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Abstract: When it comes to forest management and protection, knowledge is key. Therefore, forest
mapping is crucial to obtain the required knowledge towards profitable resource exploitation and
increased resilience against wildfires. Within this context, this paper presents a literature review
on tree classification and segmentation using data acquired by unmanned aerial vehicles, with
special focus on the last decade (2013–2023). The latest research trends in this field are presented
and analyzed in two main vectors, namely: (1) data, where used sensors and data structures are
resumed; and (2) methods, where remote sensing and data analysis methods are described, with
particular focus on machine learning approaches. The study and review methodology filtered
979 papers, which were then screened, resulting in the 144 works included in this paper. These are
systematically analyzed and organized by year, keywords, purpose, sensors, and methods used,
easily allowing the readers to have a wide, but at the same time detailed, view of the latest trends in
automatic tree classification and segmentation using unmanned aerial vehicles. This review shows
that image processing and machine learning techniques applied to forestry and segmentation and
classification tasks are focused on improving the accuracy and interpretability of the results by using
multi-modal data, 3D information, and AI methods. Most works use RGB or multispectral cameras,
or LiDAR scanners, individually. Classification is mostly carried out using supervised methods,
while segmentation mostly uses unsupervised machine learning techniques.

Keywords: forest; unmanned aerial vehicle; machine learning; deep learning; classification;
segmentation; LiDAR; multispectral images

1. Introduction

Forests play a crucial role in maintaining the Earth’s biodiversity and ecological
balance, regulating the climate, and providing a wide range of resources for human use.
Mapping forests is an essential tool for understanding, managing, and protecting these
vital ecosystems. One of the primary reasons for mapping forests is conservation [1].
Forest maps can be used to identify and protect areas of high biodiversity and ecological
significance. These maps can also help to identify and prioritize areas for conservation
efforts, such as the creation of protected areas or the implementation of sustainable forestry
practices. Another important reason for mapping forests is to monitor and understand the
impact of climate change [2]. Forests play a critical role in regulating the Earth’s climate by
absorbing and storing carbon, and changes in forest cover can have a significant impact
on global carbon cycles. Forest maps can be used to track changes in forest cover over
time, and to assess the impact of these changes on the Earth’s climate. In addition, forest
maps are an important tool for resource management [3]. They can be used to manage
and sustainably utilize forest resources, such as timber and non-timber products. These
maps can also help to identify areas where the extraction of resources would have the
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least impact on the ecosystem. Disaster risk management is another important motivation
for mapping forests [4]. Forest maps can be used to identify areas at risk from natural
hazards such as wildfires and landslides, and to support emergency response planning and
prevention actions. This is especially important in the so-called wildland-urban interface,
which are areas where human settlements and infrastructure are located near or within
forests. Finally, forest maps are an important tool for land-use planning and infrastructure
development [5]. These maps can help to minimize the negative impact on forests and
other ecosystems by identifying areas where development should be avoided or limited.
They also inform about the possibilities of sustainable development in the forested area.

Unmanned aerial vehicles (UAVs), also known as drones, have revolutionized the
way forests are mapped [6]. UAVs may be equipped with a variety of sensors [7], such as
high-resolution [8] and multi- and hyperspectral cameras [9] and LiDAR (light detection
and ranging) scanners, which can collect detailed data on forest structure, composition,
and change. These data can then be used to create accurate and up-to-date forest maps.
One of the main advantages of UAV technology is its ability to collect high-resolution data
at a relatively low cost. Traditional mapping methods, such as satellite imagery or ground-
based surveys, can be expensive and time-consuming. UAVs, on the other hand, can
quickly and efficiently collect data over large areas, even in remote or inaccessible locations.
Another advantage of UAVs is their ability to collect data at different scales [10]. For
example, UAVs can be flown at low altitudes to collect high-resolution data on individual
trees, or at higher altitudes to map large areas of forest. This flexibility allows for the
creation of detailed maps that can be used for a wide range of applications. UAVs are also
useful for monitoring changes in forest cover over time. By collecting data on a regular
basis, UAVs can help to identify areas where forest cover is decreasing or changing in other
ways. This information can be used to support conservation and management decisions,
as well as to assess the impact of human activities on forests. UAVs also have the ability
to fly at lower altitudes with high accuracy and control; therefore, becoming very useful
in the mapping of topography [11]. This is important for determining the forest slope,
aspect, and elevation, which are important factors in understanding its structure and its
ecological characteristics. These data are also important for natural hazard models, such as
wildfires [12] or landslides [13]. Although clearly contributing to the state-of-art of forests
mapping, UAV usage still has growth potential [14], as they are not without limitations,
e.g., endurance, operation conditions, or payload capacity [15]. Nevertheless, they still
prove to be interesting platforms to complement existing remote sensing means.

Besides platforms and sensors, data processing methods are another key part of
the mapping process with remote sensing [16]. Data analysis and machine learning are
powerful tools that are increasingly being used to map and understand forests. These
techniques allow for the efficient processing and interpretation of large amounts of data,
which can be used to create accurate and detailed maps of forest structure and composition.
Similar to platforms and sensors, machine learning algorithms and techniques have also
been improved substantially over the past decade. The latest advances in neural networks
and deep learning methods in applications such as autonomous vehicles have paved the
way for these image-processing techniques to be developed and tailored specifically for
vegetation mapping applications [17]. Despite still being in the early stages of development
for this specific application when compared, e.g., with autonomous driving [18], these
methods show great potential in terms of accuracy and ease of data handling [19,20].

Although there have been numerous review papers addressing the use of UAV systems in
remote sensing and forestry applications [6,21–25], as well as reviews that focus on the methods
used [8,26], this work goes one step further by identifying and relating UAV sensors’ payload
with the methods used for forestry applications of tree classification and segmentation.

To summarize, there are several aspects to take into account when it comes to using
UAVs for vegetation mapping: the object of interest, the platforms, the sensors and the
data structure, and the data processing methods. This work aims to review the existing
methods and latest emerging techniques used in vegetation mapping that fall under these
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categories. The reviewed works included in this paper, after search and screening procedures,
are systematically analyzed and organized by year, keywords, purpose, sensors, and methods
used, easily allowing the readers to have a wide, but at the same time detailed, view of the
latest trends in automatic tree classification and segmentation using unmanned aerial vehicles.

The remainder of this paper is structured as follows: Section 2 describes the method-
ology used in this work and the review procedure. Section 3 describes different types
of sensors used with UAV platforms in forest and tree mapping applications and their
corresponding data structure. Section 4 contains a description of well-known methods
in remote sensing and data analysis for the creation of basic tools used in forestry and
land mapping applications. Section 5 dwells on machine learning (ML) and data analysis
methods for image and data processing. Finally, Section 6 presents the study conclusions.

2. Review Methodology

Choosing a collection of papers to review requires a systematic and repeatable ap-
proach that highlights that particular collection’s scientific significance. This section focuses
on explaining the methodology followed in this review work, providing analysis on relative
aspects of the reviewed papers that can be helpful for grasping the ideas and methods
behind them, which are further explained in the next sections.

There are four main aspects in vegetation mapping using remote sensing: 1—the
object of interest, 2—platforms that carry the sensors, 3—sensors and data structures, and
4—data analysis. Regarding the object of interest, the focus of this work can be generally
described as trees, which includes forest environments, orchards, etc. Regarding the
platforms, this paper focuses on UAVs as the latest emerging technology in vegetation and
land mapping. Narrowing down the carrying platforms to UAVs also eliminates a wide
range of sensors, data structures, and formats that require manned aircraft or satellites,
consequently also affecting the respective analysis methods and techniques. A total of
four keywords, namely, UAV, tree, segmentation, and classification, were used to search
peer-reviewed papers, using the Google Scholar search engine implemented in Harzing’s
Publish or Perish software. The search was limited to the time span of 2013 to 2023 and the
searching process was closed in November 2022. The search resulted in 979 peer-reviewed
papers. Elimination of irrelevant search results (non-UAV platforms and non-tree objects
of interest) was carried out based on context, derived from the title, keywords, abstract,
and methodology. The final number of chosen papers after screening and filtering is
144 peer-reviewed papers. It is worth mentioning that a number of relevant papers may
have been left out of this review, due to the selection methodology adopted or search
keyword mismatch. However, it is believed that selected papers are representative of the
current state-of-the-art in this topic. Figure 1 shows the process of selecting the papers and
the number of resulting papers at each stage.

Figure 1. Methodology followed to obtain the reviewed papers.
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The search with the four keywords and within the indicated time-span revealed an
exponential growth over the years (see Figure 2), an indication of the emergence of the
UAV technology and analysis methods such as Deep Learning in vegetation mapping in
the past few years.

Figure 2. Selected 144 papers, grouped by year of publication.

A word-cloud info-graph created from all the keywords of the 144 selected papers is
presented in Figure 3, highlighting the most frequent or significant keywords in the papers.

Figure 3. Word-cloud info-graphic made from keywords of papers.

Furthermore, an analysis of the terms used in the title and the abstract of the papers is
carried out using VOSViewer [27]—see Figure 4. VOSviewer is a software tool for creating
maps using network data and to visualize and explore these maps. By default, VOSviewer
assigns the nodes in a network to clusters. A cluster is a set of closely related nodes. Each
node in a network is assigned to exactly one cluster. The terms frequency is represented
by the respective node size and the node color represents statistically derived clusters
determined using the node-repulsion LinLog method [28].

By reading through each one of these 144 papers and identifying the methodology used
for data processing, a general high-level procedure pipeline was defined that aggregates
and condenses this information. Although not all the papers follow the entire pipeline
(depending on the objectives and methodologies used in them), the big majority of them
follow at least one part of it. Figure 5 demonstrates this pipeline, where rectangles represent
data and round-corner rectangles represent actions. Also note that if two arrows enter an
action that means the action may be applied to either of the inputs or data types, and not
that both inputs are required (e.g., neural network-based machine learning can be applied
both to segmented images or point clouds). Similarly, if a data type receives two arrows,
it means that the data may be obtained by either of the input actions, e.g., point clouds
may either be obtained from UAV-born laser scanning or applying the structure from the
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motion procedure. It is important to mention that the depicted pipeline represents the
general and most common procedure employed in the reviewed papers and does not cover
every possible approach. For example, aerial images or point clouds can be directly fed to
a neural network pipeline without any prior pre-processing steps, but this will reduce the
assessment quality since the data are not normalized, denoised, or filtered, and therefore,
errors may be introduced into the system.

Figure 4. Network analysis on terms contained in title and abstracts of the reviewed papers. The
analysis was performed using VOSviewer.

Figure 5. General procedure pipeline in the reviewed papers.

3. Sensors and Data Structure

Going through the literature, one can see that five types of sensors are commonly
used with UAV platforms in forestry and forest mapping applications: RGB cameras,
multispectral cameras, hyperspectral cameras, thermal cameras, and LiDAR sensors, where
these can either be used individually or combined. Figure 6 depicts the sensors used in the
reviewed papers, where each slice of the pie is one paper. One can see that some papers
only use one type of sensor, while others use different combinations of them. The most
used sensor is the RGB camera, followed by the LiDAR and multispectral cameras.
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Figure 6. Sensors and their combinationsused in the reviewed papers, where each slice of the pie is
one paper.

