance by the classifier. Hence,
in Figure 9, the darker (red) the diagonal color, indicating the better the performance of
the model.

The diagonal elements in Figure 9a are close to 360, indicating that almost all samples
were correctly classified, with some targets achieving 100% accuracy. In Figure 9b–d, where
the data used for training is divided into 1/3, 1/7, and 1/10 of the complete training dataset,
most of the test samples are still accurately classified on the diagonal line, but some test
samples are mistakenly classified into off-diagonal lines, indicating that some targets have
been misclassified as other types. Specifically, in Figure 9b–d, the most commonly confused
targets are the first and seventh categories, the fifth and fourth categories, and the fifth and
ninth categories. Optical images corresponding to these targets in Figure 8 demonstrate that
these easily confused targets have similar appearances, resulting in reduced generalization
ability of the extracted features in scenarios with limited training samples, making it easier
to misclassify these targets with similar appearances.
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Figure 9. Confusion matrix of the MF-DCMANet on the GOTCHA dataset. (a) Full training datasets.
(b) One-third of the training set. (c) One-seventh of the training set. (d) One-tenth of the training set.

To assess the effectiveness of the MF-DCMANet, a range of advanced PolSAR target
recognition methods are compared as benchmarks, such as algorithms based on handcrafted
features or deep learning and algorithms based on multi-feature fusion. Among the
algorithms based on handcrafted features, we focus on comparing the methods based on
monogenic features and polarization features, such as polarimetric scattering coding [56],
polarimetric decomposition [57], Monogenic Scale Space (Mono) [14,58], Mono-HOG [59],
Mono-BoVW [10], Monogenic Signal on Grassmann Manifolds (Mono-Grass) [15], and
other methods, such as Steerable Wavelet Frames [16], Attributed scattering center (ASC)
model [60]. Among deep learning-based algorithms, we compare the CNN-based and
transformer-based methods, as well as the other novel methods. CNN-based methods
include A-ConvNet [19], CV-CNN [20], CV-FCNN [61], CVNLNet [10], and RVNLNet with
real input, the transformer-based method include ViT transformer [35], SpectralFormer [62],
CrossViT [63], and other methods such as SymNet [64], monogenic ConvNet layer [65].
Furthermore, we also include multi-feature-based Mono-CVNLNet [10] and FEC [8] in our
comparison of methods. The corresponding results and necessary descriptions of different
methods are presented in Table 4.
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Table 4. Performances of different methods in the GOTCHA dataset.

