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Abstract: Pine wilt disease (PWD), caused by pine wood nematode (PWN, Bursaphelenchus xylophilus),
poses a serious threat to the coniferous forests in China. This study used unmanned aerial vehicle
(UAV)-based hyperspectral imaging conducted at different altitudes to investigate the impact of
spatio-temporal scales on PWD detection in an monoculture Masson pine plantation. The influence
of spatio-temporal scales on hyperspectral responses of pine trees infected with PWD and detection
accuracies were evaluated by Jeffries–Matusita (J-M) distances and the random forest (RF) algorithm.
The optimal vegetation indices (VIs) and spatial resolutions were identified by comparing feature
importance and model accuracy. The main results showed that the VIs and J-M distances were greatly
affected by spatio-temporal scales. In the early, mid-, and late infection stages, the RF-based PWD
detection model had accuracies ranging between 72.05 and 79.48%, 83.71 and 89.59%, and 96.81 and
99.28%, peaking at the 10 cm, 8 cm, and 4 cm spatial resolutions, respectively. The green normalized
difference vegetation index (GNDVI) and red edge position (REP) were the optimal VIs in early and
mid-infection stages, respectively. This study can be important to improve the efficiency of PWD
detection and reducing the loss of forests resources.

Keywords: pine wilt disease; UAV-based; hyperspectral; spatio-temporal scale

1. Introduction

Pine wilt disease (PWD), caused by the pine wood nematode (PWN), is a highly
destructive disease that threatens the forests of East Asia [1–3]. In China, since its first
discovery at the Sun Yat-sen Mausoleum of NanJing in 1982, PWD has rapidly spread
and caused irreparable losses [4,5]. The pathogenic pine wood nematode causes pine wilt
rapidly and its pathogenesis is complex, which has not been fully understood [6].

Traditional field survey methods to detect PWD are time-consuming and labor-intensive [7].
Therefore, a faster and more effective PWD detection method is needed. Remote sensing are
non-contact detection technologies that use spectral information from sensors to indirectly
obtain characteristic of target objects [8]. Remote sensing has been widely used in many
fields, including flood monitoring [9], land use and land cover survey [10], and plant disease
identification [11–13].

After being infected with PWD, changes in physiological variables and leaf cell struc-
ture are reflected in the spectral characteristics, which can be used to infer PWD infection
status [8,14]. On this basis, there have been numerous studies using multispectral remote
sensing to identify trees with late stage PWD infections [15–17]. However, in the early
infection stage, multispectral remote sensing cannot distinguish the subtle differences in
spectral responses between infected and non-infected trees. Compared with multispectral
remote sensing, hyperspectral remote sensing has a much higher spectral resolution, which
gives it a significant advantage in distinguishing among subtle spectral changes. Kim et al.
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used hyperspectral data to determine the optimal vegetation indices (VIs) for detecting
PWD in the early infection stage [7]. The Green-Red Spectral Area Index (GRSAI) they
established was able to identify PWD much earlier than other VIs. Zhang et al. established
a genetic algorithm-partial least squares regression (GA-PLSR) model based on the hyper-
spectral data to predict PWD [16]. Yu et al. integrated unmanned aerial vehicle (UAV)
based hyperspectral images and ground-based data to determine the accuracy of PWD
detection models established by VIs, red edge parameters, moisture indices, and their
combinations [18]. Their results showed that the model combining all parameters had the
highest accuracy.

Continuous monitoring of trees infected with PWD using remote sensing, especially in
the early infection stage, can capture dynamic changes in spectral information and help detect
PWD before it spreads to other pine trees. Traditional satellite remote sensing is not suitable
for the early detection of PWD due to its fixed return visit period and lack of flexibility [18].
In the past decade, UAV-based remote sensing technology has been widely used in forest
disease detection due to its high flexibility, efficiency, and spatial resolution [19–21]. Zhou
et al. used UAV-based RGB images to segment and detect individual trees infected by PWD.
By using adaptive local threshold selection methods, infected trees in grayscale images could
be automatically segmented according to the vegetation index (VEG) with an accuracy of
90% [22]. Deng et al. set up a deep learning framework using faster region convolutional
neural networks to detect PWD and the model accuracy reached 90% [23]. The emergence of
UAV enables continuous monitoring which facilitates the early detection of PWD, and also
enables researchers to obtain images with different spatial resolutions.

Although many studies have used UAV-based data to detect forest diseases, few have
focused on the impact of spatio-temporal scales on forest disease monitoring, especially in
PWD detection. Guo et al. used UAV-based hyperspectral images to detect wheat yellow
rust disease at the field scale [24]. They resampled 1.2 cm spatial resolution images at 3 cm,
5 cm, 7 cm, 10 cm, 15 cm, and 20 cm, and determined that the 10 cm spatial resolution
was optimal for detecting wheat yellow rust disease. Jonathan et al. used UAV images,
including original images and resampled images, to monitor disease outbreak in mature
Pinus radiata D. simulated using herbicides [25]. They found that 1 m was the optimal
spatial resolution for detecting simulated forest disease in both small and large tree clusters.
Zeng et al. used the RGB images of unusual dead pines (dead not due to PWD) collected by
UAV at 430 m and 700 m altitudes to monitor PWD [26]. Their results showed that images
collected at 430 m and 700 m could both be used to accurately identify unusual dead trees.
However, the above studies have only used natural color or multi-spectral images for forest
disease detection. In addition, they used resampling to obtain images with different spatial
resolutions instead of collecting images at different flight altitudes. However, resampling
just simulates the real value through the algorithm, which is still different from the real
value and may produce erroneous results.

