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Abstract: Star identification plays a key role in spacecraft attitude measurement. Currently, most star
identification algorithms tend to perform well only in a scene without noise and are highly sensitive
to noise. To solve this problem, this paper proposes a star identification algorithm based on the
maximum spanning tree (MST) index and multi-order continuous cycle angle (CCA) intended for the
lost-in-space mode. In addition, a neighboring star selection method named dynamic eight-quadrant
(DEQ) is developed. First, the DEQ method is used to select high-confidence neighboring stars for
the main star. Then, the star image is regarded as a graph, and the Prim algorithm is employed to
construct the MST pattern for each guide star, which is then combined with the K vector index to
perform the main star candidate search. Finally, the Jackard similarity voting for the multi-order
CCA of the main star is used to identify the main star, and the global neighboring star identification
is conducted by the multi-order CCA of neighboring stars. The simulated and real star images test
results show that compared with five mainstream algorithms, when the position noise is 1 pixel,
the number of false stars is five, the magnitude noise is 0.5, and the identification accuracy of the
proposed algorithm is higher than 98.5%. Therefore, the proposed algorithm has excellent anti-noise
ability in comparison to other algorithms.

Keywords: star identification; lost-in-space mode; dynamic eight-quadrant method; maximum
spanning tree; continuous cyclic angle

1. Introduction

The measurement of spacecraft attitude refers to determining the orientation of the
spacecraft in the inertial coordinate system. This task plays a key role in the fields of
astronomical navigation, remote sensing observation, and deep space exploration missions.
In recent years, there have been many examples of fatal problems in satellites due to the
incorrect operation of the attitude determination system, and a typical one is: “Lewis
spacecraft spins out of control [1].” Therefore, the attitude determination system has been
considered a vital subsystem in space missions [2]. The most critical component in the
attitude determination system is an aerospace attitude sensor. At present, the commonly
used aerospace attitude sensors mainly include sun sensors, infrared horizon sensors,
gyroscopes, and star sensors. Compared with the other types of sensors, the star sensor
provides more accurate three-axis attitude data in terms of arc seconds and can output
attitude without knowing the prior attitude [3]. Due to the mentioned advantages, currently,
a star sensor is the most widely used type of aerospace attitude sensor [4].

The workflow of a star sensor mainly includes two stages: offline and online. The
offline stage is to load the star pattern database (SPD) on the ground. In contrast, the online
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stage mainly includes three steps: on-orbit centroid extraction, star identification, and
attitude calculation. In addition, a star sensor has two operational modes: lost-in-space
(LIS) mode and tracking mode [5]. The LIS mode occurs when there is no prior attitude or
the attitude data are lost due to a malfunction [6]. In such a case, the star identification in the
full-sky area is performed to determine the initial attitude, but this has high requirements
for the robustness and real-time performance of a star identification algorithm. Then, a
sensor enters the tracking mode and starts the star searching and identification process in a
local area using the initial attitude data. Thus, star identification in the LIS mode is more
challenging than that in the tracking mode.

In a realistic space deployment scenario, there can be certain deviations between the
captured images and pre-stored guide stars in some boresight directions, which can have
a severe impact on the star identification result. The main reasons for these deviations
may be due to the following: the interference stars appear on the imaging plane due to
radiation from nearby planets and space debris, causing the false star noise; the interference
of the internal circuit of a star sensor might lead to high-magnitude star missing, which
represents the magnitude noise; the focal length and principal point calibration errors of a
star sensor and the jitter of a satellite platform can lead to a deviation in the star imaging
position, resulting in the position noise. The listed cases have a high possibility of causing
a star identification failure. Therefore, fast and accurate star identification in the LIS mode
is extremely challenging, and many star identification algorithms have been proposed in
recent years. Generally, the mainstream star identification algorithms can be divided into
three categories: the subgraph-based class, pattern-based class, and learning class [7–11].
Typical, recently published star identification algorithms of three different categories are
listed in Table 1.

Table 1. Classification of mainstream star identification algorithms.

Algorithm Category Methodology

Sun et al. [12] Subgraph-based Double-triangle with the star angle and distance
Liu et al. [13] Subgraph-based Triangle voting scheme

Kolomenkin et al. [14] Subgraph-based Geometric voting strategy
Mortari et al. [15] Subgraph-based Pyramid structure and K vector search

Cole et al. [16] Subgraph-based Area and polar moments of triangles
Lee et al. [17] Pattern-based Polar grid and multi-reference stars
Li et al. [18] Pattern-based Two-dimensional angular distances

Aghaei et al. [19] Pattern-based Optimization method
Zhang et al. [20] Pattern-based Radial and cyclic pattern

Samirbhai et al. [21] Pattern-based Rotation-invariant 2D vector
Jiang et al. [22] Pattern-based Redundant-coded star pattern
Liu et al. [23] Pattern-based A priori algorithm
Jiang et al. [4] Learning-based Hierarchical convolutional neural network (CNN)
Yang et al. [9] Learning-based 1D-CNN

The so-called subgraph-based algorithms use a geometric structure between the stars
to identify stars. The SPD is regarded as a graph, and the captured image is regarded as a
subgraph, where graph vertices denote stars, and graph edges represent angular distances
between the stars. Thereafter, the star identification is realized through the correspondence
of vertices and edges between the subgraph and the SPD. The most classical algorithm of
this type is the triangle algorithm [24], which regards the three brightest stars in the field of
view (FOV) as vertices and angular distances between every two vertices as three edges of
a triangle, thus constructing a unique triangle. This algorithm is simple and has been one of
the most commonly used algorithms in engineering. However, it has the disadvantage of
low feature dimensions, which makes redundant matching prone to occur. In addition, as
the detection capability of a star sensor increases, the SPD memory increases exponentially,
resulting in a significant decrease in search efficiency. Aiming to solve the aforementioned
problems, recent research has proposed many triangle-derived algorithms [12–16], of which
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the most representative is the pyramid algorithm [15] that has been successfully applied to
the High-Energy Transient Explorer (HETE) task. In this algorithm, four stars are used to
form a pyramid structure, and the feature dimension is improved, reducing the probability
of redundant matching. Furthermore, the K vector algorithm was introduced, which greatly
improves search efficiency. In [14], the authors developed a voting strategy based on the
relationship between stars to vote, but the identification accuracy decreased significantly
with the number of false stars. In view of that, in [13], the authors proposed a multi-layer
voting algorithm, which can slightly improve the anti-noise ability, but its SPD storage is
large. Overall, the subgraph-based algorithms generally face the problem of large SPD
storage memory.