Input Method Classifier OA (%) FPS

Handcrafted features

Mono-based

Mono SRC 97.72 83.08

Mono-HOG SVM 98.15 58.65

Mono-BoVW SVM 98.02 19.11

Mono-Grass SRC 98.61 24.23

Pol-based
Polarimetric decomposition SVM 98.30 32.65

Polarimetric scattering coding SVM 97.65 39.94

others
Steerable Wavelet SVM 98.89 38.54

ASC SVM 98.46 15.49

Deep features

CNN-based

A-ConvNet Softmax 97.99 442

CV-CNN Softmax 98.46 403.91

CV-FCNN Softmax 98.98 341.89

CVNLNet Softmax 99.44 320.46

RVNLNet Softmax 98.52 431.71

Transformer-based

ViT Softmax 98.77 389.2

SpectralFormer Softmax 98.12 376.27

CrossViT Softmax 99.17 363.07

others
SymNet KNN 97.28 263.28

Monogenic ConvNet layer Softmax 98.73 308.70

Multi-features

FEC Softmax 99.10 195.06

Mono-CVNLNet Softmax 99.54 227.96

Proposed Softmax 99.75 322.93

Table 4 indicates that the accuracy rate achieved by the proposed MF-DCMANet is
the highest, with a value of 99.75%. In addition, from Figure 9a, the values of the diagonal
elements are very close to 360, and only eight samples in total are misclassified in the
off-diagonal elements. The proposed method MF-DCMANet significantly outperforms the
single feature-based methods and the multi-feature-based methods, and this can mainly
be attributed to the proposed cross-fusion method effectively integrates the classification
information contained in different features through the CFN and CMA module to obtain
more abstract high-level semantic features. Compared to MF-DCMANet, the handcrafted
Mono-Grass and Polarimetric decomposition models are less robust, although they are
the best-performing methods in the Mono-based and Pol-based approaches, respectively,
the proposed method resulted in an improvement of 1.14% and 1.39% in classification
accuracy. From the perspective of classification accuracy, the effective utilization of multiple
features leads to a greater improvement in performance, which also shows the necessity of
multi-feature extraction. The last column of Table 4 displays the FPS (Frames Per Second)
values comparison among different methods. FPS refers to the number of images that a
method can process within one second. It can be seen that the FPS values based on deep
learning methods are much higher than those of handcrafted feature methods. Moreover,
the proposed method achieves an FPS value of 322.93, which is higher than other multi-
feature fusion methods and roughly equivalent to the FPS values of methods based on
CNN or Transformer.

4.4.2. Classification Accuracy Evaluation under Few-Shot Recognition

In few-shot recognition scenarios, we selected the methods with the highest accuracy
rate under each small category in Table 4 for comparison. These methods are Mono-Grass,
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Polarimetric decomposition, Steerable Wavelet, CVNLNet, CrossViT, Monogenic ConvNet
layer, FEC, and Mono-CVNLNet, respectively. The dataset used for few-shot recognition
was constructed by sampling the original GOTCHA dataset at ratios of 1/3, 1/5, 1/7,
and 1/10. In Figure 10, it is apparent that regardless of the variation in the number of
training samples, the accuracy curve of MF-DCMANet consistently remains at the top,
indicating greater recognition performance than other approaches. Compared with the
best-performing Mono-CVNLNet [10] in previous research works, our approach shows
a significant improvement in few-shot recognition. Specifically, in 1/5 and 1/7 few-shot
recognition scenarios, the proposed method resulted in an improvement of approximately
2% in performance, indicating that the final obtained features can more effectively capture
the latent information of PolSAR targets and are insensitive to azimuth changes. Further-
more, we can observe from Figure 10 that the methods based on feature fusion, such as FEC,
Mono-CVNLNet, and proposed MF-DCMANet, can maintain relatively high recognition
accuracy even as the training sample size is rapidly reduced. In contrast, the methods that
rely on a single feature, such as Wavelet and Polarimetric decomposition, experience sharp
drops in the recognition accuracy when the training sample size is reduced to 1/7 and
1/10. Comparing the performance of Mono-CVNLNet and CVNLNet methods, it becomes
apparent that both have similar recognition accuracy when the size of the training sample
is adequate. As the amount of training data is reduced to 1/5 and 1/7, Mono-CVNLNet
always performs better than CVNLNet, and the recognition accuracy is improved by about
3% and 6%, respectively. This is because, compared with deep features, handcrafted fea-
tures can describe PolSAR targets robustly and stably without being constrained by the
number of samples, which is why we have to introduce manually designed polarization
and monogenic features in the proposed MF-DCMANet.

Figure 10. Accuracy of different methods in few-shot recognition.
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In Figure 11, we graphed the ROC curves of the different methods for 1/10 few-shot
recognition on the same coordinate system to facilitate a straightforward comparison of
their performance. The results show that the ROC curve of the proposed method is closest
to the upper left corner, and there is no intersection with other comparison methods, and
it completely envelopes the ROC curves of other methods. Correspondingly, its AUC
value reaches the highest at 0.98104, indicating that the proposed method has excellent
generalization ability.

Figure 11. ROC curves and AUC values of different methods in the 1/10 few-shot recognition experiment.