In this study, UAV-based hyperspectral images collected at different spatio-temporal
scales (different spatial resolutions and infection stages) were used to assess the develop-
ment of PWD. The objectives are: (1) To analyze the impact of spatio-temporal scales on
PWD detection; (2) determine the optimal spectral bands, vegetation indices (VIs), and
spatial resolution for PWD detection in early, mid-, and late infection stages.

2. Materials and Methods
2.1. Study Area

The study area covered approximately 1.7 ha of the Baima forestry experimental
station in Lishui, Nanjing city, Jiangsu province, China (31◦36′47′′N, 119◦9′32′′E) (Figure 1).
In this area, the average annual temperature and precipitation were 16 ◦C and 1147 mm,
respectively. The natural period of PWD infection in this area usually spans from the end of
June to the beginning of October each year. There were no PWD-infected pine trees in the
area before we injected the PWN. During this period, the climate is hot and humid, which
is suitable for the reproduction of PWN. However, in the early summer, a continuous rainy
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weather period called the “plum rain” occurred in the middle and lower reaches of the
Yangtze River in China, which affected data collection in this experiment. To reduce the
influence of weather, the experiment was conducted on sunny and cloudless days, as much
as possible.
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Figure 1. (a) Location of the study site within China; (b) location of the study site within Jiangsu
province; and (c) the image of the experimental area obtained on 10 July at a 10 cm spatial resolution.
Masson pine was the dominant tree species in the study area, with an average age of 30 years and
similar tree sizes. The red squares are the plots with sizes of 30 × 30 m which divided the area.

2.2. Data Acquisition and Preprocessing

Masson pine (Pinus massoniana) was the dominant tree species in this area, with an
average tree age of 30 years and similar tree sizes (Table 1). To prevent healthy sample
trees from being affected by the PWN-injected sample trees, we divided the area into eight
plots with sizes 30 × 30 m, and randomly sampled one tree from each plot (a total of eight
sample trees) for further study. Four pine trees that were confirmed to be healthy were
manually injected with PWN. The PWNs were obtained from pine trees infected with
PWD in another forest of Lishui, Nanjing, Jiangsu province using the Baermann funnel
method and proliferated in the laboratory for one week at 25 ◦C in the dark. Each pine
tree was injected with 10,000/100 µL of a PWN suspension on 6 July to simulate natural
PWN infection [27,28]. The steps of PWN injection were: (1) A 1.0 cm diameter hole was
made by drill at breast height, deep enough reach the xylem, but not more than 1/3 of the
tree diameter at that height. (2) The PWN suspension was injected into the hole using a
microsyringe after inserting pasteurized cotton. (3) The tree section with the cotton was
wrapped with transparent tape to reduce the loss of the PWN suspension [29]. As a control,
another four healthy trees were injected with distilled water without any other treatment.
The needles of each sample tree were taken to the laboratory before PWN inoculation and
after each UAV data collection survey. The presence of PWN in needles was determined
using a microscope according to morphological methods [30]. Finally, after the experiment,
the sample trees injected with PWN were cut down and disposed of to prevent the spread
of PWD.
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Table 1. The growth situation of sample trees. There were eight sample trees (H: tree height; DBH:
diameter at breast height.).

Mean Standard Deviation Maximum Minimum Range

H (m) 15.07 0.77 16.31 13.78 2.53
DBH (cm) 18.17 1.54 20.11 15.68 4.43

During the experiment, continuous monitoring included symptom observations and
UAV-based image collection every four days, every week, and every month in the early,
mid-, and late infection stages, respectively. Image acquisition flight campaigns were
conducted between 10:00 a.m. and 3:00 p.m.; the specific data acquisition time was adjusted
according to the weather. Based on the previous studies, this study divided PWD into
three stages: (1) early infection stage, (2) mid-infection stage, and (3) late infection stage.
Specifically, we defined the early infection stage as the period when PWN infection was
confirmed in pine trees by morphological methods but no visual symptoms were apparent.
We defined the mid-infection stage as the period when symptoms of needle discoloration
and wilting began to be visible to naked eye. We defined the late infection stage as the
period when more than 50% needles showed discoloration and wilting. The hyperspectral
images obtained on 10 July, 24 August, and 17 October were selected as representative of
early, mid-, and late infection stages of PWD, respectively.