Compared with the subgraph-based algorithms, the pattern-based algorithms typically
have a smaller SPD. The first proposed algorithm of this type was the grid algorithm [25,26],
which aims to construct a unique star pattern based on the positional relationship between
the main star and the nearest neighboring star, called the reference star. However, due to
over-reliance on the reference star, the identification accuracy decreases rapidly when there
is noise interference. On this basis, many improved algorithms were derived [17–19,27].
For instance, in [17], a grid pattern vector in the polar grid was constructed, and a multi-
reference stars method was proposed, but the problems of dependence on the reference
star and high sensitivity to noise remained unsolved. In [18], the authors used a two-
dimensional angular distance pattern to replace the original grid pattern and combined
the traversal method to determine the reference star, which improved the robustness
to noise. However, the traversal method has high computational complexity, resulting
in reduced real-time performance. In addition, a series of algorithms for circular and
radial patterns were developed [20,22,28]. In [22], an algorithm combining radial and
neighboring star patterns was proposed, and redundant coding was used for storage,
which reduced the storage capacity of the SPD. Further, in [23], companion stars were
determined by the a priori algorithm, and a radial pattern image was generated, but
only the selected neighboring stars could be identified. In [21], an innovative rotation-
invariant two-dimensional vector pattern was designed; this design is robust against the
positional noise, but its identification accuracy drops rapidly with the number of false stars.
In [29], a combination of hamming distance and spearman correlation was adopted for star
identification. However, this approach could identify only one to two stars adjacent to the
main star. The general disadvantage of the pattern-based algorithms is that most of them
perform poorly under the aforementioned three types of noises and cannot achieve global
star identification.

Learning-based algorithms essentially represent a class of pattern-based algorithms [30].
Since CNN was applied to star identification [31], many CNN-based algorithms for star
identification have been proposed, and the most representative ones use spider-web images
and hierarchical CNN [4], mixed star patterns and multi-layer SOM neural networks [32],
and 1D CNN [9]. They input the constructed patterns or star images into the network
for training to classify and identify the guide stars in a captured star image. Although
this kind of algorithm can improve the identification accuracy, the iterative updating of
network weights results in a long running time. In addition, the memory consumption of
learning-based algorithms is generally large.

Through the aforementioned analysis, it is found that star identification mainly has
the disadvantages of a long running time, large memory usage, and sensitivity to noise.
In this paper, with reference to pattern-based algorithms, a global star identification al-
gorithm based on the maximum spanning tree fast index and continuous cycle angle is
proposed, which greatly improves the search time and anti-noise ability of pattern-based
star identification.

The main contributions of this study can be summarized as follows:

1. A dynamic eight-quadrant method for neighboring stars selection, which makes the
guide stars in the FOV uniformly distributed and increases the identifiability of the
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constructed pattern, is proposed. This provides a novel idea for the selection of
neighboring stars;

2. The Prim algorithm is introduced into the field of star identification first, constructing
the maximum spanning tree pattern for each main star, and is then combined with
the K vector to define a fast index, which greatly improves the search efficiency of the
main star;

3. A multi-order continuous cycle angle pattern is designed and used to perform the
global identification of neighboring stars, which improves the anti-noise performance
of the pattern-based algorithm;

4. Extensive experiments are conducted on simulated and real star images, and the
experimental results show that the proposed algorithm is superior to most mainstream
algorithms in terms of identification accuracy, memory, and time consumption.

The rest of this paper is organized as follows. Section 2 introduces the pre-knowledge
and pattern framework. Section 3 presents the proposed algorithm, including the strategies
for LUT, SPD generation, and star identification. Section 4 compares the proposed algorithm
with five mainstream algorithms. Section 5 discusses the advantages and limitations of this
study. Finally, Section 6 concludes this study. Appendix A summarizes all the abbreviations
used in the study.

2. Pre-Knowledge and Pattern Framework
2.1. Pre-Knowledge

This section briefly introduces the terms involved in this study.
Guide star catalog: The original star catalog used in this study is the Smithsonian As-

trophysical Observatory (SAO) star catalog, which contains 258,997 stars with a magnitude
dimmer than 11 and includes data on the right ascension (αi), declination (βi), apparent
magnitude, and other astronomical parameters of each star [33]. According to the detection
capability of the star sensor used in this study, the stars with a magnitude below 6 are
selected to form the guide star catalog, and a two-dimensional distribution graph is drawn
according to the position coordinates (αi,βi) of the selected stars, as shown in Figure 1.
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Figure 1. The two-dimensional distribution of the guide stars with a magnitude lower than 6.

Star sensor: The model diagram of the star sensor imaging the stars on the imaging
plane is shown in Figure 2, where the reddish-brown star represents the main star (MS) in
the current FOV, the blue star represents the star in the FOV but not selected as neighboring
star (NS), the orange star represents the star selected as NS, and the number of NSs is
denoted by N; the orange stars represent other stars in the celestial sphere, and Aij is the
angular distance between stars i and j.
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Figure 2. The illustration of the star imaging process by the star sensor.

Continuous cyclic angle: The maximum FOV radius is denoted by PRmax, and the
continuous cyclic angle (CCA) is defined as an angle between the lines connecting the
MS and any two NSs in the FOV. The CCA for N = 8 is presented in Figure 3; Figure 3a
shows the angle between the adjacent NSs, denoted by θi (i = 1, 2, ..., N), which represents
the first-order CCA pattern of an NS; Figure 3b shows the multi-order CCA pattern of
NS1, denoted by θ1,m (m = 2, 3, . . . , N). Among them, θ1,2 = θ1, θ1,3 = θ1 + θ2, . . . ,
θ1,8 = θ1 + θ2 + θ3 + θ4 + θ5 + θ6 + θ7. The CCAs of other orders of NS1 are calculated in
the same way. Similarly, the multi-order CCA patterns of other NSs are constructed.
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Figure 3. Schematic diagram of the multi-order CCA construction process. (a) First-order CCA of all
NSs; (b) Multi-order CCA of NS1; (c) Multi-order CCA of NS8.

Graph structure: A star image is regarded as an undirected graph in this study; namely,
all stars are regarded as a vertex set (V) of graphs (G), and all inter-star connections are
regarded as an edge set (E); the Euclidean distance of E is regarded as an edge weight.
The maximum spanning tree (MST) represents the set of the maximum edge weights that
connect all vertices without loops, and it can be represented by a set T = {d(u, v)|(u, v) ∈
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V}, where d(u, v) represents the edge weight for the MST. Therefore, the value of MST can
be calculated as w(T) =∑d(u,v)∈T d(u, v).