The fundamental difference between these sensors is the type of data structure they
provide as an output. This section describes the different sensors and respective data
structures used in the reviewed papers, as well as the basic digital models or representations
constructed from the data.

3.1. Spectral Data

Spectral sensors (thermal, RGB, multi- and hyperspectral cameras) are passive sensors,
relying on external illumination, recording a certain number of spectral bands in a specific
wavelength range in the electromagnetic spectrum (Figures 7 and 8). The output format
is a multilayered tensor in which the number of layers depends on the number of the
spectral bands that the sensor records, e.g., the thermal camera output is an intensity or
gray-scale image (one-layer tensor) covering part of the infra-red spectrum, while the RGB
camera output is a three-layer tensor for the Red, Green and Blue bands of the visible
spectrum. Multi- and hyperspectral cameras normally record 4 to 15 and 100 to 200 bands,
respectively, of the visible spectrum as well. Note that it is not the number of bands alone
that differentiates the multi- and hyperspectral cameras, but the sensitivity of the camera
itself. For example, a camera capable of recording 20 bands can also be a hyperspectral
camera if the bands are narrow enough and cover a small range of the spectrum, giving a
sense of continuous measurement of the spectrum as opposed to a more discrete one [29,30].
The representation of this data type is a single or multi-layered image in which each image
or tensor layer describes a color (or spectral channel) and tensor arrays over layers describe
pixels, the extension of which depends on the format, e.g., JPG, PNG, or TIF.
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Figure 7. Electromagnetic spectrum, highlighting the typical bands used in UAV-born forest mapping
applications, visible, and thermal infrared.

Figure 8. Comparison of the number and the width of bands of different spectral cameras.

Spectral indices, the primary tools for spectral analysis, are combinations of spectral
reflectance from two or more wavelengths that indicate the relative abundance (or lack)
of spectral features of interest. Therefore, spectral indices are formulated based on the
reflectivity behavior of objects of interest, e.g., vegetation, soil, man-made objects, etc.
Vegetation indices have been studied thoroughly and reviewed in different works such
as [31]. Choosing the right set of bands or indices (and the appropriate sensor) plays a
crucial role in the assessment quality, because when it comes to machine learning methods,
feature engineering is a critical and decisive step. This will be further discussed in Section 5.

3.2. Structural Data

Structural data is the other data type used in vegetation mapping applications, a
digital three-dimensional representation of objects of interest. Known as a point cloud,
it is a set of data points in 3D space, where each point may be identified in the data
structure by its coordinates, intensity, semantic label, or any other relevant attribute. Gen-
erally speaking, any type of geometry in space can be considered structural data, but
in forestry and vegetation mapping applications point clouds are the basis for further
geometrical analysis.

LiDARs used to be the primary source of point cloud sets, but with the recent ad-
vances in the field of computer vision and the increase in computer processing capacity,
photogrammetry techniques are now reliable and robust solutions to reconstruct the 3D
scenery, being performed in the majority of papers that use spectral sensors. The dominant
technique used is Structure from motion (SfM). Structure from motion is a computer vision
technique for estimating the 3D structure of a scene from a set of 2D images. The basic idea
is to take a series of photos of a scene from different viewpoints, and then use the informa-
tion in those photos to reconstruct a 3D model of the scene. In practice, SfM algorithms
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typically work by first detecting and matching feature points across the images (such as
corners or blobs) using techniques such as Dense Image Matching [32–36], and then using
those correspondences to estimate the camera poses (i.e., the position and orientation of
the camera in each image). Once the camera poses have been estimated, the 3D structure of
the scene can be reconstructed by triangulation, which involves finding the intersection of
the rays that project the feature points in each image back into 3D space. SfM is a popular
method due to its efficiency in handling large amounts of data and with relatively low
computational complexity. These papers have used SfM to reconstruct the 3D scene (point
cloud) from UAV-obtained images [37–77].

However, LiDAR is still dominant in terms of data quality, accuracy, and point density.
In addition, the fact that the LiDAR does not need external illumination and is not impaired
by shadowed areas, like spectral sensors are, makes it widely and increasingly used [78–97],
and still considered the optimal choice for point cloud generation.

Other sensors such as RADAR—Radio Detection and Ranging—also produce 3D data,
but are not included in this paper for lack of evidence of being used in UAV-born vegetation
mapping.

Whatever the method, the resulting point cloud is then used to build some basic
models from it, namely, digital surfaces, i.e., the Digital Elevation Model (DEM), describing
height distribution of all the scenery, the Digital Terrain Model (DTM), describing bare
ground, and lastly, the Canopy Height Model (CHM), being the result of the subtraction of
the DTM to the DEM. CHM describes the height distribution of the vegetation, which serves
as a main statistical basis in forestry applications such as counting trees and segmenting
tree crowns using the base crown height. Figure 9 quantitatively relates the papers that
used each of the mentioned techniques for 3D data generation with the sensors used. To
identify the specific works in detail please refer to Table A1 in the Appendix A section,
which relates the reviewed papers to the described methods implemented for 3D data
generation technique tasks and the sensors used, ordered from less to more used sensors.

Methods

Sensors Color # of Studies

R
G

B

M
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H
SI

Th
er

m
al

Li
D

A
R

0
1-5
6-15

16-25
Structure from Motion >26

LiDAR

Figure 9. 3D data generation techniques vs sensors used. MSI: Multispectral Imagery, HSI: Hyper-
spectral Imagery.

The combination of datasets from different sources (also referred to as Data Fusion)
plays an important role in mapping applications, often increasing the assessment quality.
For example, in delineation and segmentation tasks, data fusion will, at least, increase
the number of specific features of the object, and in classification tasks, it will improve
classification accuracy. Even when representing a basic map with no further analysis on
top of it, overlaying different datasets on top of one another in a comprehensible way will
greatly support the decision-making process. For applications such as topography and
vegetation mapping, these data representations are the basis of further statistical analysis
(see Section 4) and machine learning tasks (see Section 5).

4. Forestry and Statistics

Remote sensing in forestry applications serves as a powerful tool that allows quick
extraction of raw data regarding the forest (composed of individual trees). These raw data-
sets can be comprehensible without further processing, like an RGB image, or they may
require pre-processing to be understandable, e.g., raw LiDAR data must be pre-processed
into a point cloud map of the scene. However, the in-depth information and analysis of the
scene can be achieved using image processing, statistics, and machine learning. Statistics
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allows for several fundamental actions, including estimation of forestry parameters based
on remotely sensed data and pre-processing of data for machine learning tasks, as well as
feature extraction, unsupervised and supervised segmentation, and classification of data.

Feature extraction, feature engineering, and analysis are basic fundamental steps
in classical machine learning methods (the classical term is used here because in novel
methods, namely, neural network-based models, the learning stage is end-to-end encrypted
so feature engineering is obsolete). Choosing and building the right set of features plays
a critical role in the assessment quality, being therefore common practice to manually
extract the features or check the performance of an automated extraction process. For
example, features were manually extracted from 3D data generated by the SfM method
in [39,41–43,65,69,98], and from LiDAR-generated data in [80,90,92].

Another important application of statistics (not only in forestry but in remote sensing
in general) is the quality assessment and characteristics of data. Analysis of Variance
(ANOVA) is a common test to check if there are any statistical differences between the
means of three or more independent groups in a dataset [47,62,64,80,99]. Other statistical
tests that were used in the reviewed papers are Tukey’s range test [80] (used to find means
that are significantly different from each other), the Shapiro Wilk test [43,64] (a normality
test in statistics used to determine if a dataset is well modeled by a normal distribution and
to calculate how likely it is for a random variable underlying the dataset to be normally
distributed), Bartlett’s test [64] (used to test homoscedasticity, which determines if multiple
samples are from populations with equal variances), Mann–Whitney U test [71] (a non-
parametric test of the null hypothesis that is for randomly selected values X and Y from two
populations, the probability of X being greater than Y is equal to the probability of Y being
greater than X), and the Kruskal–Wallis test [71] (a non-parametric equivalent of ANOVA).

Segmentation of the scenery is a task performed manually and with both supervised
and unsupervised machine learning techniques. The result can be used for statistical
analysis, data quality assessment, extraction of forest parameters, or as training data for
machine learning algorithms performing classification tasks. Papers that use segmentation
of scenery for analysis of data quality and extraction of forest parameters are reviewed
in this section, and the ones in which segmentation is a pre-processing step for training
machine learning algorithms are presented in Section 5.

Unsupervised machine learning refers to the use of artificial intelligence (AI) algo-
rithms to identify patterns in datasets containing data points that are neither classified
nor labeled. In this category, Threshold Conditioning is one of the most straightforward
used methods, being based on a condition or set of conditions defined by the user. For
example, in [100], a |r| < 0.70 threshold of correlation coefficients between LiDAR metrics
is used as an appropriate indicator for when colinearity begins to severely distort the model
estimation and subsequent predictions; [38,87] threshold height values were used to classify
the point cloud into vertical strata to study a forest vertical structure. From a technical
point of view, Threshold Conditioning can be considered a clustering-based method as it
divides data points into different clusters based on a set of value conditions. However, this
is not mentioned or clearly stated in the reviewed papers, being therefore referred to here
only as an unsupervised method.

In the reviewed papers, clustering-based methods that are used for data analysis are
k-Means, Euclidean distance, and Principle component analysis. k-Means is a popular
and widely used clustering method. It is an iterative algorithm that starts by randomly
selecting a set of k cluster centers, and then assigns each data point to the cluster whose
center is closest to it. The algorithm then adjusts the cluster centers by computing the mean
of all the points in each cluster, and repeats this process until the clusters converge. One
key characteristic of k-Means is that it does not allow for the creation of new clusters or the
merging of existing clusters, but it allows for the assignment of points to existing clusters.
k-Means is a fast and efficient algorithm that is easy to implement, but it can be sensitive to
the initial selection of cluster centers and may not always find the optimal clusters. In [96],
k-Means is used for noise filtering. In [92], an iterative optimization process using Euclidean
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distance is used to minimize the distance between points and potential circles in the scenery
to gain more insights into which LiDAR scan conditions can be beneficial to record stem
points. Principle Component Analysis (PCA) is a statistics technique for reducing the
dimensionality of large datasets containing a high number of dimensions/features per
observation, increasing interpretability but at the same time minimizing information loss.
It does so by creating new uncorrelated variables that successively maximize variance.
In [36], PCA is used to reduce the dimensions of the dataset, being shown that having more
data is not necessarily a positive attribute to analysis since the reduced dataset results in
higher accuracy. In [82], PCA is used to reduce the dimensions of the point cloud dataset
by replacing all the stem points of an individual tree with a new space composed of three
orthogonal components, and in [84,85] PCA was used just to identify stem points for
individual trees modeling.