4.4.3. Classification Accuracy Evaluation under Open Set Recognition

In open set recognition, the set of training categories is included in the set of test
categories, which means that the test samples could belong to either the trained categories
or the untrained categories [66]. We have developed two methods for identifying unknown
categories in the open-set recognition scenario, where categories 2 and 3 were omitted from
the training set but included in the test set. The first method involves setting a threshold
on the output of the softmax, and test samples with values smaller than the threshold are
judged as unknown categories. The second method is to extract features obtained after
two-stage cross-fusion, i.e., the output of the CMA module. Then, we computed the feature
centers of all known categories in the training set using the k-means algorithm. During
the testing stage, the KL divergence between the test sample and the feature centers of
each known category is computed. The category of the testing sample is determined by
setting a threshold. The overall accuracy of the two methods at different thresholds is
shown in Figure 12. As seen in Figure 12a, the first method achieves the highest overall
accuracy of 86.45% when the threshold value of softmax is set to 0.75. However, when the
threshold is exceeded, the overall accuracy decreases rapidly, indicating that the network
gives false predictions with high confidence even in the case of unknown PolSAR targets.
In Figure 12b, the highest overall accuracy of 91.23%, an increase of 4.78% compared to the
first method, is achieved when the KL divergence threshold is set to 2.3. This is because the
proposed method can effectively reduce intra-class distance while increasing inter-class
distance, and KL divergence, as a distance metric, can measure the subtle distribution
differences between different categories. Specifically, the average KL divergence between
different categories is shown in Figure 13. The seven dark blue diagonal values in Figure 13
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represent the average KL divergence between the test samples of known categories and the
seven feature centers calculated during training. The eighth and ninth rows in Figure 13
record the average KL divergence between the test samples of unknown categories and the
seven feature centers. It can be observed that the average KL divergence between samples
of the same category is much smaller than that between different categories. Therefore, it is
easy to set a threshold to quickly reject unknown samples in the test set. In this work, the
threshold is set to 2.3.

Figure 12. The overall accuracy of different methods at different thresholds. (a) Softmax (b) KL divergence.

Figure 13. The average KL divergence between different categories.
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To demonstrate the impact of two-stage cross-fusion in the proposed method, we
extract the output features of both the CFN and CMA modules for calculating the feature
centers required by the KL-divergence method. When the threshold of KL divergence is set
to 2.3, the corresponding confusion matrices are shown in Figure 14. Notice that the last
two rows of the confusion matrix represent the prediction results of unknown categories
in the test set, while the last column represents the situation where all categories of the
test set are predicted as unknown categories. The results indicate that the classification
performance after two-stage cross-fusion is superior to that after one-stage cross-fusion,
with an overall accuracy improvement of 6.23%.

Figure 14. Confusion matrix of the proposed method at different feature fusion stages. (a) The first
stage: CFN module; (b) the second stage: CMA module.

To reflect the superiority of the proposed method, we apply the method used for
comparison in Section 4.4.2 to open set recognition, and the experimental results are
shown in Table 5. The proposed MF-DCMANet achieved known target accuracy, unknown
target accuracy, and overall target accuracy of 95.20%, 77.36%, and 91.23%, respectively.
Compared to the second-best method, Mono-CVNLNet, the proposed method improved
the performance by 1.39%, 2.22%, and 1.57%, respectively. In Table 5, known target accuracy
is defined as the ratio of correctly classified known targets to the total number of known
targets in the test set. Unknown target accuracy represents the ratio of correctly classified
unknown targets to the total number of unknown targets in the test set. The overall accuracy
rate represents the ratio of correctly classified known and unknown targets to the total
number of targets in the test set.

Table 5. Accuracy comparison of different methods under open-set recognition experiments.

Method Known Target
Accuracy (%)

Unknown Target
Accuracy (%)

Overall Target
Accuracy (%)

Mono-Grass 89.96 67.64 85.00
Mono-ConvNet 88.89 72.78 85.31

Wavelet 92.30 70.00 87.35
CrossViT 92.78 71.11 87.96
CVNLNet 93.97 69.58 88.55

FEC 93.29 73.19 88.83
Mono-CVNLNet 93.81 75.14 89.66

Proposed 95.20 77.36 91.23
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4.4.4. Ablation Study

This subsection serves to validate the performance of three critical modules in the
MF-DCMANet: Multi-Feature (MF) extraction, Cross-Feature Network (CFN), and Cross-
Manifold Attention (CMA) transformer.