2.2. Proposed Rotation-Invariant Pattern Frames

Ideally, the star sensor should be imaged in the same position as a star when the SPD
is constructed. However, in the real imaging process, it is common that a star rotates on the
imaging plane, and constructing a rotation-invariant pattern is the primary task in the star
identification algorithm design.

In this study, a multi-order CCA pattern star image identification framework based
on the MST fast index is proposed. The construction and identification principles of the
proposed framework are explained in detail in Section 3, and in this section, the rotation
invariance of the proposed framework is explained.

First, the projection transformation steps of the star sensor are analyzed. According to
(αi, βi) of the guide star, the coordinates of the ith guide star in the earth-centered inertial
(ECI) coordinate system can be expressed as follows:

vECI
i = [XECI

i ; YECI
i ; ZECI

i ] = [cos αi cos βi; sin αi cos βi; sin βi]. (1)

Then, the coordinates of the ith guide star in the star sensor coordinate system are
defined by:

vsen
i = [Xsen

i ; Ysen
i ; Zsen

i ] = C · vECI
i , (2)

where C is the attitude rotation matrix [1], which converts the ECI coordinates [X ECI
i , YECI

i , ZECI
i

]
to the star sensor coordinates [X sen

i , Ysen
i , Zsen

i
]
.

Finally, the coordinates of the ith guide star on the imaging plane (x i, yi) are calculated by: xi =
f Xsen

i
pxZsen

i
+ Dx

2

yi =
f Ysen

i
pyZsen

i
+

Dy
2

, f =
Dx px

2 tan( FOVx
2 )

=
Dy py

2 tan( FOVy
2 )

, (3)

where px, Dx, and FOVx denote the pixel size, the number of pixels, and the degree of
FOV in the x-dimension, respectively; the meaning of the parameters in the y-dimension is
the same.

Next, the rotation invariance analysis of the CCA pattern is performed. The first-order
CCA of all NSs is expressed as follows:

θi =


[
arccos( dot((xi−xm ,yi−yc),(xi+1−xm ,yi+1−ym))

||xi−xm ,yi−ym ||2·||xi+1−xm ,yi+1−ym ||2
)
]
, i = 1, . . . , N − 1,[

arccos( dot((xN−xm ,yN−ym),(x1−xm ,y1−ym))
||xN−xm ,yN−ym ||2·||x1−xm ,y1−ym ||2

)
]
, i = N,

(4)

where (x i, yi) are the coordinates of the ith NS on the imaging plane, and (x m, ym) are
the coordinates of the MS of the imaging plane; function dot(b1, b2) returns the dot product
of vectors b1 and b2; ||·||2 represents the two-norm of a vector; [·] indicates rounding to the
nearest integer.

Assume that S = [θ1, θ2, . . . , θN ], which represents the first-order CCA set; then,
according to the CCA definition and Equation (4), the ith NS multi-order CCA pattern of
the kth MS can be expressed as follows:

Ak[i] = [Si, Si + Si>>1, . . . , Si + Si>>1 + . . . + Si>>(N−1)],
s.t. 1 < i ≤ N

(5)

where the symbol “>>” means that vector S is shifted circularly to the right.
Further, define the matrix consisting of Ak[i] (i = 1, 2, . . . , N) as a multi-order CCA

pattern of the kth MS as follows:

Ak = [Ak[1]; Ak[2]; . . . ; Ak[N]], (6)
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where the rows in Ak represent the Ak[i] (i = 1, 2, . . . , N) of NSs, and the columns denote
the zth-order CCA patterns, where z = 1, 2, . . . , N – 1.

As a star sensor rotates, the imaging plane coordinates of stars change. According to
Equation (4), the rotated first-order CCA can be expressed by:

θ
Rδ
i =


[

arccos( Rδ ·dot((xi−xm ,yi−ym),(xi+1−xm ,yi+1−ym))√
Rδ ·
√

Rδ ·||xi−xm ,yi−ym||2·||xi+1−xm ,yi+1−ym||2
)

]
, i = 1, . . . , N − 1,[

arccos( Rδ ·dot((xN−xm ,yN−ym),(x1−xm ,y1−ym))√
Rδ ·
√

Rδ ·||xN−xm ,yN−ym||2·||x1−xm ,y1−ym||2
)

]
, i = N,

(7)

where Rδ denotes the rotation matrix obtained after the rotation by angle δ, and it is given
by:

Rδ =

[
cos δ − sin δ
sin δ cos δ

]
. (8)

Based on Equations (4) and (7), it holds that θi = θRδ
i . This shows that the first-order

CCA set S= [θ1, θ2, . . . , θN ] does not change with rotation, while the multi-order CCA
matrix Ak is constructed based on the set S, so its value is also unchanged. Thus, the
rotation changes only the row order of the pattern matrix Ak, while its value remains
unchanged and can be considered rotation-invariant. The row alignment is described in
Section 3.2.

Finally, the MST construction only uses the Euclidean distance of stars on the imaging
plane. According to the MST definition given in Section 2.1 and the construction process
presented in Section 3.1.2, the MST pattern is also rotation-invariant. Therefore, both
patterns constructed in this study are rotation-invariant. In addition, the proposed dynamic
eight-quadrant NS selection method ensures the invariance of the star pattern, which is
explained in Section 3.1.1.

3. Proposed Methodology

Inspired by the pattern-based algorithms, this study proposes an innovative star
identification algorithm based on the MST fast index and multi-order CCA pattern. In
addition, this study develops a guide star selection method named the DEQ method,
which can make the guide stars in the FOV more uniform, thus ensuring the pattern is
more identifiable. The proposed algorithm includes two main tasks: offline LUT and SPD
generation and online star identification. The specific steps of the proposed algorithm are
as follows. In the offline step, each star at the center of the FOV is denoted as MS, a unique
MST look-up table (LUT) index is constructed, and a multi-order CCA pattern is generated
to obtain the SPD. In the online step, both patterns are constructed from the captured or
simulated images. First, the candidate MS set is obtained using the K vector value from
the LUT, and then the unique MS and NSs in the image are identified based on the CCA
pattern. The flowchart of the proposed algorithm is shown in Figure 4, where DMS and
DNS represent the MS and NS of the LUT and SPD, respectively; SMS and SNS denote the
MS and NS of the captured and simulated images, respectively. In Figure 4, the upper and
lower structures represent two major steps, and the right side presents the rough flow of
the proposed global star identification.