Another group of unsupervised algorithms are Fitting Algorithms. Fitting is the
process of constructing a curve or a mathematical function (in this case, known geometrical
shapes) that has the best fit to a series of data points. The ones used for data analysis in the
reviewed papers are Least square fitting, Hough transform, and RANSAC (Random Sample
Consensus). Least square fitting is the procedure for finding the best-fitting function to a
given set of points by minimizing the sum of the squares of the offsets of the points from the
given function. This technique is widely used in forestry applications for the measurement
of tree stems and trunk diameter by fitting a circle to the point cloud data, such as in [79,86].
A modified version of the method called robust least trimmed squares (RLTS) is proposed
in [101] to cope with noisy datasets. The Hough transform is a feature extraction technique
to find imperfect instances of objects within a certain class of shapes by a voting procedure.
In [79,83,85,101], the Hough transformation is used for fitting circles to tree stems and
trunks for further measurements. In [97], a direct unsupervised method is used to segment
the point cloud into “skeleton points” and “stem-based points” in an iterative process.
RANSAC is an iterative algorithm for estimating the parameters of a mathematical model
from a set of observed data that contains outliers. It is a robust method for fitting a model
to data that can be used when the data are contaminated with a large number of outliers.
RANSAC works by selecting a random subset of the data (called inliers) that are consistent
with the model, and then estimating the model parameters using only the inliers. This
process is repeated multiple times, and the best model is chosen based on the number of
inliers. Examples of using the RANSAC technique can be found in [50,96,101,102].

In contrast to unsupervised learning, Supervised Machine Learning is defined by its
use of labeled datasets to train algorithms to classify data or predict outcomes accurately.
Supervised methods used for data analysis in the reviewed papers are k-Nearest Neighbor-
hood (k-NN), Regression Models, Support Vector Machine (SVM), Random Forest, Extreme
Gradient Boosting, and Multilayer perceptron (MLP). k-NN is a non-parametric supervised
learning method used for both classification and regression. In [95], this method is used
and compared with other non-parametric and parametric methods for the prediction of
the tree diameter at breast height (DBH). Regression analysis models are a set of statistical
processes estimating the relationships between a dependent variable (in this case the label)
and one or more independent variables (often called features). In [37], a linear regression
model is used on UAV-driven photogrammetric point clouds to predict forest inventory
variables and the results are compared with other methods. In [41], a simple linear regres-
sion model is used to compare the LiDAR CHM metrics with field-measured heights, and
in [43], a linear regression model is used to compare UAV-SfM-driven point cloud data
(Mangrove tree density and height, canopy diameter, and Above Ground Biomass (AGB)
medians) with field measurements. In [102], logistic regression is used to fit functions to the
measured data for calculating the Forest Canopy Coverage Area (CA) and the Leaf Area
Index (LAI), and in [42], a DTM-independent (Digital Terrain Model) model is proposed
for the prediction of the forest growing stock volume following an Area-Based Approach
(ABA), which was tested in a boreal forest on a flat area. Multivariate linear regression
models are used to fit data independently using growing stock volume as a response
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variable and separately for the three different sets of remotely sensed metrics. The authors
in [89] used UAV-LiDAR data to estimate five forest canopy structure parameters—stand
density, basic area, above-ground biomass (AGB), Lorey’s mean height, and under-crown
height—using and comparing several models including a linear regression model. In [96],
the authors used a linear regression model in the feature engineering step, calculating
93 explanatory variables from the UAV-LiDAR point cloud, including height percentiles,
intensity percentiles, density variables, slope, and the intercept of a linear regression line
fitted to the density variables, crown geometry variables, and spectral variables from the
RGB values assigned to each point using the UAV-orthomosaic such as band averages,
standard deviations, and their ratios. See [103,104] for use cases of this model in yield
prediction and AGB prediction.

Support Vector Machines are supervised models with associated learning algorithms
that analyze data for both classification and regression analysis. In the latter case, SVMs are
referred to as Support Vector Regression. In [89,91], support vector regression is used and
compared to other predictive models to estimate forest inventory parameters such as DBH
and AGB. SVMs will be explained in more detail in Section 5. Like SVM, Random Forest
is a widely used supervised model for classification and regression tasks comprising an
ensemble of decision trees. For classification tasks, the output of the random forest is the
class selected by most trees, while for regression tasks, the mean or average prediction of
the individual trees is returned. This technique will be explained in more detail in Section 5.
Random Forest is used in [82,89,91,95,96] as a regression model for estimating forest and
tree attributes from UAV-LiDAR point clouds.

Extreme Gradient Boosting is a software library offering a more efficient and scalable
implementation of the framework Gradient Boosting Machine, a supervised learning tech-
nique used in regression and classification. It provides a prediction model in the form of an
ensemble of weak prediction models, which are typically decision trees. In [91], the authors
used it to estimate individual tree attributes and compare it to other machine learning
models. Finally, Multilayer Perceptron (MLP) is a fully connected class of feedforward
artificial neural network (ANN). The term MLP is used ambiguously, sometimes loosely, to
mean any feedforward ANN, sometimes strictly to refer to networks composed of multiple
layers of perceptrons (with threshold activation). Multilayer perceptrons are sometimes
colloquially referred to as “vanilla” neural networks, especially when they have a single
hidden layer [105]. In [91], a MLP is used and compared with other methods to extract
individual tree attributes or features.

Figure 10 depicts the distribution of the reviewed papers over the described methods
for feature extraction and statistical analysis of data.

Figure 11 quantitatively relates the use of each technique to the used sensors’ type.
To identify the specific works in detail please refer to Table A2 in the Appendix A section,
which relates the reviewed papers with the described methods implemented for feature
extraction and statistical analysis tasks, and the sensors used, ordered from less to more
used sensors.
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Figure 10. Methods used for feature extraction and statistical analysis of data in the reviewed papers.
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Figure 11. Feature extraction and statistical analysis.
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5. Image Processing and Machine Learning

Remote sensing, and in particular aerial and satellite imagery, play a key role in forestry
applications. The increasing availability of data and their high spatial and even temporal
resolutions, currently available on demand and with sub-metric resolution, allow automatic
tools to be developed that can analyze and monitor forests by accurately assessing the
vegetation resources, i.e., monitoring the health and growth of forests, detecting changes in
land use and vegetation cover, mapping the distribution of different tree species, identifying
areas that have been damaged by pests, disease, or natural disasters, or detecting signs of
illegal logging or deforestation. Evidently, the field of application has played a key role in
the development of novel methods based on aerial photogrammetry and remotely sensed
data. For instance, in forestry applications, segmentation of the scenery (individual tree
delineation) is a key task, either for counting trees, estimating their attributes and other
forestry statistical analysis, or creating data for training machine learning frameworks to
do classification tasks. Given its relevance, a significant effort has been dedicated to the
development of more accurate and efficient segmentation methods.

By going through the selected literature and the corresponding procedure pipeline
(please refer to Figure 5), one can see that segmentation - the process of dividing an image
into distinct regions or segments, each corresponding to a different object or feature in the
scene - may be a step before classification tasks. Such procedure can be seen in [67] or [106],
i.e., segmentation of the scene may be a process linking pixel-based analysis to object-based
analysis. Pixel-based image analysis is a traditional method of analyzing remotely sensed
data in which each pixel in an image is analyzed individually, without considering the
relationships between adjacent pixels or the context of the surrounding area. This type
of analysis is typically used to classify an image into different categories, such as water,
land, vegetation, or urban areas. Object-based image analysis, on the other hand, is a
more recent approach that involves grouping pixels into distinct objects or features based
on their visual characteristics and spatial relationships. In object-based image analysis,
the focus is on the characteristics and behavior of the objects in an image, rather than on
individual pixels. One of the main advantages of object-based image analysis is that it
can more accurately represent real-world objects and features being studied, as it takes
into account the spatial context and relationships between different objects. This can be
particularly useful in forestry applications, where it is often necessary to accurately map
and classify different types of trees or vegetation. However, object-based image analysis
is generally more complex and time-consuming than pixel-based image analysis, and it
requires more specialized software and training to perform.

In forestry applications, image segmentation can be used to identify and classify different
types of trees or vegetation, as well as other features such as roads, buildings, and water
bodies. There are various techniques that can be used for image segmentation, including
thresholding, clustering, edge detection, and more. Image segmentation is an important step
in the process of analyzing aerial imagery and remote sensing data, as it allows researchers
to identify and analyze specific objects or features within an image. In forestry applications,
image segmentation can be used to map the distribution and density of different tree species,
estimate the biomass of a forest, and monitor the health and growth of trees over time. These
techniques and methods are applied and developed based on spectral data structures and
raster-based images, but also on point cloud (or structural) data.

Figure 12 summarizes the methods used for segmentation based on the sensors used in
corresponding paper, being the methods organized hierarchically. Table A3 in Appendix A
relates the reviewed papers with the described methods implemented for segmentation
tasks, and the sensors used, ordered from less to more used sensors.

Manual Delineation, as the name suggests, refers to the process of manually identifying
and outlining the boundaries of forested areas on a map or other visual representation. This
can be done using a variety of tools, such as a GPS (Global Positioning System) device,
a handheld mapping device, or even a pen and paper. The goal of manual delineation is to
accurately and precisely define the boundaries of a forested area, typically for the purpose
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of managing, conserving, or studying the forest. This can involve identifying the edges of
the forest, as well as identifying specific features within the forest, such as individual trees,
streams, or wildlife habitats. Manual delineation can be a time-consuming and labor-intensive
process, but it is often necessary in order to obtain accurate and detailed information about
the characteristics of a forested area. Several papers [37,55,56,60,106–115] have used manual
delineation either as their main method of segmentation or as the ground truth data for
comparing their proposed automated methods.

Unsupervised machine learning methods are a type of machine learning algorithms
that does not require labeled training data. Instead, unsupervised algorithms try to find
patterns and relationships in the data on their own, without any guidance. Some common
unsupervised learning methods include clustering, fitting algorithm and region growing.
Unsupervised learning can be useful when one has a large amount of data and no clear
idea of what to look for, or when one wants to discover hidden patterns in the data. Unsu-
pervised learning can be more challenging than supervised learning because it does not
have the benefit of labeled training examples to guide the learning process. Unsupervised
methods used in the reviewed papers are described next.

Local Maxima algorithm is a computer program or mathematical procedure that is
used to identify the local maxima (peaks or high points) in a dataset. Local maxima are
points that are greater than their neighboring values, and they can be used to identify
important or noteworthy features in a dataset. There are several different algorithms that
can be used to identify local maxima, and the specific algorithm used will depend on the
characteristics of the dataset and the goals of the analysis. In forestry, a local maxima
refers to a peak or high point in a particular variable or attribute that is being measured
or observed. For example, a local maxima might be a particularly tall tree in a forest,
a section of the forest with especially high biomass, or a location with particularly high
species diversity. The extremely common approach is to use the local maxima method as
a peak detection algorithm, which looks for points in the data that are higher than their
surrounding values and meet certain criteria (such as being above a certain threshold value).
This method identifies these points as individual trees, and then the grouping of the data
belonging to the same tree needs another step. These papers [45,50,53,56,63,67,70,73,76,77,
82,87,91,93,96,99,100,116–122] have used a Local Maxima filter in their work for individual
tree identification.

Threshold Conditioning, as explained in Section 4, is a well-known and widely
used unsupervised method that groups data points together based on a value condi-
tion. This value can be pixel intensity in spectral data for discriminating vegetation from
the background and/or other objects, discriminating different vegetation species based
on their reflectivity behavior, height value, empirical parameters such as crown diam-
eter, etc. Use cases of threshold conditioning in segmentation of scenery are described
in [48,49,62–64,68,73,96,99,102,108,117,120,123–127].