The DJI Matrice 600 Pro UAV equipped with the Gaiasky-mini-2 hyperspectral imaging
spectrometer (a line scanner) was used to collect hyperspectral images at different spatio-
temporal scales (different altitudes at different times). The imaging mode of the GaiaSky-
mini spectrometer is a built-in push-sweep model. The imaging lens and the imaging
spectrometer are separate. The front end of the imaging spectrometer has its corresponding
incident slit (represented by black double arrows), and the red circle (inside) represents
the focusing lens at the rear end of the imaging lens. The incident slit has a certain length.
When the encounter is blocked by the focusing lens, part of the image will be blocked
and the image cannot be acquired normally. Similarly, when the slit position exceeds the
termination position, it will also be blocked and the image cannot be acquired. Therefore,
the lens calibration can be carried out when the parameter setting is unreasonable or there
is an uneven black area at the edge of the captured image. At the same time, the lens is
not a plane. In the process of image acquisition, the slit is shot line by line relative to the
mirror of the focusing lens, so there will be image distortion in the plane, but it is not very
obvious during observation. The lens calibration method can eliminate these drawbacks.
This step is completed in batch processing on Specview, the acquisition software. You only
need to check the lens calibration parameter file to correct the influence of internal image
distortion caused by built-in push and sweep on stitching. The DJI Matrice 600 pro UAV
(DJI, ShenZhen, China) provided GPS information using a professional-class A3 pro flight
control system with a GNSS module. The horizontal position error of the UAV was ±1.5 m
and the vertical position error was±0.5 m. The spectrometer samples spanned from 400 nm
to 1000 nm and included 176 bands. The field of view (FOV) and instantaneous field of
view (IFOV) were ≥36◦ and ≤0.36 mRad, respectively. To eliminate the error during image
collection, some preprocessing was conducted. The image forward and side overlaps were
set to 70%, and the lens exposure time was automatically adjusted. Further data calibration
was performed in SpecVIEW 2.9.2.31 (Dualix spectral imaging, Nanjing, China) to obtain
reflectance products. The reflectance correction and radiometric calibration were conducted
using a Barium sulfate calibration panel and a 4 m2 gray carpet [31]. Finally, images were
stitched in Agisoft Photoscan professional 1.4.3 (Agisoft, St. Petersburg, Russia), and the
workflow included photo alignment, alignment optimization, generating the dense point
cloud, mesh generation, texture generation, and orthophoto export. The heights in this
report are given as the flight height relative to the take-off site. The flight height were
50 m, 100 m, 150 m, 200 m, 250 m, and 300 m. The corresponding spatial resolutions were
2 cm, 4 cm, 6 cm, 8 cm, 10 cm, and 12 cm. The spatial resolution conversion formula
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provided by the Dualix spectral imaging company was used to obtain the spatial resolution
corresponding to flight height. The conversion formula is as follows:

SP = WLFV/960 (1)

WLFV = ((H × 1000 − F) ×WCCD)/(F × 1000) (2)

where SP, WLFV, WCCD, H, and F represent the spatial resolution, the width of line field of
view, the width of CCD, the flight height, and the focal length of the lens, respectively. The
960 was the line number of this camera. The 1000 was used to convert the units.

The canopy pixels of infected and non-infected pine trees were extracted using the
region growing algorithm [32] in ENVI 5.3 (Harris Geospatial, Fort Collins, CO, USA).
First, the initial growth seeds were selected on the canopy images of each tree to initiate
the process and sample the spectral curve. Then the Standard deviation multiplier and
neighbor size were set to 1.2 and 8, respectively, which meant that if the Standard deviation
multiplier between the neighbor pixels and growth seed were smaller than 1.2, these pixels
will be classified as new growth seed. Finally, the pixels stopped growing when there were
no pixels remaining in the area that met the growth criteria.

2.3. Data Analysis

Jeffries–Matusita (J-M) distance is a spectral separability method based on conditional
probability density, which has been widely used in similar object classification applica-
tions [33]. In this study, the J-M distance can effectively distinguish diseased and healthy
pine samples, and the J-M distance was calculated in MATLAB R2014a (MathWorks, USA)
to compare the separability between infected and healthy samples in different bands. The
formula is as follows [34]:

Jij =
{∫

x
[
√

P(X/ωi)−
√

P(X/ωj)]
2
}

1/2 (3)

where P(X/wi) is the conditional probability density, that is, the probability that the ith
pixel belongs to the with category. The value of Jij ranges between 0 and 2. The larger the
value, the higher the separability.

The vegetation indices (VIs) derived from radiometric data have primarily been used
to analyze and detect changes in plant biophysical parameters [35,36]. After injection with
PWN, the biophysical parameters such as chlorophyll and water content of the infected
trees will change, and the VIs can capture and magnify these changes and help distin-
guish between infected and healthy trees. In this study, eight existing VIs from previous
PWD detection research [7,8,18,36] and two modified VIs were calculated according to the
characteristic bands with the highest J-M distances (Table 2).

Table 2. Algorithm and references of selected vegetation indices.

Vegetation Indices Equation Reference

Modified normalized difference vegetation index (mNDVI) mNDVI = R777:784 − R655:672
R777:784 + R655:672

[37]

Modified ratio vegetation index (mRVI) mRVI = R777:784
R655:672

[38]

Plant senescence reflectance index (PSRI) PSRI = R672
R550 + 3 · R708

[11]

Pigment-specific normalized difference (PSND) PSND = R800 − R680
R800 + R680

[39]

Red edge position (REP)
REP = 700 + 40· Rre − R700

R740 + R700

Rre = (R670 + R780)
2

[40]

Structure insensitive pigment index (SIPI) SIPI = R800 − R445
R800 − R680

[41]

Normalized Difference 750/705 Chl NDI (NDVI705) NDVI705 = R750 − R705
R750 + R705

[41]
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Table 2. Cont.

Vegetation Indices Equation Reference

Pigment specific simple ration of Chl a (PSSRa) PSSRa = R800
R680

[42]

Pigment specific simple ration of Chl b (PSSRb) PSSRb = R800
R635

[42]

Green normalized difference vegetation index (GNDVI) GNDVI = RNIR − Rgreen
RNIR + Rgreen

[43]

The Kruskal–Wallis (K-W) test is a non-parametric method that analyzes whether there
are significant differences in the distributions of multiple groups of samples. We performed
K-W test on the calculated J-M distances and VI values in SPSS 9.4 (IBM, Stanford, CA,
USA) to analyze the impact of different spatiotemporal scales on J-M distances and VIs
(Tables 3–5). Moreover, the Bonferroni correction was used to reduce the error. The limit
for statistical significance (p) was set at 0.05 [44].