3.1. LUT and SPD Generation

Before constructing the offline LUT and SPD, it is necessary to preprocess the guide star
catalog, which includes performing magnitude filtering and double star merging [34] and
then obtaining Ns = 4956 stars. Next, the LUT and SPD construction steps are conducted.
Generally, if the number of stars in the FOV is too small, the star identification will fail; in
contrast, if the number of stars in the FOV is too large, the star pattern will be redundant,
which will also cause identification errors. Therefore, it is essential to select an optimal
number of stars before constructing the star pattern. The number of stars in different FOVs
is presented in Figure 5, where it can be seen that there are redundant stars in most of
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the boresight for FOV = 20◦ × 20◦. To solve this problem, this study proposes a dynamic
eight-quadrant NS selection method named the DEQ method. The NSs selected by the
DEQ method are more uniformly distributed in the FOV, which makes the constructed
patterns more identifiable.
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3.1.1. DEQ Method

The DEQ method involves two main steps: eight-quadrant division and dynamic soft
interval select DNSk

i , which are explained in the following.
Step 1: Eight-quadrant division: In the guide star catalog, place each star in the center

of the FOV in turn and select the center star as the DMSk (k = 1, 2, . . . , Ns) each time,
which is denoted by reddish-brown in Figure 6a. Then, set the minimum field radius
PRmin = 0.1◦, avoiding selecting a DNSk

i (i = 1, . . . , N) that is too close to the DMSk. Further,
initialize the dynamic radius PRd, as shown in Figure 6b. Based on the x and y axes and the
diagonal direction, the eight quadrants are divided, as shown in Figure 6c;
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Figure 6. The NS selection rules in the proposed DEQ method. (a) Distribution of redundant NSs in
the FOV; (b) Parameter settings; (c) Eight-quadrant division based on the imaging plane coordinate
system; (d) According to λi of the stars in each quadrant, a dynamic NS selection is performed.

Step 2: Dynamic soft interval select DNSk
i : First, set an initial value of g to make PRd

change dynamically within (PRmin, PRmax), where PRmax is FOV/2, as shown in Figure 6d.
Moreover, denote the maximum number of DNSs by Nmax. The values of Nmax and g and
the initial value of PRd are given in Table 2. The parameter Nmax is to ensure that there is
a guide star in each quadrant in most boresight directions; therefore, the value is set to
eight. By randomly generating 10,000 boresight directions, most of the guide stars under
the FOV = 20◦ × 20◦ are distributed within the FOV with a radius of 5◦, so PRd = 5◦ is set;
moreover, it is set to g = 1.25◦. When the FOV radius of 5◦ does not meet the aforementioned
distributions, then it can be satisfied after one or two iterations.

Table 2. Parameter settings of the DEQ method.

Parameters Illustration Value

Nmax Maximum number of NSs 8
g Dynamic step size 1.25 (deg)
Pd Initial radius 5 (deg)

Next, the process of the DEQ method is explained in detail.
In this study, the confidence factor λi is defined for each DNSk

i by Equation (9), which
served as an NS selection criterion for each quadrant.

λi = − (
Magi −Magmin

Magmax −Magmin
+

ri
dmax

∗ 2), (9)

where Magi and ri are the magnitude and the Euclidean distance from the center of the
ith star, respectively; Magmin and Magmax are the minimum and maximum magnitudes,

respectively; dmax =
√

Dx
2 + Dy

2 is the maximum imaging plane distance.
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Next, select a star from each of the eight quadrants in the range (PRmin, PRd). The
process is as follows: according to the definition of λi, the lower the Magi and ri, the larger
the λi value is, and the easier it is for a star to be selected as DNSk

i . Thus, the DNS with
the largest λi value in each quadrant is selected, as shown in Figure 6d. When the number
of selected DNSs is less than Nmax, PRd is incremented by g to increase the field range;
this process is repeated until PRd = PRmax to meet the condition that there is a star in all
eight quadrants, which is defined as the eight-quadrant distribution. However, for sky
areas with a small number of stars, if the number of stars does not meet the eight-quadrant
distribution, the stars are directly arranged according to the descending order of λi, and the
top Nmax stars are selected as DNSs. Compared to the direct selection of the brightest Nmax
stars in the FOV, which represents the BR method, or Nmax stars closest to the DMS, which
is the ED method, the proposed DEQ method can effectively reduce the noise interference
caused by missing and false stars and position deviation. The performance of the proposed
DEQ method is demonstrated in Section 4.1.

3.1.2. MST and CCA Pattern Construction

In the proposed DEQ method, a uniform distribution and a relatively fixed number
of DNSs are selected for each DMSk, which paves the way for the construction of more
identifiable MST and CCA patterns.

The first step is based on the LUT of MST, which is to index the candidate MSs to
speed up the star identification process. As mentioned in Section 2.1, stars captured by
a star sensor are regarded as a vertex of G, and the weight between two vertices (u,v) is
defined as their Euclidean distance on the imaging plane, which is calculated by:

d(u, v) =
√
(xu − xv)

2 + (yu − yv)
2,

s.t. u, v ∈ V
(10)

where (x u, yu) and (x v, yv) are the coordinates of the two stars on the imaging plane.
Next, the MST pattern is constructed. There are two commonly used algorithms

for MST construction: the Kruskal algorithm and the Prim algorithm. Among them, the
Kruskal algorithm is more suitable for sparse graphs, whereas the Prim algorithm is more
appropriate for dense graphs [35]. The general judgment principle for dense and sparse
graphs is defined as follows:{

LE ≥ LV ∗ log LV , dense graphs,
otherwise, sparse graphs,

(11)

where LE represents the number of edges, and LV represents the number of vertices.
In this study, the number of vertices represents the number of stars in the FOV after

screening by the DEQ method, that is, LV= N + 1 = 9. Considering the edge weights
between all stars in the FOV, there are nine vertices, with LE= C2

9= 36 edges. After substi-
tuting LV and LE into Equation (11), it can be concluded that this problem belongs to the
MST construction problem of dense graphs. Therefore, this study uses the Prim algorithm
for the MST pattern construction of each guide star.

The detailed steps of the MST index construction process are as follows. First, define
V = {NS1, NS2, NS3, NS4, MS, NS5, NS6, NS7, NS8} as a set of all vertices and U as a
set of MST vertices. Randomly select a star from the guide stars selected in the eight
quadrants as a starting point (i.e., NS3 in Figure 7a), use Equation (10) to calculate the
distance between it and other stars as an edge weight, and select the maximum edge
weight value as r1, as shown in Figure 7b. In addition, the vertex of MST is denoted by
U = {NS3, NS6}. Then, select the edge with the largest weight from all edges connected
with NS3 and NS6 as the second edge r2, as shown in Figure 7c; then, the MST vertex is
expressed by U = {NS2, NS3, NS6}. According to the aforementioned steps and the rule
that any three vertices cannot form a loop, when all nine vertices are selected as MST
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vertices, the MST pattern construction of the DMSk is completed, as shown in Figure 7d.
The final MST pattern calculation is given by:

wD(Tk) =
N

∑
i=1

di(u, v). (12)
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r1 as the second vertex; similarly, select the weight of the second edge (r2); (d) Construct the eight
maximum edge weights.