Matched Filtering is a technique used in remote sensing to enhance the signal-to-
noise ratio (SNR) of a signal by optimizing the detection of a known pattern or signal
within a noisy dataset. It involves convolving the data with a filter that is designed to
match the characteristics of the signal being sought. This can be used to improve the
detectability of the signal and to reduce the impact of noise and other interfering factors on
the measurement. In forestry applications, matched filtering is used to extract information
about the forest canopy from images or other types of data collected by sensors on satellites
or other platforms. The filter is designed to match the specific characteristics of the forest
canopy, such as the spectral response or spatial pattern, and is used to process the data
to enhance the visibility of the forest canopy and reduce the impact of noise and other
factors. Matched filtering can be used to detect and measure various characteristics of the
forest canopy, such as the structure, composition, and health of the trees. For example,
in [40], authors used this technique for the segmentation of trees by filtering their UAV-born
hyperspectral data.
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Figure 12. Segmentation (or individual tree delineation) methods.

Error correction output codes (ECOC) is a method for multi-class classification, where
the goal is to predict one of the multiple possible classes for a given input. ECOC is
a supervised learning method, which means that it requires a labeled training dataset
consisting of input data and corresponding correct output labels. In ECOC, the classes are
represented using a coding matrix, where each row corresponds to a class and each column
corresponds to a classifier. The elements of the matrix are either 0 or 1, and they indicate
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which classifiers should be used to classify a given class. During training, the algorithm
learns the parameters of the classifiers based on the input data and output labels. During
inference, the classifiers are applied to the input data, and the class that corresponds to
the row of the coding matrix with the highest score chosen as the final prediction. In [124],
ECOC is used as a pixel-based classifier for tree crown segmentation.

Super-pixel Segmentation, used in [128], is a technique used in image processing to
divide an image into smaller uniform regions known as “super-pixels”. Super-pixels are
typically larger than traditional image segments or pixels, but smaller than the objects or
regions of interest in the image. They are formed by grouping pixels together based on
similarities in color, texture, or other image features. The goal of super-pixel segmentation
is to reduce the amount of data in an image while preserving important image features
and structures.

Edge detection is a technique used to identify the boundaries of objects or features
within an image. It is often used as a pre-processing step for segmenting an image into
different regions or objects. Edge detection involves identifying points in the image where
the intensity or color changes significantly, as these points typically correspond to the
boundaries between different objects or regions. There are various edge detection algo-
rithms that can be used, each with its own set of characteristics and assumptions. Once the
edges have been detected, they can be used to segment the image into different regions
or objects. This can be done by connecting the detected edges to form contours around
the objects or regions of interest. The resulting contours can then be used to define the
boundaries of the objects or regions and to separate them from the rest of the image. This
technique was used by [46,124,129,130] for segmenting tree crowns.

Watershed Segmentation is one of the most used techniques in forestry applications to
identify and separate different objects or regions within an image. It is based on the concept
of a watershed in hydrology, where a watershed is defined as the area of land that drains
into a particular body of water. This algorithm works by treating the image as a topographic
map, with the intensity or color of each pixel representing the elevation. A “flood” is then
simulated, starting from the lowest points in the image and flowing outward to the higher
points. As the flood progresses, it creates “catchment basins” or “water sheds” around local
minima in the image. These catchment basins represent the regions or objects in the image.
A watershed algorithm can be applied to a variety of image types, including grayscale,
binary, and color images. It is particularly useful for segmenting images with complex or
overlapping objects, or images with large intensity or color variations. This technique is
used in forestry to analyze tree canopy structure and to measure various characteristics
of the trees, such as crown diameter or canopy coverage. It can also be used to monitor
changes in the forest canopy over time, such as the effects of natural disturbances or human
activities on the forest. Examples of the use of this method in forestry applications can be
seen in [39,43,50,56,59,63,67,71,73,77,78,81,82,93,112,118,122,131–134].

Multiresolution Segmentation is a technique used to decompose an image into multiple
scales or resolutions. The goal of this technique is to extract features from an image at
different scales in order to improve the accuracy and robustness of image segmentation.
In multiresolution segmentation, an image is first decomposed into a series of images at
different scales using techniques such as Gaussian pyramids or wavelet transforms. Each
of these images is then segmented separately using a suitable algorithm, and the results are
combined to produce the final segmentation. Multiresolution segmentation can be useful
in cases where the features of interest in an image vary significantly in scale, such as in
images containing both small and large objects. It can also be used to improve the efficiency
of image segmentation by allowing the use of simpler and faster algorithms at coarser
scales. There are several approaches to multiresolution segmentation in forestry, which
may vary depending on the specific goals and characteristics of the images being analyzed,
e.g., see [48,55,58,106,128,135–139]. For example, one approach might consist of using a
combination of wavelet transforms and machine learning algorithms to classify pixels in
the image as belonging to different tree species or forest types. In order to improve the
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accuracy and robustness of the segmentation, it may be necessary to incorporate additional
information such as topographic data, field measurements, or previously mapped forest
data. It may also be useful to apply image processing techniques such as noise reduction,
contrast enhancement, or edge detection to pre-process the images before segmentation.

Region Growing Segmentation is a type of image segmentation algorithm that works
by iteratively expanding regions in an image based on some predefined criteria. In the
context of forestry, region growing segmentation could be used to extract features such
as trees or forest stands from aerial or satellite images. In a region growing algorithm,
the user typically specifies a seed point or set of seed points within the image, and the
algorithm then grows the region around these points by adding adjacent pixels that meet
certain criteria. The criteria for adding pixels to the region might be based on intensity,
color, texture, or some combination of these features. One advantage of region-growing
segmentation is that it can handle images with large variations in intensity or color, such as
those commonly encountered in forestry applications. It can also be easily implemented
and modified for different types of images and segmentation goals. However, region
growing can be sensitive to noise and may not always produce the most accurate or precise
segmentation results. This method is used in [45,48,49,70,71,73,79,95,99,112,118].

The Gaussian Mixture Model (GMM) is a probabilistic model that assumes that the data
being modeled are generated from a mixture of several different underlying distributions,
each being a Gaussian distribution. GMMs are often used in remote sensing and forestry
applications as a way to classify pixels in an image based on their spectral properties,
such as the reflectance of different wavelengths of light. In a GMM-based classification,
the data are assumed to be a mixture of K different Gaussian distributions, where K is
a pre-specified number. Each of these Gaussian distributions represents a different class
or land cover type, such as forest, grassland, or water. The parameters of the Gaussian
distributions (such as the mean and covariance) are estimated from the data, and then
the data are classified by assigning each pixel to the class corresponding to the Gaussian
distribution with the highest likelihood. GMM-based classification can be useful in forestry
applications because it allows for the modeling of complex spectral profiles that may
be encountered in different types of forests, for example, in [117], authors used GMM
for the segmentation of interlacing orchard canopies using spectral data and used its
output for training a Gradient boosting procedure. However, GMM-based classification
can be sensitive to the initial parameter estimates and may not always produce the most
accurate results.

Voronoi Tessellation (also known as Voronoi diagram) is a technique used to partition
an image into regions or cells, such that all points within a given cell are closer to a particular
seed point (also known as a generator) than to any other seed point. Voronoi tessellation
is often used in conjunction with other image-processing techniques to extract features or
patterns from an image. In forestry, Voronoi tessellation can be used to extract features such
as individual trees or stands of trees from aerial or satellite images. For example, the seed
points of the Voronoi tessellation can be chosen to correspond to the locations of individual
trees or groups of trees in the image. The resulting Voronoi cells would then represent the
area around each tree or group of trees [118].

Discrete Wavelet Transform (DWT) is a mathematical tool used to decompose a signal
into different frequency components, in a way similar to the Fourier Transform. In image
processing, DWT can be used to analyze the frequency content of images, and to perform
various types of image processing tasks such as denoising, compression, and enhancement.
In forestry, DWT can be used to analyze the spatial structure of forests, and to extract
features such as tree crown size and shape, canopy density, and canopy gap fraction.
DWT can also be used to analyze the temporal changes in forest structure by applying
the transform to time series of remote sensing images. DWT can also be used to classify
different types of forests based on their characteristic spatial patterns. In [123,124], DWT is
used as a pre-processing filtering step before applying the segmentation technique.
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Clustering is a technique in image processing and computer vision that involves divid-
ing an image into distinct regions or segments, such that pixels within a region or segment
share some common characteristics. Clustering can be used for various purposes, such
as object recognition, image segmentation, and anomaly detection. In image processing
and forestry applications, clustering can be used to segment images into different regions
based on the properties of the pixels in those regions. For example, clustering can be used
to identify different types of vegetation in an image of a forest, or to detect the presence
of buildings or roads. There are many different clustering algorithms, being the choice
dependent on the characteristics of the data and the specific requirements of the application.
Examples of clustering algorithms used for segmentation task are HDBSCAN, ISODATA,
k-Means, Fuzzy C-Means, Mean-Shift, Euclidean Distance, and Principle Component
Analysis, described in the sequence.

Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN)
is a clustering method that can be used to identify clusters in a dataset and to label points
as either core points in a cluster, border points that are part of a cluster, or noise points
that do not belong to any cluster. HDBSCAN is a density-based clustering method, which
means that it is able to identify clusters of arbitrary shape in a dataset. It is particularly well-
suited for datasets that contain noise or outliers, and does not require the user to specify
the number of clusters in the data in advance. HDBSCAN works by first constructing a
hierarchical cluster tree (also known as a dendrogram) using a measure of density, and
then using this tree to identify clusters and label points. HDBSCAN has several advantages
over other clustering methods, such as being able to handle large datasets and identifying
clusters of varying densities. In [84], HDBSCAN was used to segment tree stems in their
LiDAR-generated point cloud dataset.

The Iterative Self-Organizing Data Analysis Technique (ISODATA) is an iterative
algorithm that starts with an initial set of cluster centers, and then iteratively refines
the clusters by reassigning points to different clusters and adjusting the cluster centers.
ISODATA can be used to cluster both continuous and categorical data. Developed in the
1960s, it has been substituted by more advanced clustering methods available. In [106],
ISODATA clustering is used as a method for image segmentation.

k-Means was extensively explained in Section 4. This clustering technique can be used
in forestry to group trees into clusters based on similarities in their characteristics, such as
species, size, age, and health. In addition to the mentioned applications, k-Means clustering
could potentially be used in other areas of forestry, such as in the prediction of future forest
conditions or in the optimization of forest management strategies. k-Means clustering was
used by [65,125,140] to segment the vegetation in their dataset.

Fuzzy C-Means (FCM) clustering is a variant of the k-Means clustering algorithm
that allows for the “fuzzy” assignment of data points to clusters, rather than the strict
assignment used in traditional k-Means. In FCM, each data point is assigned to each cluster
with a degree of membership, which is represented by a membership value between 0 and
1. A data point can have a membership value of 0 in a cluster, which means it is not a
member of the cluster at all, or a membership value of 1, which means it is a full member of
the cluster. Data points can also have intermediate membership values, which indicate that
they belong to multiple clusters to some degree. The FCM algorithm works by minimizing
an objective function that measures the sum of the squared differences between the data
points and the cluster centers, while also taking into account the membership values of
the data points. The algorithm iteratively adjusts the cluster centers and the membership
values of the data points until the objective function is minimized. FCM is often used in
situations where data points may not clearly belong to a single cluster, or where there is an
overlap between the clusters. It is also useful when the number of clusters is not known in
advance, as the number of clusters can be specified as a hyperparameter. FCM was used
in [125] as a step in their unsupervised method combined with decision fusion.