Random forest (RF) is a machine learning algorithm composed of multiple decision
trees [45]. The main steps of random forest in classification are: (1) the bootstrap method is
used to generate random training sets. (2) Randomly sample features from all attributes
and select the best split according to a principal such as Gini impurity (the probability of
misclassification based on the feature distribution) to establish a decision tree. (3) Repeat the
first two steps to establish a large number of decision trees to form a random forest classifier.
(4) The prediction targets are classified according to the voting results of each decision
tree in the forest [46]. We established the pixel-level PWD detection models using the
random forest classifier meta estimator in the scikit-learn machine learning library [47] in
Python 3.8.8. The confusion matrix was used to assess the models performance and provide
information about the number of pixels (Tables 6–9). All the samples were randomly split
into training and testing sets at a 70%/30% ratio, and the decision tree number was set to
500. Moreover, bootstrap was set as True and max_features was set to auto. Random forest
classifiers reflect the importance of features based on their ability to discriminate between
target classes; Gini impurity was used to calculate feature importance in this study.

Table 3. Significance between groups of J-M distances at different spatial resolutions obtained by
using the Kruskal–Wallis test. The limit for statistical significance (p) was set at 0.05. The * represents
significant difference. The SP is the spatial resolution.

SP1-SP2
Adj.Sig.

Early Mid

2-4 0.000 * 0.000 *
2-6 0.000 * 0.187
2-8 0.001 * 0.000 *

2-10 0.000 0.000 *
2-12 0.000 0.002 *
4-6 1.000 0.006 *
4-8 0.155 0.051

4-10 0.000 * 1.000
4-12 0.973 1.000
6-8 0.577 0.000 *

6-10 0.000 * 0.001 *
6-12 0.288 1.000
8-10 0.000 * 0.256
8-12 0.000 * 0.000 *
10-12 0.000 * 0.264
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Table 4. Significance between VIs groups at different spatial resolutions obtained using the Kruskal–
Wallis test in the early infection stage. The limit for statistical significance (p) was set at 0.05. The
* represents significant difference. The SP is the spatial resolution.

Early Stage Adj.Sig.

SP1-SP2 mNDVI mRVI PSRI PSND REP SIPI PSSRa PSSRb GNDVI NDVI705

2-4 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *
2-6 0.089 0.089 0.000 * 1.000 0.000 * 0.000 * 1.000 0.000 * 0.000 * 0.000 *
2-8 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.107 0.000 * 0.000 * 0.000 * 1.000

2-10 0.000 * 0.000 * 0.000 * 0.000 * 0.083 0.003 0.000 * 0.000 * 0.000 * 0.000 *
2-12 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *
4-6 0.000 0.000 0.000 0.000 0.008 * 1.000 0.000 0.000 0.000 0.451
4-8 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *

4-10 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *
4-12 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *
6-8 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 1.000 0.000 * 0.000 *

6-10 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *
6-12 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *
8-10 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *
8-12 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *

10-12 0.216 0.216 0.751 0.100 0.052 1.000 0.100 0.028 * 0.018 * 0.494

Table 5. Significance between VIs groups at different spatial resolutions obtained using the Kruskal–
Wallis test in the mid-infection stage. The limit for statistical significance (p) was set at 0.05. The
* represents significant difference. The SP is the spatial resolution.

Mid Stage Adj.Sig.

SP1-SP2 mNDVI mRVI PSRI PSND REP SIPI PSSRa PSSRb GNDVI NDVI705

2-4 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *
2-6 0.000 * 0.000 * 0.000 * 0.928 0.000 * 0.000 * 0.928 1.000 0.000 * 0.000 *
2-8 1.000 1.000 0.000 * 0.000 * 0.000 * 0.001 * 0.000 * 0.000 * 0.000 * 0.000 *

2-10 1.000 1.000 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *
2-12 1.000 1.000 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *
4-6 0.827 0.827 1.000 0.017 * 0.023 * 0.000 * 0.000 * 0.016 * 0.000 * 0.000 *
4-8 0.000 * 0.000 * 0.000 * 0.000 * 1.000 0.000 * 0.000 * 0.000 * 0.000 * 0.001 *

4-10 0.000 * 0.000 * 0.000 * 0.000 * 1.000 0.000 * 0.000 * 0.000 * 0.000 * 0.054
4-12 0.000 * 0.000 * 0.000 * 0.000 * 1.000 0.000 * 0.000 * 0.000 * 0.000 * 0.052
6-8 0.000 * 0.000 * 0.000 * 0.000 * 1.000 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *

6-10 0.012 * 0.012 * 0.000 * 0.000 * 0.474 0.000 * 0.000 * 0.000 * 0.185 0.543
6-12 0.000 * 0.000 * 0.000 * 0.000 * 0.130 0.000 * 0.000 * 0.000 * 0.000 * 1.000
8-10 1.000 1.000 1.000 1.000 1.000 0.000 * 1.000 1.000 0.000 * 0.000 *
8-12 1.000 1.000 0.000 * 0.035 * 1.000 0.000 * 0.035 * 0.001 * 0.000 * 0.000 *

10-12 1.000 1.000 0.000 * 0.148 1.000 0.004 0.148 0.255 0.087 1.000

Table 6. Significance between VIs groups at different spatial resolutions obtained using the Kruskal–
Wallis test in the late infection stage. The limit for statistical significance (p) was set at 0.05. The
* represents significant difference. The SP is the spatial resolution.