After obtaining the MST pattern of each MS, store the generated patterns in a one-dimensional
vector Y with a length of Ns, denoted by Y(k) = {wD(T

1), wD(T
2), . . . , wD(T

Ns)}. In addition,
to increase the search efficiency of the MST candidate MS, the K vector algorithm is used
to locate the search interval rapidly. Namely, it takes only a few simple steps to perform
interval indexing fast, and the corresponding time complexity is O(1).

The specific steps in combining the K vector with the MST are as follows:

(1) Arrange vector Y in ascending order, that is, Y(1) = Ymin, Y(Ns)= Ymax. The average
step size occupied by each element in vector Y is Ld= (Y (Ns) − Y(1))/(N s− 1).
Mortari et al. [15] pointed out that the straight line connecting (1, Y(1) − Ld/2), (Ns,
Y(Ns) + Ld/2) can ensure that each step contains Y(k). Therefore, a straight line y(x) is
drawn according to the vector Y, which can be expressed as follows:

y(x) = a1x + a0,
a1 = Y(Ns)−Y(1)+Ld

Ns−1 ,
a0 = Y(1)− a1 − Ld/2.

(13)

(2) Define the K vector index function K(x) as follows:{
K(x) = k,
Y(k) < y(x) < Y(k + 1),

(14)

where k is the serial number of DMSk in the LUT, and x is the MST index value.

Next, the CCA pattern in the SPD is constructed. The CCA definition is introduced
in Section 2.1; therefore, in this section, only the construction process is presented. First,
the first-order CCA set that is shown in Figure 8a is denoted as S = [θ1, θ2, . . . , θN ], and the



Remote Sens. 2023, 15, 2251 12 of 25

corresponding calculation formula is given in Equation (4). The DMSk multi-order CCA
of the ith DNSk

i (i = 1, 2, . . . , N) is calculated by Equations (5) and (6). The multi-order
CCA construction process of eight NSs is presented in Figure 8b,c, where θuv represents
the counterclockwise angle between the vertices u and v; for instance, θ85 = θ8 + θ1 + θ2 +
θ3 + θ4. The multi-order CCA pattern of the DMSk is presented in Figure 8d, and it is used
to select the correct MS from the candidate DMS set obtained by the MST if the candidate
star obtained by the MST is not unique, as well as to identify NSs. The multi-order CCA
of each DMSk is an N × (N – 1) matrix, where each column denotes the CCA pattern of
DMSk from the first order to the (N – 1)th order, which is used to obtain the correct MS
from the candidate DMS set; each row in the matrix represents the multi-order CCA of
DNSk

i , which is used to identify NSs. After obtaining the correct MS, the row identification
can be directly performed to obtain the correct NS. The identification process is described
in detail in Section 3.2.
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Figure 8. The multi-order CCA pattern construction process of DMSk. (a) The first-order CCA of
NS1–NS8; (b) The multi-order CCA of NS1; (c) The multi-order CCA of NS8; (d) The multi-order
CCA pattern of DMSk.

Finally, the storage format of the guide star catalog, including the LUT and SPD, is
shown in Figure 9. The LUT is stored in an increasing order of MST, and the multi-order
CCA of each DMSk is stored in the DNSk

i counterclockwise order. The storage content
mainly includes the star number (k), right ascension (αk), declination (βk), and magnitude
of stars. In addition, MST and CCA patterns for each star are included, which are stored in
LUTs and SPDs, respectively. Among them, each row in the LUT corresponds to a main star,
which is used to rapidly search for candidate DMSs; the SPD stores the CCA pattern matrix
of each star, and the meaning of its row and column has been indicated in Figure 9, which
is used to realize the determination of the unique DMS and the global SNSs identification.

3.2. Star Identification Scheme

To identify the SMS and SNSs rapidly and accurately after screening by the DEQ
method, this study proposes a two-step identification method. First, the star coordinates in
the captured image are extracted and shifted to the image center, and the SNSs are selected
using the DEQ method. Then, the selected guide stars are used to generate the MST pattern
and combined with the K vector algorithm to establish an indexing mechanism for the
rapid locating of DMS candidates from the LUT. Next, the correct SMS and its SNSs are
identified from the DMS candidate set by voting using the Jaccard similarity coefficients of
each order CCA pattern. Finally, the identified stars are verified to eliminate mismatched
stars. The identification framework is shown in Figure 10.
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Figure 10. The overall identification framework.

The specific steps of the identification algorithm are as follows:
Step 1: SMS selection
In real scenes, it cannot be guaranteed that there is a guide star in every FOV center.

Therefore, when a star image frame is to be identified and captured, the centroid extraction
algorithm is used first to calculate the 2D coordinates of each star in the FOV. Then, the
Euclidean distance between them and the image center (x c, yc) is calculated. Finally, the
star with the smallest value is selected as an SMS and denoted by (x m, ym).

Step 2: SNS selection for SMS
The DEQ method is employed to perform SNSs selection. First, the 2D coordinate

deviations between (x c, yc) and (x m, ym) in the x and y dimensions are calculated and
denoted by ∆x = xm − xc and ∆y = ym − yc, respectively. Then, translate (x m, ym) to
coincide with (x c, yc) following the translation rule of:{

x′m = xm − ∆x
y′m = ym − ∆y

. (15)
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The coordinates (x s, ys) of other stars in the FOV are also translated according to the
rule defined by Equation (15), and stars whose coordinate value is greater than PRmax after
translation are eliminated. Next, the same parameters, PRd, Nmax, and g, are used to define
a DEQ SNS selection rule, and the confidence factor λi of each star in each quadrant is
calculated by Equation (9); the star with the maximum λi value in each quadrant is selected
as an SNS. Finally, eight SNSs with a relatively uniform distribution and high confidence
are selected.