Mean-Shift is a clustering algorithm that was developed in the 1970s. It is an iterative
algorithm that starts with a set of data points and then moves (or “shifts”) the points
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towards the densest regions of the data until they converge at local maxima of the density
function. The resulting points are called “modes” and the clusters are defined as the
regions of the data where the modes are located. Mean shift is a non-parametric method,
which means that it does not make any assumptions about the form of the underlying data
distribution. It can be used to cluster both continuous and categorical data, and it does
not require the specification of the number of clusters in advance. Instead, the number of
clusters is determined automatically based on the structure of the data. One key advantage
of mean shift is that it is relatively robust to noise and outliers in the data. It is also relatively
fast and efficient, and it can handle high-dimensional data. However, it can be sensitive to
the choice of the bandwidth parameter, which controls the size of the region over which
the mean is computed. Choosing the right bandwidth can be challenging, and it may
require some experimentation to find the best value. The mean-shift method was used
in [39,51,57,88,100,114,141] for data clustering with the objective of tree segmentation.

Euclidean Distance clustering is a method of clustering data points in a multi-dimensional
space. It is based on the idea of finding the shortest distance between two points, and is
often used in a variety of use cases in image processing and machine learning applications.
In the context of clustering, Euclidean distance can be used to measure the distance between
data points and to determine which points belong to the same cluster. For example, points
that are close to each other in terms of Euclidean distance are likely to belong to the same
cluster, while points that are far apart are likely to belong to different clusters. Euclidean
distance was used for clustering of data for segmentation of individual trees in [69,79,131].

Fundamentals of Principal Component Analysis as a clustering method were explained
in Section 4. While PCA can be used as a clustering algorithm, it is generally not considered
to be a traditional clustering method. Clustering algorithms such as k-Means are designed
to group data points into distinct clusters based on similarity, while PCA is more focused
on identifying patterns in the data that can be used to explain variance. For example,
in [51,54,79], this technique was used for feature extraction as part of the individual tree
segmentation procedure.

The principles of mathematical Fitting were also explained in Section 4. Its use in the
segmentation of scenery is demonstrated in [78] with Least square fitting and in [78,140]
with Hough Transform.

Point Cloud Segmentation (PCS) is the process of dividing a point cloud into distinct
regions or clusters. The goal of point cloud segmentation is to split the cloud into smaller,
more manageable pieces, and to identify structures or patterns within the cloud. There
are many approaches to point cloud segmentation, ranging from simple clustering meth-
ods to more advanced machine learning techniques using unsupervised and supervised
methods. Some common approaches include k-Means, DBSCAN, Graph-based methods,
and Machine Learning. PCS consists of several steps, and it may be broken down into
the methods that make it. For example, Refs. [46,47,90] have used a top-down PCS algo-
rithm proposed by [142] to segment (or delineate) individual trees based on geometrical
threshold conditions and a local maxima filter, while [93] used a method by [143] that uses
Euclidean distance between tree tops as a condition. More examples of PCS can be found
in [97,99,112,121,131,132,144].

Layer Stacking is not a specific segmentation method in itself, but it is a technique that
can be used in conjunction with various segmentation methods. In layer stacking, multiple
layers or maps of the same area are overlaid on top of one another to create a composite map
or image. Each layer may contain different types of information, such as different spectral
bands in a satellite image or different types of data from a GIS (geographic information
system) database. By stacking the layers, it is possible to combine the information from
all the layers to create a more detailed and informative map or image. This technique
can be particularly useful for image segmentation, as it allows the integration of multiple
sources of information that can be used to more accurately identify and classify different
features in the image. Layer stacking is commonly used in forestry to create composite
maps or images that can be used for various purposes, such as mapping the distribution
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and types of vegetation, identifying areas that are prone to fire or other natural disasters, or
planning the management of forests. In forestry applications, layer stacking is often used
in conjunction with remote sensing techniques, such as satellite or aerial imagery, to create
detailed maps of forested areas [93,132].

Voxel Space is a term used in computer graphics to describe a three-dimensional grid
of points, or “voxels”, that make up a 3D image or model. Detection and delineation in
voxel space refers to the process of identifying and outlining specific areas or features
within a 3D image or model represented in voxel space. This can be performed for a variety
of purposes, such as identifying objects or structures in a medical image, or extracting
specific features from a 3D model for further analysis or manipulation. Techniques for
voxel space detection and delineation may include image processing algorithms, machine
learning techniques, or manual annotation by a human operator. Voxel space detection and
delineation can be used in forestry to analyze and extract information from 3D models of
forests or trees. For example, voxel space analysis can be used to estimate the volume of a
tree or forest, or to measure the diameter at breast height (DBH) of individual trees. It can
also be used to identify and classify different types of trees or vegetation, or to detect the
presence of defects or abnormalities in trees. Additionally, voxel space analysis can be used
to generate 3D models of forests or trees for visualization and analysis, or to create virtual
replicas of real-world forests or trees for use in simulations. In other words, voxel space is
one of the common “feature spaces” used in forestry applications on top of which further
analysis is performed. For example, in [121], authors demonstrated three feature spaces
produced from LiDAR data, i.e., point cloud, CHM, and voxel space and performed further
analysis (individual tree segmentation) on top of each space and compared the results.

Supervised machine learning is a type of machine learning in which a model is trained
on labeled training data, meaning that the data used to train the model include both input
data and the corresponding correct output labels. The goal of supervised learning is to
build a model that can make predictions about unseen data by learning the relationship
between the input data and the corresponding output labels. For example, if one wanted
to build a model to predict a tree species, one would need to provide the model with a
set of labeled training data that includes both trees and labels indicating each tree species.
The model would then use these training data to learn how to classify new, unseen, trees.
Supervised learning algorithms include logistic regression, k-Nearest Neighbor, Linear
Discrimination, support vector machines, and decision trees (other efficiency modules such
as Gradient Boosting can be assembled on top of the main supervised algorithms). These
algorithms can be used for a variety of different applications, such as speech recognition,
image classification, and natural language processing.

k-Nearest Neighbors (k-NN) is a type of instance-based learning, which is a type of
supervised learning. In k-NN, a model is trained on a set of labeled training data, and the
model makes predictions based on the labels of the k nearest data points in the training set.
For example, if one has a set of labeled data points that represent different types of trees,
and wants to classify a new, unseen, data point as one of these types of trees, one can use
k-NN to do so. The algorithm would find the k nearest data points in the training set (based
on some distance measure) and classify the new data point based on the majority label of
these nearest neighbors. See [65,69,136] for use cases of this method in the segmentation of
individual trees.

Linear Discrimination is a supervised learning method (also referred to as a “dimen-
sion reduction technology”) in which the algorithm learns to predict the output by finding a
linear relationship between the input features and the output. The linear relationship is rep-
resented by a linear equation, where the input features are the variables and the coefficients
of the equation are the model parameters that the algorithm learns. The algorithm finds the
best values for the model parameters by minimizing the error between the predicted output
and the true output. Once the algorithm has learned the linear relationship, it can use it
to make predictions on new, unseen, examples by using the learned model parameters
to calculate the predicted output from the input features. In [68], linear discrimination
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was used as a second step in the proposed individual tree segmentation workflow for the
detection of Xylella fastidiosa, a well-known bacterial plant pathogen infecting olive trees.

A Support Vector Machine (SVM) is a supervised machine learning algorithm that
can be used for classification or regression tasks. It works by finding the hyperplane in an
N-dimensional space that maximally separates the two classes. SVMs are particularly well-
suited for the classification of complex but small- or medium-sized datasets. As a simple
example, consider a dataset with two classes, “red” and “blue”, and where the objective is
to use a SVM to build a classifier that can predict the class of a new data point based on
its features. In this case, the features might be the x and y coordinates of the data point,
and the goal is to find a line that separates the red points from the blue points. The line
that the SVM finds is the one that maximally separates the two classes, which means that it
is as far away as possible from both classes. This line is known as the maximum-margin
hyperplane. There are several variations of SVMs, such as the linear SVM, nonlinear SVM,
and the SVM with kernels. The choice of the appropriate SVM depends on the nature of
the data and the task at hand. In the context of forestry, SVMs can be used to cluster data
such as satellite imagery or sensor data collected from forests. For example, SVMs could be
used to identify different types of vegetation or land cover in a forest, or to detect areas
of forest damage. Although the most used cases of SVMs in forestry are for classification
tasks, in [136] an SVM was used for the segmentation of individual banana tree crowns.

Gradient Boosting is a machine learning technique for regression and classification
problems, which produces a prediction model in the form of an ensemble of weak prediction
models, typically decision trees. It builds the model in a stage-wise fashion like other boosting
methods do, and it generalizes them by allowing optimization of an arbitrary differentiable
loss function. In the context of image segmentation, Gradient Boosting could be used as a
method for assigning labels to pixels in an image, such as classifying pixels as foreground or
background, or identifying different objects or regions in the image. To do this, one would
need to construct a gradient boosting model and train it on a labeled dataset of images.
In [117], gradient boosting was used to perform interlacing orchard canopy separation, and
in [104] it was used to predict yield of citrus trees based on segmented tree canopies.

Figure 13 shows the relative usage of the described methods for image segmentation
in the reviewed papers, highlighting the prevailing use of unsupervised machine learning
algorithms. For the detailed relation between the papers and their respective segmentation
method used please refer to Table A3. Figure 14 illustrates the evolution, since 2017, of the
normalized usage of the different methods, aggregated in general categories (manual
delineation and unsupervised and supervised machine learning), indicating a reduction
trend in manual delineation compensated by an increasing trend in the use of supervised
machine learning algorithms.

The final part of the reviewed papers procedure pipeline (Figure 5) is object-based
(OB) classification. As explained before, when studying individual objects (in this case,
trees) object-based classification can be more advantageous than pixel-based classification.
Ultimately, the choice between OB and PB classification depends on the specific application
and the type of data being analyzed. In some cases, a combination of both methods may be
necessary to achieve the highest level of accuracy and precision).

In forestry, tree classification is the process of identifying and labeling trees based on
their characteristics, such as their species, age, size, and other features. Machine learning
algorithms can be used to automate and improve the accuracy of tree classification by
learning from examples and making predictions based on patterns in the data. Algorithms
that can be used for tree classification include random forest, support vector machines,
neural networks, etc. These algorithms can be trained using labeled data, such as images
of trees with known species labels, and can then be used to classify new, unlabeled trees
based on their characteristics.
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Figure 13. Relative distribution of methods used in Segmentation (individual tree delineation) tasks.

Figure 14. Relative distribution of methods used in Segmentation (individual tree delineation) tasks
over time.