We evaluated the capability of the framework with only monogenic features or polar-
ization features as inputs to the MF module. At this time, we noted that the cross-attention
mechanism in the CMA module degenerates into a self-attention mechanism with a local
window. The framework with single-feature input (another feature is zeroed) is named
M-DSMANet and P-DSMANet. As shown in Table 6, compared to the framework with
single-feature input, the integration of two handcrafted features into the framework in-
creases the amount of information available, resulting in higher accuracy as evidenced by
the classification accuracy increased by 1.17% and 1.91%.

Table 6. Ablation experiment of multi-feature extraction module.

Method M-DSMANet P-DSMANet MF-DCMANet

OA (%) 98.58 97.84 99.75

To explore the functionality of the CFN module in the MF-DCMANet, we selected
three other common fusion methods as comparison methods: Concat, Parallel (add), and
En-De [67], which directly replace the cross-fusion process in the CFN module.

Concat: Directly concatenate the mid-level monogenic features Md and the mid-level
polarization features Pd along the channel dimension.

Parallel: Directly add the mid-level monogenic features Md and the mid-level polar-
ization features Pd along the channel dimension.

En-De: Perform encoder-decoder fusion on Md and Pd.
Table 7 shows that the cross-fusion method outperforms these three comparative

fusion methods in terms of recognition accuracy, with accuracy rates increasing by 1.20%,
1.02%, and 4.07%, respectively. This indicates that the CFN module can effectively and
globally interact with the information carried by different features compared to the simple
feature fusion method. In the cross-fusion process, the information carried by the polar-
ization feature and the monogenic feature is continuously updated interactively during
the backpropagation process of the network, resulting in a feature representation that
captures the invariant in the PolSAR targets. As a result, better recognition performance
can be achieved.

Table 7. Ablation experiment of Cross-Feature Network (CFN) module.

Method Concat Parallel En-De CFN

OA (%) 98.55 98.73 95.68 99.75

In the ablation experiment of the CMA module, we return the calculation of atten-
tion weight A to Euclidean space, whereby we calculate the cosine similarity of feature
vectors instead of calculating the Grassmann measure of feature patches. As shown in
Table 8, computing attention weight directly in the Euclidean space reduces the final recog-
nition accuracy by 1.11%. In contrast to the Euclidean space, the Grassmann manifold
space reflects the high-dimensional geometric relationships of the data and provides a
more detailed description of the similarity between feature patches through the projection
distance. Therefore, the CMA module addition assists the MF-DCMANet in achieving
better performance.
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Table 8. Ablation experiment of Cross-Manifold Attention (CMA) module.

Method Euclidean Grassmann

OA (%) 98.64 99.75

4.5. Qualitative Analysis
4.5.1. CFN Module Analysis

The representation performance of a single feature is largely limited due to the lack of
discriminative nature of the extracted features, particularly in few-shot recognition scenar-
ios. In this paper, the monogenic features utilize the multi-scale characteristics to describe
the scattering phenomenon of the PolSAR target, while the polarimetric features extracted
from the polarization covariance matrix capture all target polarization information obtained
from the radar measurement, which finely describes the target scattering mechanism from
the physical meaning. The proposed CFN module effectively utilizes the complementary
advantages between these features to enhance the representation ability of a single feature.

To visualize the original monogenic features, polarization features, and fused features
obtained by the CFN module in 2D space, we utilized the t-SNE method [68]. This method
is known for its ability to reduce high-dimensional features to 2D space, expand dense
clusters, and shrink sparse clusters for optimal visualization. Figure 15 presents the
visualized features, which illustrate that the adequately trained CFN module can extract
informative features that fully absorb the unique classification information carried by the
polarization and monogenic features. Additionally, the CFN module can easily separate
different types of targets by making the clusters from the same category more compact and
those from different categories more dispersed.

Figure 15. Visualization features of GOTCHA data by using t-SNE. (a) the original monogenic
features. (b) the original polarization features. (c) the fused features obtained by the CFN module.