Step 3: MST fast index definition and candidate DMS search
Similarly, regard the nine stars, including SMS, as graph vertices and select a starting

vertex randomly; next, use the Prim algorithm to construct an MST pattern for SMS until
all vertices are involved in the tree denoted by wS(T). Due to the rounding errors in the
tree construction process, the initial threshold Dth and the dynamic change parameter ∆D
are used to search for the candidate DMS from the LUT roughly and rapidly. The DMS that
meets the following conditions will be stored in the candidate DMS set Ωcandi:

Ωcandi =
{

DMSk, (k = 1, . . . , Ncandi)|wS(T)− Dth ≤ wD(T) ≤ wS(T) + Dth

}
,

s.t. Dth = Dth + l · ∆D, l = l + 1, l ≥ 0
(16)

where l is the iteration number, which is used to increase the threshold interval when the
correct DMS is not involved in Ωcandi, and Ncandi is the number of candidate DMSs.

The advantage of the dynamic threshold is that it not only effectively avoids a long
search time under the high threshold but also reduces the probability of missing the
correct candidate star due to the too-small threshold. In this way, the search efficiency is
significantly improved, while the length of Ωcandi is effectively reduced. In this study, set
Dth = 1 pixel and ∆D = 16 pixels. This is because the maximum position noise in real scenes
is approximately 1 pixel; in this case, the maximum MST pattern difference caused by the
position noise is about 16 pixels.

Simultaneously, to increase the search efficiency, using the K vector algorithm to create
a fast index mechanism, rapidly locate the starting and ending candidate DMS intervals.
First, calculate the index value xstar and xend as follows:{

xstart =
wS(T)−Dth−a0

a1
,

xend = wS(T)+Dth−a0
a1

.
(17)

Then, substitute the index value into the K vector function, Equation (14), to obtain
the serial number (kstart, kend) of the candidate DMSs in the LUT. The obtained row corre-
sponds to a candidate DMS; finally, store them in Ωcandi.Step 4: Multi-order CCA pattern
construction for SMS and SNS identification

First, randomly select a star as a starting star and use Equations (4)–(6) to obtain the
multi-order CCA pattern of the captured star image. If the number of candidate DMSs
Ncandi is less than one, a dynamic threshold will adjust the range to obtain a new set of
candidate DMSs; if Ncandi = 1, the candidate DMS is considered to be the correct MS;
otherwise, the Jackard similarity coefficient of the multi-order CCA (i.e., each column of
the matrix Acapt[z] and Ak

candi[z]) between the SMS and the candidate DMSs in Ωcandi is
calculated as follows:

Jk
sim[z] = Jackard(Acapt[z], Ak

candi[z]) =
|Acapt [z]∩Ak

candi [z]|
|Acapt [z]∪Ak

candi [z]|
,

s.t. z = 1, . . . , N − 1, k = 1, . . . , Ncandi

(18)

where Jk
sim[z] represents the zth order CCA Jackard similarity coefficient between the SMS

and the kth candidate DMS; Acapt[z] and Ak
candi[z] are the zth order CCA of the SMS and the

zth order CCA of the kth candidate DMS, respectively.
The Jaccard similarity offers a significant advantage in that it effectively disregards

any order differences between DNS and SNS by treating them as two unordered sets, elimi-
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nating the step of determining the reference star or edge in most pattern-based algorithms.
This is also the motivation for choosing it as a similarity measure.

Further, a repeated voting strategy is employed to identify the unique MS. Equation
(18) is used to calculate the CCA Jackard similarities of the first to (N– 1)th order, and the
number of votes for the candidate DMSs with the maximum similarity in each order is
increased by one. After the (N– 1)th order CCAs are calculated, the star with the largest
number of repeated votes is denoted as the correct DMS, which can be expressed as follows:

argmax
DMSk

candi∈Ωcandi

N−1
∑

z=1
Vote(DMS k

candi

)
= { k

∣∣∣max(Jk
sim[z]) } ,

s.t. 1 < k < Ncandi

(19)

where function Vote(·) adds one to the number of votes, and function max(·) returns the
maximum value.

Finally, the global identification of SNSs is performed using the multi-order CCA
pattern of each SNS (i.e., each row of Acapt). The specific process is as follows. First, an SNS
is randomly selected from the captured image, and the CCA pattern of the selected SNS
is denoted as Acapt[i] (1 < i < N). Next, the CCA pattern of the correctly identified MS is
recorded as Ak

corr. Then, each row of the N × (N– 1) matrix Ak
corr is subtracted from the 1 ×

(N– 1) vector Acapt[i] to obtain the difference matrix Adiff , which can be expressed by:

Adi f f = Ak
corr −Acapt[i],

s.t. 1 < i < N
(20)

where k is the serial number of the correctly identified MS.
Next, the number of elements less than η in each row in Adiff is obtained by:

Nzeros[i] = Count(Adi f f [i] < η),
s.t. i = 1, . . . , N

(21)

where η is an infinitesimal number close to zero; function Count(·) is used to determine the
number of zeros in each row; the row with the largest number of elements close to zero is
considered the guide star identity IDalig corresponding to the aforementioned randomly
selected SNS, and it is called the alignment star and is obtained by:

IDalig = argmax
i=1,...,N

Nzeros[i]. (22)

As mentioned in Section 2.2, since the rotation of the captured star image changes only
the row sequence of the CCA pattern matrix of the SMS (Ak

corr), after determining the IDalig
of the correct DMS, it only needs to be shifted cyclically to achieve an NSIDalig alignment in

the matrix of Ak
corr and Acapt. In this way, SNS corresponds to the DNS of the correct DMS

one by one, so the identity of other SNSs can be identified.
Step 5: SNSs verification
First, compare the difference in multi-order CCA between the DNSIDalig of the correct

DMS ( Ak
corr[ID alig

]
) and the alignment star in the captured image (Acapt[ID alig

]
) as follows:

[Dv, Ind] = Ak
corr[IDalig]−Acapt[IDalig] , (23)

where Dv is the difference vector in the identified alignment star between the captured
image and the SPD, and ind denotes the SNSs index vector; if there are elements larger
than one in Dv, they are considered misidentified neighboring stars and are eliminated by
the index vector Ind.
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In general, if three or more stars within the FOV are identified, and neither false stars
nor correct stars are misidentified, the identification of the current frame is considered
successful.

4. Experimental Results

Compared with most pattern-based algorithms, the main advantage of the proposed
algorithm is that it does not rely on the reference star, which improves algorithm robustness
against noise significantly. The effectiveness of the proposed algorithm was verified by
experimental tests on simulated and real captured star images using the star sensor, whose
parameters are listed in Table 3.

Table 3. The main parameters of the star sensor used in the experimental verification.