It is important to mention that image segmentation and image classification are two
different tasks in computer vision, although they are related to each other. Image classifica-
tion is the process of categorizing an image (regardless of whether the relevant information
is only a subset of the image) into a specific class or category. For example, an image
which contains a tree can be classified as a “tree” class, and an image with a bush can be
classified as a “ground vegetation” class. Image segmentation, on the other hand, is the
process of dividing an image into multiple subsets or regions based on some characteristics
or features. Each region can represent a distinct object or region of interest in the image.
While image segmentation and image classification are different tasks, they are often used
together in various computer vision applications. For example, image segmentation can
be used as a pre-processing step for object classification, where each segmented region
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can be further classified into specific object categories (Semantic Segmentation), examples
of which can be seen, e.g., in [59,141]. Therefore, Figure 15 resumes the methods used in
the reviewed papers for classification and semantic segmentation tasks, but not relating
them explicitly. Table A4 in Appendix A relates the reviewed papers with the described
methods implemented for classification and semantic segmentation tasks and the sensors
used, ordered from less to more used sensors.
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Figure 15. Classification and Semantic Segmentation Techniques.

Threshold Conditioning, an unsupervised method as explained in Section 4, is used
in [62] to classify structural features of forest.

k-Nearest Neighbors (k-NN) is a supervised classification method, as explained before
in this section. This classifier is used both for pixel-based classification (Figure 12) and
object-based classification (Figure 15). Papers [32,33,49,137,138,145] have used k-NN as an
object-based classifier to classify tree species and [130] has used it to identify canopy gaps.

A Bayesian Classifier is a type of classifier that uses Bayesian probability theory to
make predictions. It is based on the idea of applying Bayes’ theorem to determine the
probability that an input feature belongs to a certain class, given the class prior to probability.
In a Bayesian classifier, the classifier is trained on a labeled dataset, where the input data
and corresponding output labels are known (therefore, it is a supervised method). The
classifier uses this training data to estimate the prior probabilities of each class and the
likelihood of each input feature given each class. During inference, the classifier applies
Bayes’ theorem to compute the posterior probability of each class for a given input feature,
and it chooses the class with the highest posterior probability as the final prediction. One
advantage of Bayesian classifiers is that they can handle missing or uncertain data well,
since they can compute probabilities for different possible values of the data. They are also
generally simple to implement and can be very effective for certain types of classification
problems. However, they can be computationally expensive to train and may not perform
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as well as some other types of classifiers on very large datasets. A Naive Bayes is a type of
classifier that is based on the idea of applying Bayes’ theorem to make predictions. It is
called “naive” because it makes the assumption that all the input features are independent
of each other, which is often not true in practice. Despite this assumption, naive Bayes
classifiers can still be very effective and are often used in practice. See [33,146] for use cases
of the naive Bayes classifier.

Linear Discrimination is also a supervised classification method, as explained before.
In [68], the authors have used a linear discriminator for species classification and in [114] it
was used to classify riparian objects. The authors of [39] describe a use case of a canonical
discriminant classifier for the classification of tree species. A canonical discriminant classi-
fier is an extension of a linear discrimination method that is used to distinguish between
two or more classes (rather than just two in case of linear discrimination) based on a set of
linear combinations of the input features. Linear discrimination methods can be effective
for classification tasks where the classes are linearly separable and the input features are
continuous. However, they may not perform as well on tasks where the classes are not
linearly separable or the input features are categorical.

Adaptive Boosting (AdaBoost) is a machine learning algorithm that is used to improve
the accuracy of other learning algorithms. It works by training a series of weak learners (such
as decision trees) and combining their predictions to form a strong overall prediction. The idea
behind AdaBoost is to train each weak learner on a different weighting of the training data,
with more weight given to examples that are difficult to classify. The weak learners are then
combined to form a strong learner, which makes predictions by combining the predictions of
the weak learners using weighted voting. The weights of the weak learners are adjusted based
on their accuracy on the training data, with more accurate learners given higher weights.
AdaBoost can be used with a variety of different types of weak learners, and it is often used
in practice because it is relatively simple to implement and can often achieve good results.
However, it can be sensitive to noisy data and outliers, and it can be slower to train than some
other algorithms. See [147] for an example of its application.

A Spectral Angle Mapper (SAM) is a supervised machine learning algorithm that
is used to classify data based on their spectral characteristics. It is often used in remote
sensing and hyperspectral imaging applications to identify the materials or substances
present in an image. To classify an image using a SAM, the algorithm computes the spectral
angle between the spectrum of each pixel and the reference spectra for each class, where
the reference spectra are typically measured in a laboratory or field setting and are used as
the “ground truth” for classifying the image pixels. The class with the smallest spectral
angle is chosen as the predicted class for that pixel. The spectral angles are typically
computed using the dot product between the spectra, and they can be interpreted as a
measure of the similarity between the pixel spectrum and the reference spectra. A SAM is a
simple and efficient algorithm that can be used to classify hyperspectral and multispectral
images with high accuracy. It is relatively robust to noise and can handle a wide range of
different materials and substances. However, it can be sensitive to variations in the spectral
characteristics of the materials within a class and may not perform as well in cases where
the materials have highly complex or overlapping spectra. In [144], authors have used a
SAM for spectral classification of multiple data sources (RGB, multispectral, and LiDAR).

Support Vector Machines, or SVMs, were extensively explained previously. Use cases
of this popular and well-established method for classification tasks are demonstrated
in [34,44,49,57,58,81,123,129,130,134–137,141,146–150].

The Maximum Likelihood algorithm is a method for estimating the parameters of
a statistical model that describes the probability distribution of a dataset. It works by
maximizing the likelihood function, which is a function that measures the probability of
the observed data given a set of model parameters. The maximum likelihood algorithm has
several desirable properties, including that it is asymptotically unbiased and that it has the
highest possible convergence rate. It is widely used in a variety of fields, including statistics,
machine learning, and signal processing. However, it can be sensitive to the initial values
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of the model parameters and may not always find the global maximum of the likelihood
function. It must be noted that the maximum likelihood algorithm is not a supervised
learning model, since it does not learn a function for making predictions, but rather it
estimates the parameters of a statistical model that describes the probability distribution of
the data. Nevertheless, the maximum likelihood algorithm can be used as a component of
a supervised learning model, such as in the training of a probabilistic classifier. In this case,
the classifier would be trained on a labeled dataset, and the maximum likelihood algorithm
could be used to estimate the parameters of the probabilistic model that underlies the
classifier. See [44,54,57,106,149] for examples of use of the maximum likelihood algorithm
in classification tasks.

Random Forest is an ensemble learning method for classification, regression, and
other tasks that operates by constructing a multitude of decision trees at training time
and outputting the class that is the mode of the classes (classification) or mean prediction
(regression) of the individual trees. A random forest is a meta-estimator that fits a number
of decision tree classifiers on various sub-samples of the dataset and uses averaging to
improve the predictive accuracy and control the decision trees habit of overfitting to their
training set. The process for building a random forest classifier is as follows:

1. Select N random samples from the training data-set;
2. Build a decision tree for each sample;
3. Choose the number of trees in the algorithm and repeat steps 1 and 2;
4. In the prediction phase, each tree in the forest predicts the response. The final predic-

tion is calculated by averaging the predictions of all the trees.

Random forest is a powerful and popular machine learning method due to its ability
to achieve high accuracy on many tasks, and to work with large and high-dimensional
datasets. It has been used extensively in a variety of fields, including forestry, for tasks
such as species classification and predicting forest cover, as in [32,33,40,46,47,49,51,55,59,
81,96,97,100,103,106–109,113,119,123,126–128,130,131,133,135,137,139,141,146,149–154].

Recursive Partitioning is a supervised machine learning method that is used to build
decision tree models. To build a decision tree using recursive partitioning, one needs a
labeled dataset consisting of input data and corresponding output labels. The algorithm
starts at the root node of the tree and selects the feature that best splits the data into
subgroups based on the target labels. It then divides the data into subgroups based on the
values of this feature and repeats the process for each subgroup. This process is repeated
until the subgroups are pure, meaning that they contain only a single class of target labels.
Recursive partitioning is a simple and efficient way to build decision trees and is widely
used in practice. It is well suited for tasks where the relationships between the features and
the target labels are fairly simple and can be represented using a tree structure. However, it
can be less effective on tasks where the relationships are more complex or where the data
contain a large number of features. The authors of [49] used recursive partitioning as one
of the classification techniques.

Neural Network-based Machine Learning is a type of machine learning that uses
artificial neural networks to learn patterns in data and make predictions or decisions.
Artificial neural networks are a supervised method inspired by the structure and function
of the human brain and are composed of interconnected units called “neurons”. The
neural network adjusts the weights and biases of the connections between the neurons in
order to learn the relationships between the input data and the output labels. Once the
neural network has been trained, it can be used to make predictions or decisions on new,
unseen data by applying the learned relationships to the input data. Neural network-based
machine learning systems are widely used in a variety of applications, including image
and speech recognition, natural language processing, and predictive modeling. They are
particularly well suited to tasks where the relationships between the input data and the
output labels are complex and may not be easily captured by a linear model. However,
they can be more computationally intensive to train and may require more data to achieve
good performance.
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Multi-layer Perceptron (MLP) is a type of artificial neural network that is composed
of multiple layers of interconnected units called ‘neurons”. It is called a “multi-layer”
perceptron because it has at least one hidden layer of neurons between the input and
output layers. That is one of the main characteristics that sets MLP apart from other types
of artificial neural networks. This hidden layer allows the MLP to learn more complex
relationships between the input data and the output labels than a single-layer perceptron,
which only has input and output layers. Another characteristic of MLPs is that they use fully
connected layers, meaning that each neuron in a layer is connected to every neuron in the
previous and following layers. This allows the MLP to learn a wide range of relationships
between the input and output data, but it also means that the number of connections in the
network can grow quickly as the number of input and output units increases. The authors
of [33] show a use case of an MLP for tree detection and classification.

A Back propagation Neural Network (BP NN) is a type of artificial neural network that is
trained using the back propagation algorithm. The back propagation algorithm is an iterative
method for adjusting the weights and biases of the connections between the neurons in an
artificial neural network in order to minimize the error between the predicted and true output
labels. It is commonly used to train MLPs and other types of neural networks for supervised
learning tasks where the goal is to learn a function that maps input data to output labels based
on a labeled training dataset. The authors of [145,147] have used a BP NN for classification of
tree species and compared the results with other methods.

An Extreme Learning Machine (ELM) is a type of artificial neural network that is
designed to be fast and simple to use. It is composed of a single hidden layer of neurons
and is trained using a method that does not require an iterative process such as back
propagation. In an ELM, the weights and biases of the connections between the neurons in
the hidden layer are randomly initialized and are then fixed during training. The input
data are transformed into activations at the input layer, which are then transformed by the
hidden layer into a set of activations at the output layer. The activations at the output layer
are used to make predictions or decisions. The training process for an ELM involves finding
the optimal weights and biases for the connections between the input and output layers
that minimize the error between the predicted and true output labels. This is conducted
using a method called the “extreme learning algorithm”, which is an efficient method for
solving the optimization problem. ELMs are relatively fast to train and can be used for a
variety of tasks, including classification and regression. However, they may not perform
as well as some other types of neural networks on tasks where the relationships between
the input and output data are very complex. In [155], authors have used an ELM for the
detection and labeling of Palm trees.