Late Stage Adj.Sig.

SP1-SP2 mNDVI mRVI PSRI PSND REP SIPI PSSRa PSSRb GNDVI NDVI705

2-4 0.000 * 0.000 * 0.000 * 0.000 * 1.000 0.000 * 0.000 * 0.035 * 0.000 * 1.000
2-6 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *
2-8 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *

2-10 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *
2-12 1.000 1.000 0.012 * 0.908 1.000 0.070 0.908 0.000 * 0.000 * 0.000 *
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Table 6. Cont.

Late Stage Adj.Sig.

SP1-SP2 mNDVI mRVI PSRI PSND REP SIPI PSSRa PSSRb GNDVI NDVI705

4-6 0.008 * 0.008 * 0.002 * 0.060 * 0.000 * 0.000 * 0.060 0.315 0.382 0.138
4-8 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *

4-10 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.093 0.000 * 0.000 *
4-12 0.493 0.493 1.000 0.003 * 1.000 1.000 0.003 * 0.000 * 0.000 * 0.000 *
6-8 0.000 * 0.000 * 0.000 * 0.000 * 0.992 0.000 * 0.000 * 0.048 * 0.000 * 0.836

6-10 0.000 * 0.000 * 0.000 * 0.003 * 0.006 * 0.000 * 0.003 * 1.000 0.000 * 0.000 *
6-12 0.002 * 0.002 * 0.325 0.000 * 1.000 0.318 0.000 * 0.000 * 0.001 * 0.000 *
8-10 1.000 1.000 1.000 1.000 0.826 0.096 1.000 1.000 0.000 * 0.000 *
8-12 0.000 * 0.000 * 0.000 * 0.000 * 0.062 0.000 * 0.000 * 0.000 * 1.000 0.000 *

10-12 0.000 * 0.000 * 0.000 * 0.000 * 0.001 * 0.000 * 0.000 * 0.000 * 0.000 * 1.000

Table 7. The confusion matrix of the random forest-based PWD detection model on 10 July (early
infection stage). The pixels extracted from the canopy were classified. The SP represents the spatial
resolution. UA: user’s accuracy; PA: producer’s accuracy; OA: overall accuracy.

10 July

SP: 2 cm Infected Healthy Total UA (%)
Infected 2351 883 3234 72.69
Healthy 809 2493 3302 75.49

Total 3160 3376 6536 Kappa: 0.48
PA (%) 74.39 73.84 OA (%): 74.11

SP: 4 cm Infected Healthy Total UA (%)
Infected 681 292 973 69.99
Healthy 220 775 995 77.89

Total 901 1067 1968 Kappa: 0.48
PA (%) 75.58 72.63 OA (%): 73.98

SP: 6 cm Infected Healthy Total UA (%)
Infected 372 152 524 70.99
Healthy 130 355 485 73.20

Total 502 507 1009 Kappa: 0.44
PA (%) 74.10 70.02 OA (%): 72.05

SP: 8 cm Infected Healthy Total UA (%)
Infected 206 60 266 77.44
Healthy 58 210 268 78.36

Total 264 270 534 Kappa: 0.56
PA (%) 78.03 77.78 OA (%): 77.90

SP: 10 cm Infected Healthy Total UA (%)
Infected 182 52 234 77.78
Healthy 42 182 224 81.25

Total 224 234 458 Kappa: 0.59
PA (%) 81.25 77.78 OA (%): 79.48

SP: 12 cm Infected Healthy Total UA (%)
Infected 113 34 147 76.87
Healthy 40 112 152 73.68

Total 153 146 299 Kappa: 0.51
PA (%) 73.86 76.71 Overall accuracy: 75.25
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Table 8. The confusion matrix of the random forest-based PWD detection model on 24 August
(mid-infection stage). The pixels extracted from the canopy were classified. The SP represents the
spatial resolution. UA: user’s accuracy; PA: producer’s accuracy; OA: overall accuracy.

24 August

SP: 2 cm Infected Healthy Total UA (%)
Infected 3046 699 3745 81.34
Healthy 172 3507 3679 95.32

Total 3218 4206 7424 Kappa: 0.77
PA (%) 94.66 83.38 OA (%): 88.27

SP: 4 cm Infected Healthy Total UA (%)
Infected 991 305 1296 76.47
Healthy 74 1309 1383 94.65

Total 1065 1614 2679 Kappa: 0.72
PA (%) 93.05 81.10 OA (%): 85.85

SP: 6 cm Infected Healthy Total UA (%)
Infected 524 150 674 77.74
Healthy 42 578 620 93.23

Total 566 728 1294 Kappa: 0.70
PA (%) 92.58 79.39 OA (%): 85.16

SP: 8 cm Infected Healthy Total UA (%)
Infected 340 56 396 85.86
Healthy 27 375 402 93.28

Total 367 431 798 Kappa: 0.80
PA (%) 92.64 87.01 OA (%): 89.59

SP: 10 cm Infected Healthy Total UA (%)
Infected 213 48 261 81.61
Healthy 19 221 240 92.08

Total 232 269 501 Kappa: 0.73
PA (%) 91.81 82.16 OA (%): 86.63

SP: 12 cm Infected Healthy Total UA (%)
Infected 155 36 191 81.15
Healthy 22 143 165 86.67

Total 177 179 356 Kappa: 0.67
PA (%) 87.57 79.89 OA (%): 83.71

Table 9. The confusion matrix of the random forest-based PWD detection model on 17 October (late
infection stage). The pixels extracted from the canopy were classified. The SP represents the spatial
resolution. UA: user’s accuracy; PA: producer’s accuracy; OA: overall accuracy.