Parameters Value

FOV
(FOVx× FOVy) 20◦ × 20◦

Imaging plane
(Dx× Dy) 1536 × 1536 (pixels)

Single-pixel size
(px× py) 0.0055 × 0.0055 (mm)

Focal length
(f ) 24.03 (mm)

At present, most star identification algorithms use the ED method or the BR method
to select NSs, but they both have certain disadvantages in real applications. Among them,
the ED method is more significantly affected by position noise and false star noise, whereas
the BR method is extremely sensitive to magnitude noise, which may result in wrong NS
selection. In this study, combining the advantages of the ED and BR methods, a confidence
factor (Equation (9)) is defined for stars, and the DEQ method is proposed for NS selection.
Therefore, to illustrate the advantages of the proposed DEQ method better, this study
compares the identification accuracy of the three methods under the effect of position noise,
false star noise, and magnitude noise.

Then, the identification accuracy and speed of the proposed algorithm were compared
with the corresponding performances of five state-of-the-art algorithms. In the experiments,
the Monte Carlo method was employed to generate 15,000 simulated star images; also,
all guide stars were projected separately to the center of the FOV, and an additional 4956
simulated star images were obtained, which included the scenes where every guide star
was MS. Finally, 199, 546 simulated star images were obtained (NT= 199, 546) and used
as a test dataset. The CPU used the Core i7-6500U manufactured by Intel in Santa Clara,
California, USA, with a main frequency of 2.5 GHz and a memory of 12 GB, and the
program was written in Matlab2018a.

4.1. Comparison Results of Different Star Selection Strategies

First, the tests were performed in the absence of noise interference, and the results
indicated that the three methods performed well, achieving similar identification accuracy
values, particularly ED (99.95%), BR (99.94%), and DEQ (99.95%).

Then, the three methods’ performances were tested under positional noise. In [36], the
authors pointed out that the maximum position deviation in real scenes is approximately 1
pixel. Therefore, a Gaussian position noise with a mean of zero and a standard deviation
of 0.1–1 pixels was used in the experiment, and the obtained experimental results are
presented in Figure 11a. As shown in Figure 11a, when the position noise was 0–0.2 pixels,
the identification accuracy of the three methods was maintained at a relatively high level; it
was higher than 99%. When the position noise reached the value of 1 pixel, the identification
accuracy of the ED method decreased significantly to 97.56%, but the BR and DEQ methods
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could maintain high accuracy in this case. The results indicated that the proposed DEQ
method was robust to position noise.
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Figure 11. The identification accuracy results of the three star selection methods under the effect of
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false stars; (c) Scenes with a deviation of 0–0.5 in magnitude noise.

The comparison results of the three methods obtained under the effect of the false star
noise are presented in Figure 11b, where it can be seen that when the number of false stars
was one, the identification accuracy values of the three methods were basically the same.
However, when the number of false stars increased, the identification accuracy values of
the DEQ and BR were less affected than that of the ED method. This was because the ED
method used only the Euclidean distance for NS selection, so the probability of selecting
false stars closer to the MS was high, which affected the identification accuracy.

Finally, magnitude noise with a mean value of zero and a standard deviation of 0–0.5
was used to test the three methods’ accuracy, as shown in Figure 11c. The results indicated
that with the increase in magnitude noise, the identification accuracy of the BR method
obviously decreased, and when the magnitude noise reached the value of 0.5, its accuracy
decreased to 94.83%. This was because this method relied only on the magnitude in the
NS selection, so the probability of a wrong NS selection increased with the magnitude
noise. The ED method achieved better performance than the BR method. Namely, when
the magnitude noise reached the value of 0.5, the identification accuracy of the ED method
was still high, reaching 97.61%. Finally, the proposed DEQ method defined the confidence
of each NS and thus could achieve a high identification accuracy of 98.03% under the
0.5 magnitude noise.

Consequently, it can be concluded that the proposed DEQ method has good robustness
against different noises in star identification.

4.2. Comparison and Analysis Results of Identification Algorithms

Next, the identification accuracy, memory, and running time consumption of the
proposed algorithm and five state-of-the-art algorithms were compared. The five algorithms
used for comparison included: the optimized grid pattern algorithm (OGP) [19], radial
and cyclic pattern algorithm (RCP) [20], geometric voting algorithm (GMV) [14], pyramid
algorithm [15], and discrete HMM-Based algorithm (HMM) [37]. These selected comparison
algorithms were mainly pattern-based and subgraph-based, and all claim to have achieved
good performance. The reason why the learning-based algorithm was not selected is that it
did not seem to have reported any examples of on-orbit applications.

In this study, the identification accuracy was defined as follows:

Accuracy =
NT − NE

NT
× 100%, (24)
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where NT is the number of stars in the test dataset, and NE is the number of identification
failures.

4.2.1. Identification Accuracy Comparison

First, the test was performed in an ideal scene without any noise, and the obtained
identification accuracy results of the six algorithms are shown in Table 4. Next, the accuracy
comparison experiment was conducted under three types of noises, in turn, and the results
are shown in Table 4, where AIA represents the average identification accuracy, and MIA
represents the identification accuracy under the maximum noise interference scenes.

Table 4. Comparison results of the identification accuracy of the six algorithms in different scenes.

No Noise Position Noise False Star Noise Magnitude Noise

AIA(%) AIA(%) MIA(%) AIA(%) MIA(%) AIA(%) MIA(%)

Proposed 99.95 99.23 98.63 98.95 97.91 98.95 98.03
OGP 98.63 98.01 97.39 95.92 91.29 95.92 96.42
RCP 97.59 95.09 92.42 89.63 80.18 89.63 92.17
GMV 97.54 93.30 88.35 88.58 76.46 88.58 93.29

Pyramid 99.12 97.53 94.89 97.30 95.33 97.30 96.84
HMM 98.72 98.22 97.81 96.89 94.26 98.10 97.13

(1) Positional noise effect

The comparison results of the identification accuracy of the six algorithms under
the position noise are presented in Figure 12. In the experiment, the added noise was the
Gaussian noise with a mean value of zero and a standard deviation of 0.1–1 pixels. When the
position noise’s standard deviation was in the range of 0.1–0.2, the identification accuracy
of all algorithms was greater than 96%. When the standard deviation of the position noise
increased to 0.8, the accuracy values of the RCP, GMV, and Pyramid algorithms decreased to
93.61%, 90.64%, and 96.96%, respectively. The OGP, HMM, and proposed algorithms could
still maintain high accuracy. When the standard deviation of the position noise increased
to one, the identification accuracy of the RCP and GMV algorithms decreased significantly
to 92.42% and 88.35%, respectively. This was because the GMV algorithm used only the
distance voting scores of NSs for identification, while the RCP algorithm had deviations in
binary codes in radial and circular directions due to star position deviations. However, the
identification accuracy of the proposed algorithm was still high, above 98.5%. This was
due to the dynamic threshold used in the proposed algorithm, and the constructed MST
and CCA could make full use of the global characteristics of NSs. Therefore, the proposed
algorithm showed high robustness against the position noise.