Convolutional Neural Networks (CNNs) are a type of artificial neural network that is
particularly well suited to tasks involving image and video data. They are called “convolu-
tional” neural networks because they use a mathematical operation called convolution to
process the input data. CNNs are composed of multiple layers of interconnected neurons,
and each layer is responsible for learning a different set of features from the input data. The
first layer of a CNN typically learns low-level features such as edges and corners, while
deeper layers learn higher-level features such as shapes and objects. One key difference
between CNNs and traditional machine learning methods is that CNNs can learn “end-
to-end”, meaning that they can learn the entire process of mapping the input data to the
output labels without the need for manual feature engineering. This makes them very
powerful and flexible, but it also means that they may require more data and computational
resources to learn the relationships between the input and output data. The defining feature
of CNNs is that they use convolutional layers, which are specialized layers that perform the
convolution operation on the input data. The convolution operation involves sliding a small
matrix called a “kernel” or “filter” over the input data and performing an element-wise
multiplication between the kernel and the input data, followed by summing the results.
This process is repeated at multiple positions in the input data, and the output of the
convolution is a feature map that encodes the presence and strength of certain features
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in the input data. CNNs are particularly effective in tasks such as image classification,
object detection, and segmentation because they are able to learn hierarchies of features that
are relevant to these tasks. They are also able to handle large amounts of data efficiently
because they use shared weights and biases between the neurons in the same convolutional
layer, which reduces the number of parameters that need to be learned. CNNs are popular
in a wide variety of applications. Examples of forestry-related tasks include:

• Forest type classification: used to classify different types of forests based on satellite
or aerial imagery [19];

• Tree species classification: used to classify different tree species or a specific feature
(such as a disease) based on images of the trees taken from the ground or from aerial
platforms [35,36,58,66,94,110,111,115,128,145,147,149,156–167];

• Tree crown detection: used to detect and segment individual tree crowns in aerial
imagery in order to measure the size and shape of the trees [35,56,60,61,66,110,111,117,
126,128,136,166,168–175];

• Segmentation of scenery: used to identify tree from non-tree objects [126,176]; and
• Forest inventory: used to estimate the volume and biomass of forests based on the

sizes and shapes of the trees in the forests [60,61,104,177].

Overall, CNNs have proven to be very effective at tasks involving image data, and they
have the potential to improve the efficiency and accuracy of many forestry-related tasks.
However, they may not be the best choice for all tasks, and other types of machine learning
models may also be useful in forestry applications depending on the task and the availability
of resources (data and computational power). Variations of the CNN architecture, such
as the region-based convolutional neural network (R-CNN) [164,166,170,173], an efficient
method for object detection, are being proposed and explored in this and other fields.

Figure 16 shows the relative usage of object-based classification methods divided into
unsupervised and supervised (non-NN-based and NN-based) machine learning methods.
Figure 17 depicts the usage of the methods in the past six years, with a clear growing trend
of the NN-based methods. For the detailed citation of the papers relative to the methods
refer to Table A4.

Figure 16. Relative distribution of methods used in object-based classification tasks.
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Figure 17. Relative distribution of methods used in classification tasks over time.

6. Conclusions

Mapping forests is an essential tool for understanding, managing, and conserving
these vital ecosystems. The use of Unmanned Aerial Vehicles (UAVs) equipped with
various sensors, in combination with data analysis and machine learning techniques, has
revolutionized the way forests are mapped. UAVs have several advantages over traditional
mapping methods, such as satellite imagery or ground-based surveys. They can quickly
and efficiently collect high-resolution data over large areas, even in remote or inaccessible
locations. Furthermore, UAVs can be flown at different altitudes, allowing for the collection
of data at different scales, from individual trees to large areas of forest. This flexibility
allows for the creation of detailed maps that can be used for a wide range of applications.
One of the key advantages of using UAVs is the ability to collect high-resolution data
on forest structure and composition. UAVs can be equipped with various sensors, such
as high-resolution cameras, LiDAR scanners, multi- and hyperspectral sensors, which
can collect detailed data on forest canopy structure, tree species, and even the chemical
composition of the foliage. In the reviewed papers, most use RGB or multispectral cameras,
or LiDAR scanners, individually.

Data analysis and machine learning techniques are also essential for processing and
interpreting the large amounts of data collected by UAVs. These techniques can be used
to process and interpret remote sensing data, as well as field data, to create detailed maps
of forest structure and composition, and to identify patterns and trends in the data. Data
quality is critical for the performance of machine learning models in the field of forestry.
The quality of the data affects the accuracy, reliability, and generalizability of the model. For
example, if the data used to train a model are of poor quality, the model will not perform
well on new, unseen data. This can lead to inaccurate predictions, which can have serious
consequences in the field of forestry, such as incorrect forest inventory and management, or
wrong estimations of forest biomass and carbon sequestration. Additionally, data quality
also plays a role in the interpretability of the model. For example, if the data used to train a
model are not representative of the population of interest, it will be difficult to interpret the
model’s predictions and make informed decisions. In order to ensure good data quality,
it is important to have a robust and well-designed data collection process that is tailored
to the specific task at hand. This may include using appropriate sensors, collecting data
in a consistent manner, and using quality control measures to ensure that the data are
accurate and free of errors. Additionally, it is important to have a good understanding of
the underlying data and the problem being solved so that appropriate data pre-processing
and cleaning can be applied. A trend is the use of multi- and hyperspectral data, such
as near-infrared (NIR) and thermal imagery, in conjunction with visible light imagery to
improve segmentation and classification results. Additionally, there is an increasing use
of 3D information such as LiDAR data to extract tree crowns and stems, which can aid
in segmentation and understanding forest structures. In the reviewed papers, feature
extraction has no clear predominant method, being conducted manually, using statistical
analysis or (un)supervised machine learning methods, while classification is mostly con-
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ducted using supervised methods, and segmentation mostly uses unsupervised machine
learning techniques.

Data and data processing techniques are both important aspects. Along with the
sensors and UAV platforms becoming lighter, smaller, and more affordable, the evolution
of machine learning techniques is also an important factor in the latest trends of the
field. The rise of deep learning methods in the past few years is the latest trend in the
field, showing great potential and minimizing human intervention in data interpretation.
However, this lack of human meddling might not result in the most efficient outcome.
In other words, a sophisticated and complex neural network architecture might reduce
human interference in data interpretation but it might require a lot of processing capacity
and data availability. This necessity for resources might not be needed by using a classical
method such as Random Forest or Support Vector Machine classifier and the right data and
feature engineering.

Overall, the latest trends in image processing and machine learning techniques for
forestry and segmentation and classification tasks are focused on improving the accuracy
and interpretability of the results, by using 3D information, multi-modal data, and AI
methods, and may be summarized as:

1. 3D Information: the use of 3D information such as LiDAR data to extract tree crowns
and stems has proven to be beneficial by aiding in segmentation and classification
tasks and giving more in-depth analysis of forest structures.

2. Multi-modal data: the use of multi-modal data, such as LiDAR, hyperspectral, and
thermal imagery in conjunction with visible light imagery, has been growing exten-
sively to improve segmentation and classification results.

3. AI methods: Convolutional Neural Networks (CNNs) and Deep Learning architec-
tures have been increasingly used for image segmentation and classification tasks in
forestry. These methods are able to achieve high accuracy in identifying and segment-
ing trees from UAV images. However, this trend is in its early stages and specifically
tailored networks for specific forestry tasks are still missing.

Towards an explainable and more efficient AI, some methods already used in other
fields might be used here:

1. Active learning: With active learning methods, the model can learn from human
input to improve the segmentation and classification results. This means an end-to-
end architecture is not necessarily the best possible approach and human interfer-
ence (manufacturing features manually and feeding them to the NN architecture)
at certain levels (or in this case of NNs layers) can improve the performance of the
model significantly.

2. Transfer learning: Transfer learning allows the use of pre-trained models to reduce the
amount of labeled data needed for a specific task, which can be especially useful in
the case of forestry where data may be limited. Additionally, since NN methods, and
in general machine learning model development, is an experimental endeavour, using
already existing knowledge from other applications can reduce the development
time substantially.

3. Data Augmentation: Data augmentation is a technique in machine learning and
computer vision where new training data are generated from existing training data
by applying transformations to the original data. These transformations can include
various techniques such as cropping, rotating, scaling, flipping, adding noise, or
changing the color. By increasing the size and diversity of the training data-set, one
can improve the performance of the machine learning model. This pre-processing
technique can be beneficial in forestry applications since UAV-born data are scarce.

This review study provides a comprehensive view of the latest trends in tree classifica-
tion and segmentation using unmanned aerial vehicles, focusing on its two main vectors:
data and processing methods. Its results can be used to tailor future studies on forest
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remote sensing, to better understand the underlying relations between data and methods,
thus improving the quality of the results in this field.
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CHM Canopy Height Model
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EGB Extreme Gradient Boosting
ELM Extreme Learning Machine
FCM Fuzzy C-Means
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LiDAR Light Detection and Ranging
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SVM Support Vector Machine
UAV Unmanned Aerial Vehicle
VDD Voxel space Detection and Delineation
VT Voroni Tessellation

Appendix A

Detailed tables categorizing the papers are presented here. Tables A1–A4 present the
papers that have performed 3D data generation, statistical analysis and feature extraction,
tree and object segmentation and object-based classification, respectively. Papers are
ordered by the number of sensors employed, from the least to the most sensors used. The
terms in square brackets after each citation indicate the sensors used in that paper.

Table A1. Three-dimensional data generation techniques.

Methods Papers

Structure from Motion (SfM)

[37] [RGB], [39] [RGB], [41] [RGB], [43] [RGB], [45] [RGB], [49] [RGB], [58] [RGB], [59] [RGB], [63] [RGB], [70] [RGB], [53] [RGB], [102] [RGB]

[75] [RGB], [74] [RGB], [77] [RGB], [51] [MSI], [52] [MSI], , [60] [MSI], [61] [MSI], [71] [MSI], [64] [MSI], [55] [MSI], [48] [GB+RE], [72] [RGB+NIR]

[42] [RGB+NIR], [54] [RGB+NIR], [44] [RGB+NIR], [46] [RGB+MSI], [47] [RGB+MSI], [56] [RGB+MSI], [57] [RGB+MSI], [62] [RGB+MSI]

[65] [RGB+MSI], [69] [RGB+MSI], [50] [RGB+LiDAR], [73] [RGB+LiDAR], [38] [RGB+LiDAR], [67] [RGB+LiDAR], [68] [RGB+MSI+Thermal]

[66] [RGB+MSI+LiDAR], [76] [RGB+MSI+LiDAR], [40] [MSI+HSI+LiDAR]

LiDAR

[78] [LiDAR], [79] [LiDAR], [97] [LiDAR], [96] [LiDAR], [82] [LiDAR], [83] [LiDAR], [84] [LiDAR], [85] [LiDAR], [86] [LiDAR]

[87] [LiDAR], [88] [LiDAR], [89] [LiDAR], [90] [LiDAR], [91] [LiDAR], [92] [LiDAR], [93] [LiDAR], [94] [LiDAR], [95] [LiDAR]

[80] [RGB+HSI+Thermal+LiDAR], [81] [RGB+MSI+HSI+Thermal+LiDAR]

Table A2. Feature extraction and statistical analysis.