17 October

SP: 2 cm Infected Healthy Total UA (%)
Infected 3092 57 3149 98.19
Healthy 35 2473 2508 98.60

Total 3127 2530 5657 Kappa: 0.97
PA (%) 98.88 97.75 OA (%): 98.37

SP: 4 cm Infected Healthy Total UA (%)
Infected 1309 15 1324 98.87
Healthy 2 1024 1026 99.81

Total 1311 1039 2350 Kappa: 0.98
PA (%) 99.85 98.56 OA (%): 99.28

SP: 6 cm Infected Healthy Total UA (%)
Infected 616 13 629 97.93
Healthy 6 437 443 98.65

Total 622 450 1072 Kappa: 0.96
PA (%) 99.04 97.11 OA (%): 98.23
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Table 9. Cont.

17 October

SP: 8 cm Infected Healthy Total UA (%)
Infected 393 8 401 98.00
Healthy 5 241 246 97.97

Total 398 249 642 Kappa: 0.97
PA (%) 98.74 96.79 OA (%): 98.75

SP: 10 cm Infected Healthy Total UA (%)
Infected 208 11 219 94.98
Healthy 2 187 189 98.94

Total 210 198 408 Kappa: 0.94
PA (%) 99.05 94.44 OA (%): 96.81

SP: 12 cm Infected Healthy Total UA (%)
Infected 135 3 138 97.83
Healthy 4 138 142 97.18

Total 139 141 280 Kappa: 0.95
PA (%) 97.12 97.87 OA (%): 97.50

3. Results
3.1. Spectral Responses in Different PWD Infection Stages

The spectral reflectance curves of the infected trees changed significantly over time
(Figure 2). In the early infection stage (10 July), the vegetation spectra exhibited typical
characteristics such as the red band absorption valley (red valley) and the green band
reflectance peak (green peak). The reflectance of these bands was highly correlated with
plant infection status. In the mid-infection stage (24 August), the reflectance in the “red
valley” had significantly increased, which indicated the plant had been attacked by PWN.
As the PWD developed, the “green peak” and “red valley” gradually disappeared. In
the late infection stage (17 October), they had disappeared entirely and the spectral curve
in visible region became a straight line. The reflectance in near infra-red (NIR), which is
highly related with water content, was much lower in the late infection stage than other
infection stages. In this infection stage, the needles showed visible discoloration and wilting
(Figure 3).
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Figure 3. The images of pine canopy from different PWD-infection stages.

3.2. Analysis of the Impact of Spatio-Temporal Scale on the Spectral Separability

In the early infection stage, the J-M distances across all wavelengths were higher than
1.48 and lower than 1.60 (Figure 4a). In the visible region, there were two obvious J-M
distance peaks with maximum values in the ranges of 401–420 nm (1.59) and 655–672 nm
(1.52), respectively. J-M distances higher than 1.50 indicated there was separability between
infected and non-infected samples. Furthermore, the J-M distance in the green region was
lower than the other wavelengths in the visible region. Although the J-M distance in the
near infrared region was higher than 1.5, the fluctuation was smaller than that in visible
region. With the increase in the wavelength, the J-M distance rose slowly and peaked
within 902–924 nm (1.56). In the red edge region, as the wavelength increased, the J-M
distance first decreased and then increased rapidly. According to the significance calculated
by Kruskal–Wallis test at different spatial resolutions (Table 3), except for five comparable
groups: 4 cm and 6 cm, 4 cm and 8 cm, 4 cm and 12 cm, 6 cm and 8 cm and, 6 cm and 12 cm,
the other ten groups showed significant differences (p ≤ 0.05). Furthermore, the difference
of separability between the 4 cm and 6 cm spatial resolutions was the least significant
(p = 1).
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In the mid-infection stage, the J-M distances across all the wavelengths were higher
than 1.48 and lower than 1.72 (Figure 4b). The difference and the highest value were 0.24
and 1.72, respectively, both of which were 0.12 higher than those in the early infection stage.
In the visible region, there were two obvious J-M distance peaks that had maximum values
in the 423–443 nm (1.71) and 594–621 nm (1.72) ranges, respectively. The J-M distance of
the green region was smaller than those of other wavelengths in visible region. In the red
edge region, the J-M distance increased initially and then decreased rapidly with increasing
wavelength. The J-M distances in the near infrared region fluctuated slightly around 1.50
and were much lower than those in visible region. In addition to the seven groups: 2 cm
and 6 cm, 4 cm and 8 cm, 4 cm and 10 cm, 4 cm and 12 cm, 6 cm and 12 cm, 8 cm and 10 cm,
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and 10 cm and 12 cm, the other eight groups showed significance differences (p ≤ 0.05). In
addition, the 4 cm and 10 cm, 4 cm and 12 cm, and 6 cm and 12 cm groups were the least
significant (p = 1) (Table 3).