4.5.2. CMA Module Analysis

In Section 3.4, we mentioned that the attention weight of the self-attention mechanism
actually computes the cosine similarity between feature vectors in the Euclidean space,
while the CMA module calculates the projection distance between feature patches in the
Grassmann manifold space, which can be associated with the principal angle. We extracted
the query Q ∈ RL×D and key K ∈ RL×D of a PolSAR target, where L = 9, D = 128. We
calculated the similarity between the 128-dimensional feature vectors in Euclidean space
and converted them into angle values, as shown in Figure 16. It can be observed that
the cosine angle between most of the feature vectors is around 90◦, indicating that the
vectors are in an orthogonal relationship. Their product is either 0 or a small value, and the
information carried by the feature vectors is offset. This is mainly because the monogenic
features and polarization features describe the PolSAR target from different perspectives,
which results in an insufficient correlation between the vectors from different features.
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This is evidenced by their orthogonality in the Euclidean space, making it difficult for
subsequent feature extraction to create meaningful feature representations.

Figure 16. The cosine angles between query vectors and key vectors.

Next, we convert the query Q ∈ RL×D and key K ∈ RL×D to query Q ∈ RL×n×k

and key K ∈ RL×n×k, and represent the feature patches Qi, Kj ∈ Rn×k on the Grassmann
manifold, where n = 16, k = 8. Then we calculate the principal angle of different feature
patches. In Figure 17, span(Qi) and span

(
Kj
)

are formed by representing the query Qi
and key Kj in the Grassmann manifold space, where span(Qi) and span

(
Kj
)

denotes the
subspace spanned by columns of Qi, Kj ∈ G(n, k). The principal angle between span(Qi)
and span

(
Kj
)

falls within the range of [0◦, 90◦], which ensures that the vector product of the
feature subspace does not produce a large number of zeros and enhances the correlation of
different feature vectors. Therefore, the CMA module restricts the angles between different
feature vectors to the range of [0◦, 90◦] range by representing features on the Grassmann
manifold, effectively avoiding the limitations of computing attention weight in Euclidean
space. As such, it is more suitable for multi-feature-based PolSAR target recognition tasks
and can obtain more valuable information to improve the recognition rate.
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Figure 17. Comparison of Euclidean spaces and Grassmann manifolds. On the Grassmann manifold,
the dimension of Q and K changes from RL×D to RL×n×k, where L=9. Thus, the horizontal axis of
Figure 17 represents the 81 measures between Qi(i = 1 : 9) and Kj(j = 1 : 9), while the upper and
lower parts of the vertical axis represent the cosine angles in Euclidean space and principal angles in
the Grassmann manifold space, respectively. We have plotted the 81 cosine angle values in Figure 16
as the top red polyline in Figure 17. According to the definition of principal angle in Equation (16),
the number of principal angles between Qi and Kj equals k (where k = 8). Hence, the eight differently
colored points within each gray stripe represent the eight principal angles of patch pairs.

5. Conclusions

We propose a novel multi-feature cross-fusion approach based on monogenic signal
and polarization features for PolSAR target recognition, namely, MF-DCMANet. The
proposed method employs a dual-stage cross-fusion process on the initially extracted
monogenic features and polarization features, enabling features with different characteris-
tics to continuously exchange information during network training, resulting in a feature
representation with global and local attention. The proposed framework integrates feature
extraction, fusion, and classification processes. The results on the constructed GOTCHA
dataset indicate that taking into consideration the characteristics of the Grassmann manifold
structure can effectively enhance the classification accuracy of PolSAR targets. Specifically,
the proposed MF-DCMANet achieves the highest accuracy on the full dataset and main-
tains satisfactory overall performance in few-shot recognition and open-set recognition
experiments, with a recognition accuracy improvement of approximately 2% compared to
the current state-of-the-art method.

It should be noted that the fundamental mechanism of how the proposed method
integrates multiple features and reduces the differences between them in deep neural
networks has not been thoroughly analyzed. Moreover, while the effectiveness of the
proposed method has been verified on vehicle targets, its applicability to other types of
polarization targets remains to be explored. In the future, we plan to conduct a deeper
investigation into the potential mechanism of deep neural network-based feature fusion
and explore the possibility of applying the method to more types of polarization targets.
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