Methods Papers

Manual Feature

Extraction

Structure from Motion (SfM)
[39] [RGB], [41] [RGB], [43] [RGB], [42] [RGB+NIR]

[65] [RGB+MSI], [69] [RGB+MSI], [98] [RGB+Thermal]

LiDAR [92] [LiDAR], [90] [LiDAR], [80] [RGB+HSI+Thermal+LiDAR]

Statistical

Analysis

Analysis of Variance (ANOVA)
[47] [RGB+MSI], [62] [RGB+MSI], [64] [MSI]

[80] [RGB+HSI+Thermal+LiDAR], [99] [LiDAR], [122] [LiDAR]

Tukey’s Range Test
[47] [RGB+MSI], [62] [RGB+MSI], [64] [MSI]

[80] [RGB+HSI+Thermal+LiDAR], [99] [LiDAR], [122] [LiDAR]

Shapiro Wilk Test [43] [RGB], [64] [MSI]

Bartlett’s Test [64] [MSI]

Mann-Whitney U Test [71] [MSI]

Kruskal-Wallis Test [71] [MSI]

Unsupervised

Machine

Learning

Threshold Condition [100] [LiDAR], [87] [LiDAR], [38] [RGB+LiDAR]

Clustering-Based

Segmentation

k-Means [96] [LiDAR]

Euclidean Distance [92] [LiDAR]

Principal Component Analysis (PCA) [36] [HSI], [82] [LiDAR], [84] [LiDAR], [85] [LiDAR]

Fitting

Algorithms

Least square fitting [79] [LiDAR], [86] [LiDAR], [101] [LiDAR]

Hough Transform [79] [LiDAR], [83] [LiDAR], [85] [LiDAR], [101] [LiDAR]

RANSAC [102] [RGB], [101] [LiDAR], [96] [LiDAR], [50] [RGB+LiDAR]

Point Cloud Segmentation [97] [LiDAR]

Supervised

Machine

Learning

k-Nearest Neighborhood (k-NN) [95] [LiDAR]

Regression Models
[37] [RGB], [41] [RGB], [43] [RGB], [102] [RGB], [42] [RGB+NIR]

[89] [LiDAR], [96] [LiDAR], [104] [MSI], [103] [RGB+LiDAR]

Support Vector Regression (SVR) [89] [LiDAR], [91] [LiDAR]

Random Forest (RF) [82] [LiDAR], [89] [LiDAR], [95] [LiDAR], [91] [LiDAR], [96] [LiDAR]

Extreme Gradient Boosting [91] [LiDAR]

Multilayer Perceptron (MLP) [91] [LiDAR]
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Table A3. Segmentation (or delineation) methods.

Methods Papers

Manual Delineation
[37] [RGB], [109] [RGB], [110] [RGB], [111] [RGB], [115] [RGB], [60] [MSI], [55] [MSI], [108] [HSI], [106] [RGB+NIR]

[56] [RGB+MSI], [107] [RGB+MSI], [114] [RGB+MSI], [113] [HSI+LiDAR], [112] [RGB+HSI+LiDAR]

Unsupervised

Machine

Learning

Local Maxima

[45] [RGB], [53] [RGB], [63] [RGB], [70] [RGB], [117] [RGB], [120] [RGB], [77] [RGB], [82] [LiDAR], [96] [LiDAR], [99] [LiDAR]

[100] [LiDAR], [121] [LiDAR], [118] [LiDAR], [87] [LiDAR], [91] [LiDAR], [93] [LiDAR], [122] [LiDAR], [116] [RGB+MSI]

[56] [RGB+MSI], [50] [RGB+LiDAR], [67] [RGB+LiDAR], [73] [RGB+LiDAR], [119] [HSI+LiDAR], [76] [RGB+MSI+LiDAR]

Threshold Condition

[49] [RGB], [63] [RGB], [124] [RGB], [117] [RGB], [125] [RGB], [102] [RGB], [120] [RGB], [48] [BG+RE], [151] [BG+NIR]

[72] [RGB+NIR], [61] [MSI], [64] [MSI], [123] [MSI], [127] [MSI], [62] [RGB+MSI], [68] [RGB+MSI+Thermal]

[108] [HSI], [96] [LiDAR], [99] [LiDAR], [73] [RGB+LiDAR], [126] [RGB+LiDAR]

Matched Filtering [40] [MSI+HSI+LiDAR]

Error Correction Output Codes (ECOC) [124] [RGB]

Super-pixel Segmentation [128] [RGB+MSI]

Edge Detection-Based Segmentation [124] [RGB], [130] [RGB], [46] [RGB+MSI], [129] [RGB+HSI]

Watershed Segmentation

[39] [RGB], [43] [RGB], [59] [RGB], [63] [RGB], [77] [RGB], [71] [MSI], [134] [HSI], [78] [LiDAR], [82] [LiDAR], [93] [LiDAR]

[132] [LiDAR], [118] [LiDAR], [122] [LiDAR], [56] [RGB+MSI], [50] [RGB+LiDAR], [67] [RGB+LiDAR], [73] [RGB+LiDAR]

[131] [HSI+LiDAR], [112] [RGB+HSI+LiDAR], [133] [RGB+HSI+LiDAR], [81] [RGB+MSI+HSI+Thermal+LiDAR]

Multiresolution Segmentation
[58] [RGB], [136] [RGB], [138] [RGB], [139] [RGB], [48] [BG+RE], [106] [RGB+NIR], [55] [MSI], [137] [MSI], [135] [HSI]

[128] [RGB+MSI]

Region Growing-Based

Segmentation

[45] [RGB], [49] [RGB], [70] [RGB], [48] [BG+RE], [71] [MSI], [118] [LiDAR], [79] [LiDAR], [95] [LiDAR], [99] [LiDAR]

[73] [RGB+LiDAR], [112] [RGB+LiDAR+HSI]

Gaussian Mixture Model [117] [RGB]

Voroni Tessellation (VT) [118] [LiDAR]

Discrete Wavelet Transform [123] [MSI], [124] [RGB]

Clustering-

Based

Segmentation

HDBSCAN [84] [LiDAR]

ISODATA [106] [RGB+NIR]

k-Means [65] [RGB+MSI], [140] [RGB], [125] [RGB]

Fuzzy C-Means (FCM) [125] [RGB]

Mean-Shift [39] [RGB], [141] [RGB], [51] [MSI], [100] [LiDAR], [88] [LiDAR], [57] [RGB+MSI], [114] [RGB+MSI]

Euclidean Distance [79] [LiDAR], [69] [RGB+MSI], [131] [HSI+LiDAR]

Principle Component

Analysis (PCA)
[51] [MSI], [79] [LiDAR], [54] [RGB+NIR]

Fitting

Algorithm

Least Square Fitting [78] [LiDAR]

Hough Transform [78] [LiDAR], [140] [RGB]

Point Cloud Segmentation
[132] [LiDAR], [90] [LiDAR], [93] [LiDAR], [99] [LiDAR], [97] [LiDAR], [121] [LiDAR], [46] [RGB+MSI], [47] [RGB+MSI]

[131] [HSI+LiDAR], [144] [RGB+MSI+LiDAR], [112] [RGB+HSI+LiDAR]

Layer Stacking [93] [LiDAR], [132] [LiDAR]

Voxel space detection

and delineation (VDD)
[121] [LiDAR]

Supervised

Machine

Learning

k-Nearest Neighborhood (k-NN) [136] [RGB], [65] [RGB+MSI], [69] [RGB+MSI]

Linear Discrimination [68] [RGB+MSI+Thermal]

Support Vector Machines (SVM) [136] [RGB]

Gradient Boosting [117] [RGB], [104] [MSI]
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Table A4. Classification and semantic segmentation techniques.

Methods Papers

Unsupervised

Machine Learning

Threshold

Condition
[62] [RGB+MSI]

Supervised

Machine

Learning

Non-NN

Methods

Bayesian Classifier [146] [RGB], [33] [RGB+HSI]

K-Nearest Neighborhood [49] [RGB], [145] [RGB], [138] [RGB], [130] [RGB], [137] [MSI], [32] [RGB+HSI], [33] [RGB+HSI]

Linear Discrimination [39] [RGB], [114] [RGB+MSI], [68] [RGB+MSI+Thermal]

AdaBoost [147] [RGB]

Spectral Angle Mapper

(SAM)
[144] [RGB+MSI+LiDAR]

Support Vector Machine

(SVM)

[49] [RGB], [58] [RGB], [136] [RGB], [147] [RGB], [141] [RGB], [149] [RGB], [130] [RGB], [146] [RGB], [123] [MSI], [137] [MSI]

[150] [MSI], [135] [HSI], [134] [HSI], [148] [HSI], [44] [RGB+NIR], [57] [RGB+MSI], [34] [RGB+HSI], [129] [RGB+HSI]

[81] [RGB+MSI+HSI+Thermal+LiDAR]

Maximum Likelihood [149] [RGB], [44] [RGB+NIR], [54] [RGB+NIR], [106] [RGB+NIR], [57] [RGB+MSI]

Decision Trees

and

Random Forest (RF)

[59] [RGB], [109] [RGB], [49] [RGB], [141] [RGB], [149] [RGB], [139] [RGB], [130] [RGB], [146] [RGB], [153] [GR+NIR]

[51] [MSI], [55] [MSI], [152] [MSI], [123] [MSI], [137] [MSI], [150] [MSI], [154] [MSI], [127] [MSI], [108] [HSI], [135] [HSI]

[151] [BG+NIR], [106] [RGB+NIR], [46] [RGB+MSI], [47] [RGB+MSI], [107] [RGB+MSI], [128] [RGB+MSI], [32] [RGB+HSI]

[33] [RGB+HSI], [100] [LiDAR], [96] [LiDAR],[97] [LiDAR], [126] [RGB+LiDAR], [103] [RGB+LiDAR], [113] [HSI+LiDAR]

[131] [HSI+LiDAR], [119] [HSI+LiDAR], [133] [RGB+HSI+LiDAR], [40] [MSI+HSI+LiDAR]

[81] [RGB+MSI+HSI+Thermal+LiDAR]

Recursive Partitioning [49] [RGB]

NN

Methods

Multilayer Perceptron (MLP) [33] [RGB+HSI]

Back Propagation

Neural Network (BP NN)
[145] [RGB], [147] [RGB]

Extreme Learning Machine

(ELM)
[155] [RGB]

Convolutional Neural Networks

(CNN)

[58] [RGB], [35] [RGB], [170] [RGB], [171] [RGB], [163] [RGB], [110] [RGB], [111] [RGB], [117] [RGB], [149] [RGB]

[165] [RGB], [166] [RGB], [136] [RGB], [145] [RGB], [147] [RGB], [168] [RGB], [156] [RGB], [161] [RGB], [173] [RGB]

[19] [RGB], [174] [RGB], [115] [RGB], [167] [RGB], [175] [RGB], [60] [MSI], [61] [MSI], [172] [MSI], [159] [MSI], [160] [MSI]

[104] [MSI], [36] [HSI], [162] [HSI], [94] [LiDAR], [176] [LiDAR], [158] [LiDAR], [169] [RGB+MSI], [56] [RGB+MSI]

[177] [RGB+MSI], [128] [RGB+MSI], [164] [RGB+LiDAR], [126] [RGB+LiDAR], [157] [MSI+LiDAR], [66] [RGB+MSI+LiDAR]
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