In the late infection stage, the J-M distances across all wavelengths were higher than
1.48 and lower than 1.99 (Figure 4c). The difference between the minimum and maximum
was 0.52, which was much higher than the early and mid-infection stages. The highest J-M
distance approached 2, which represented the highest separability observed during the
experiment. The difference in the highest values of the late infection stage and mid-infection
stage was 0.27, which was larger than the difference between the early and mid-infection
stages. In the visible region, there were two obvious J-M distance peaks and the maximum
values occurred between 417–430 nm (1.73) and 669–679 nm (1.98), respectively. Specifically,
the J-M distances in the range of 669–679 nm were higher than 1.90 at different spatial
resolutions, which indicated high separability. Furthermore, the J-M distance in the green
region was lower than other wavelengths in the visible region. In the red edge region, the
J-M distance decreased rapidly with the increasing wavelength. In the near infrared region,
there was an obvious J-M peak with a maximum value at 755–766 nm (1.65). However, the
asymptotic significance (2-sided tests) of J-M distance at different spatial resolutions in late
infection stages was 0.214 (p > 0.05), which indicated there were no significant differences
between groups (Table 3).

3.3. Analysis of the Impact of Spatio-Temporal Scale on Vegetation Indices

In the early infection stage, except for green normalized difference vegetation index
(GNDVI), all VIs were significantly affected by spatial resolution. Most of the VIs were
significantly different between the 10 cm and 12 cm spatial resolutions. The structure
intensive pigment index (SIPI) and normalized difference vegetation index 705 (NDVI705)
were more susceptible to changes in spatial resolution than other VIs (Table 4). In the
mid-infection stage, in addition to SIPI, all VIs showed significant differences between
different spatial resolutions. The red edge position (REP), mNDVI, and mRVI were more
likely to be affected by changes in spatial resolutions. All VIs showed significant differences
between 2 cm and 4 cm spatial resolutions in both early and mid- infection stages (Table 5).
In the late infection stage, all the VIs were significantly affected by changes in spatial
resolutions. Most of them showed large differences between the 8 cm and 10 cm spatial
resolutions. REP was most susceptible to changes in spatial resolution, but the pigment
specific normalized difference (PSND) and GNDVI were least affected (Table 6).

3.4. PWD Detection Accuracy and Feature Importance

The model accuracy was higher than 70% in the three infection stages (Figure 5). In
the early infection stage, the PWD detection accuracy was higher than 72% and lower
than 80% at all spatial resolutions. The accuracy of 8 cm and 10 cm spatial resolutions
was higher than those of other spatial resolutions and the peak accuracy occurred at the
10 cm spatial resolution (overall accuracy (OA)%: 79.48%, Kappa: 0.59) (Figure 6). The
difference between the maximum and minimum was 7.43%. Both the producer’s accuracy
(PA) and the user’s accuracy (UA) were best at a spatial resolution of 10 cm. The PA and
UA of the infected samples were the same as those of the healthy samples, 81.25% and
77.78% (Table 7). In the mid-infection stage, the PWD detection accuracy at different spatial
resolutions were all higher than 83% and lower than 90%. The difference between the
maximum and minimum accuracy of different resolutions was 5.88%. In addition, the
accuracy at the 8 cm and 2 cm spatial resolutions was higher than other spatial resolutions,
and the 8 cm spatial resolution had the highest accuracy (OA%: 89.59%, Kappa: 0.80). The
PA of infected and healthy samples was the highest at 2 cm (94.66%) and 8 cm (87.01%)
spatial resolutions, respectively. The UA of infected and healthy samples was the highest
at the 8 cm spatial resolution (81.34% and 95.32%). In addition, the PA of infected samples
was significantly higher than those of the healthy samples, and the UA of healthy samples
was much higher than those of the infected samples (Table 8). In the late infection stage, the
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PWD detection accuracy at different spatial resolutions was all higher than 95%. However,
there was a small fluctuation and a slight decrease between 10 cm and 12 cm spatial
resolutions. The 4 cm and 10 cm spatial resolutions had the maximum (OA%: 99.28%,
Kappa: 0.98) and minimum (OA%: 96.81%, Kappa: 0.94) accuracy, respectively. Both the
PA and UA of infected and healthy samples were highest at the 4 cm spatial resolution
(Table 9).
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Figure 5. The classification accuracy of the PWD detection model established using the random
forest algorithm and vegetation indices at different spatio-temporal scales. The blue, orange, and
gray dashed lines indicate the changes in accuracy of the PWD detection model at different spatial
resolutions in the early (10 July), mid- (24 August), and late (17 October) stages of PWD, respectively.
The accuracy increased as the PWD developed.
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Figure 6. The Kappa of the PWD detection model established using the random forest algorithm and
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The Gini index was used to calculate the importance of different VIs, i.e., the model features
to the PWD detection models (Figure 7). In the early infection stage (Figure 7a), the GNDVI
and REP showed more contributions than other VIs. By comparing the feature importance of
different VIs at different spatial resolutions it was found that the importance of GNDVI was
higher than other VIs at 2 cm, 4 cm, 6 cm, and 8 cm spatial resolutions, and the importance of
REP was higher than other VIs at 10 cm and 12 cm spatial resolutions. In addition, the plant
senescence reflectance index (PSRI), SIPI, REP, GNDVI, and NDVI705 were most important at
10 cm, 2 cm, 10 cm and 12 cm, 4 cm and 6 cm, and 2 cm and 10 cm, respectively.
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In the mid-infection stage (Figure 7b), the mNDVI, mRVI, and REP made larger
contributions than other VIs. As the spatial resolution decreased, the importance of mNDVI
and mRVI increased and REP decreased. The REP had the largest contribution at 2 cm,
4 cm, 6 cm, and 8 cm spatial resolutions. The mRVI had the largest contribution at 10 cm
and 12 cm spatial resolutions.

In the late infection stage (Figure 7c), the mNDVI, mRVI, and PSSRa had high impor-
tance at most spatial resolutions. However, the GNDVI and NDVI705 made only small
contributions at all spatial resolutions. In addition, the VIs that made the largest contri-
bution at different spatial resolutions were also different. At the 2 cm spatial resolution,
the pigment specific simple ratio (chlorophyll b) (PSSRb) had the highest importance; at
the 4 cm and 6 cm spatial resolutions, the mRVI had the highest importance; at the 8 cm
spatial resolution, the PSRI had the highest importance; at the 10 cm spatial resolution, the
pigment specific simple ratio (chlorophyll a) (PSSRa) had the highest importance; and at
the 12 cm spatial resolution, the SIPI had the highest importance.

4. Discussion

As the PWD develops, the J-M distance of wavelengths to detect PWD increased.
Moreover, this study found that the 401–430 nm, 614–624 nm, 655–679 nm, and 755–766 nm
wavelengths had better separability than other wavelength regions in PWD detection. These
wavelength regions are located in the blue, red, and red edge regions. Similarly, Iordache
et al. also identified the 400 nm and 670 nm wavelengths as suitable for PWD detection, and
their proposed 750 nm was close to the 755–766 nm observed in this study [8]. Because of the
small change in the near infrared region, there were no selected wavelengths in that region.
In addition, any data redundancy in the hyperspectral imagery will increase the costs of
data processing during practical applications. This can be addressed by programming the
camera to scan only the characteristic bands with high J-M distances identified in this study.
A wavelength specific camera would greatly simplify data processing and reduce costs.

We selected eight existing VIs and two modified VIs to create a random forest-based
PWD detection model which showed high detection accuracy in the early (72.05–79.48%),
mid- (83.71–89.59%), and late infection stages (96.81–99.28%). However, the random forest
is not a trustworthy machine learning algorithm for variable importance. Compared
with manually extracted shallow features, deep learning can automatically explore higher-
dimensional information and features of hyperspectral images, which will be useful for
future research seeking to improve the early detection of PWD. Indeed, there have been
many studies using deep learning for PWD detection [17,48,49].

Outbreaks of PWD in Nanjing, China usually occur from 6 June to 17 October each
year. To obtain hyperspectral data of different infection stages, we manually inoculated
Masson pine with PWN to simulate the natural infection by PWN and the development of
PWD. Considering the strong spread ability of PWD, we only selected four sample trees
for PWN inoculation to prevent the uninfected local coniferous forests from acquiring the
PWD disease inoculated by this experiment. In addition, more attention should be paid to
the influence of other factors such as tree species, terrain, and background on detection.

The optimal spatial resolution for PWD detection increased as PWD developed. In
this study, the 10 cm, 8 cm, and 4 cm spatial resolutions were selected as the optimal spatial
resolution in early, mid-, and late infection stages, respectively. In the early infection stage,
the PWD detection accuracy was low and susceptible to influence from similar objects.
Increases in spatial resolution at this stage did not effectively improve the PWD detection
accuracy. However, in the mid- and late infection stages, the differences between infected
and non-infected samples became more obvious, and higher spatial resolutions made it
easier to capture these differences. While the highest spatial resolution in our research
was 2 cm, it did not have the highest accuracy for any PWD infection stage, which may
have been related to the canopy size of infected trees. Jonathan et al. and Guo et al. also
produced similar results [24,25]. Limited by the permitted flying height in the study area,
we were only able to collect hyperspectral images below 300 m. Future work should obtain
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a larger variety of hyperspectral images containing different canopy sizes to explore the
impact of canopy size on the selection of optimal spatial resolution in PWD detection,
especially in the early infection stage before symptoms are visible.

5. Conclusions

The UAV-based hyperspectral images collected at different infection stages and at
different spatial resolutions were used to assess the impact of spatio-temporal scales on
PWD detection. The following results were obtained. (1) The separability in the visible
region was higher than that of near infrared and red edge regions at different spatio-
temporal scales. There was a valley in the J-M distance in the green region and two J-M
distance peaks in blue and red regions. The J-M distances at the lower spatial resolutions
(8 cm, 10 cm, and 12 cm) were smaller than those of higher spatial resolutions (2 cm, 4 cm,
and 6 cm) in the early infection stage, but greater in the mid-infection stage. In the late
infection stage, the J-M distances of higher spatial resolutions were greater than those of
lower spatial resolutions in near infrared region, but smaller in the visible region. (2) The
PWD detection accuracies were 72.05–79.48%, 83.71–89.59%, and 96.81–99.28% with peak
accuracies at 10 cm, 8 cm, and 4 cm spatial resolutions during the early, mid-, and late
infection stages, respectively. (3) The GNDVI and REP were confirmed as the optimal VIs
in early and mid-infection stages, respectively. However, in late infection stage, most VIs
had high feature importance, so there was no optimal VI. This research focused on the
impact of spatial-temporal scale on PWD detection, and has provided new ideas for future
studies. This will play an important role in improving the effectiveness of early PWD
detection. Identifying the optimal VIs for PWD detection will help in reducing the loss of
forest resources caused by PWD. To apply these results at a larger scale, future research
should pay more attention to the impact of other tree species, terrain, and background on
forest disease detection.
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