(2) False star noise effect

The impact of a different number of false stars on the identification accuracy of the
six algorithms is presented in Figure 13. In this experiment, the number of false stars
was set from zero to five. When the number of false stars reached the value of five, the
identification accuracy of the RCP algorithm decreased to 80.18%. This was because the
false stars made the wrong selection of the minimum central angle, which resulted in a
failure of the cycle pattern. Due to the increase in the number of false stars appearing in the
grid, the accuracy of the OGP algorithm was reduced to 91.29%. Namely, the erroneous
voting of false stars significantly affected the identification accuracy of the GMV algorithm,
reducing its accuracy to 76.46%. The HMM eigenvectors were disturbed by false stars,
causing matching errors, so the identification accuracy of the HMM algorithm decreased
to 94.26%. The proposed algorithm was based on the DEQ method, using the defined
confidence factor of the NSs, which could effectively suppress the interference of false stars.
In addition, the global influence of false stars on the graph was not great, and the topology
structure of a multi-order CCA pattern could also accurately eliminate the interference of
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false stars. Therefore, even in scenes with false stars, the proposed algorithm could achieve
a high identification accuracy.
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(3) Magnitude noise effect

The comparison results of the identification accuracy of the six algorithms under
the deviation of 0–0.5 caused by the magnitude noise are presented in Figure 14. As the
deviation increased from 0 to 0.5, the identification accuracy of the proposed algorithm
decreased from 99.95% to 98.03%. When the magnitude noise reached 0.5, the accuracy of
the proposed algorithm was 4.74%, 5.86%, 1.61%, 1.19%, and 0.9% higher than the accuracy
of the GMV, RCP, OGP, Pyramid, and HMM algorithms, respectively. This was because the
GMV algorithm relied on the votes of NSs, and the circular pattern of the RCP algorithm
depended on the starting edge. However, the magnitude noise led to the loss of NSs and
caused the starting edge selection error. Namely, due to the influence of the magnitude
noise, the guide star was missing in the OGP grid cells. Therefore, the GMV, RCP, and
OGP algorithms were sensitive to magnitude noise. However, the proposed algorithm did
not need to determine the starting star like the RCP algorithm, and both patterns selected
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the starting star randomly and considered the global characteristics between stars, thus
effectively reducing the interference caused by missing stars. Thus, the proposed algorithm
had a high tolerance to the magnitude noise.
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4.2.2. Memory and Running Time Test

The running time of a star identification algorithm mainly refers to the time consumed
from the centroid extraction of a star image to achieve the correct identification of stars in
the FOV. The average running time (AIT) results obtained under no-noise and different
noisy conditions and the running time values obtained at the maximum noise (MIT) are
presented in Table 5. The running time of the OGP algorithm was relatively long; this
was because of a relatively complex optimization process of the OGP algorithm. Thus,
to ensure identification accuracy, it is necessary to sacrifice the running time. The HMM
algorithm had the shortest running time among all algorithms, which was due to the
simplicity of its pattern and identification process. The running time of the RCP algorithm
was shorter than those of the OGP, GMV, and Pyramid algorithms, but as the noise level
increased, the RCP algorithm required performing multi-step identification to realize the
star identification, which increased the running time significantly. The running time of
the proposed algorithm changed slightly under the influence of magnitude noise and false
star noise. Under the position noise, to ensure high identification accuracy, the dynamic
threshold search process became longer, and the running time increased accordingly, but
this increase could be considered acceptable. The running time comparison results of
different algorithms obtained under three types of noises are shown in Figure 15. The
memory usage of a star identification algorithm is mainly defined by the LUT and SPD.
The comparison results of the memory usage of different algorithms are shown in Table 5.
The results demonstrated that the proposed algorithm with Nmax = 8 was superior to most
mainstream algorithms in terms of memory and running time consumption.
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Table 5. Comparison results of the identification accuracy of the six algorithms in different scenes.

Memory
(KB)

Position Noise False Star Noise Magnitude Noise

AIT (ms) MIT (ms) AIT (ms) MIT (ms) AIT (ms) MIT (ms)

Proposed 1103.48 11.92 20.87 8.56 9.05 10.68 13.87
OGP 1638.43 77.86 89.95 83.29 126.78 81.41 110.36
RCP 573.44 9.65 13.53 8.71 11.03 8.12 10.68
GMV 1863.68 33.72 41.52 35.87 45.39 31.68 37.39

Pyramid 2068.48 24.75 29.49 27.64 10.35 29.09 44.92
HMM 2283.52 3.18 4.56 2.66 3.96 3.44 4.98
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Figure 15. The running time results of different star identification algorithms under three types of
noises. (a) Scenes with a deviation of 0–1 pixels in positional noise; (b) Scenes with 0–5 false stars;
(c) Scenes with a deviation of 0–0.5 in magnitude noise.

4.3. Real Star Image Test

The performance of the proposed algorithm was verified by real-scene experiments
using the real star images collected by a star sensor, as shown in Figure 16a. The images
were collected in Lijiang City, Yunnan Province, China; this area was selected because of
good weather and thin clouds, which could better simulate actual space scenes. Under
the rotation of the three-axis turntable, a total of 3128 real star images were collected, as
illustrated in Figure 16b. In this experiment, the key parameters of the star sensor were set,
as shown in Table 3. An example of an identification result record of a one-frame real star
image is shown in Table 6, where the star catalog serial number of the SMS is 233.
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Table 6. The identification results of the one-frame real star image.

Scheme

Centroids Guide Star Catalog

x
(pixel)

y
(pixel)

Serial Number
in Star Catalog

Right
Ascension

(deg)

Declination
(deg)

Star
Magnitude

SMS 710.68 840.13 233 20.8790 −30.9456 5.83
SNS1 1052.82 891.73 177 15.6101 −31.5520 5.51
SNS2 1048.15 1458.62 176 15.3261 −38.9165 5.59
SNS3 569.81 1295.78 256 22.2336 −36.8652 5.50
SNS4 411.44 954.22 288 25.5358 −32.3270 5.26
SNS5 501.81 765.63 265 24.0355 −29.9073 5.70
SNS6 590.52 481.08 251 22.5954 −26.2079 5.93
SNS7 575.54 792.00 255 22.9301 −30.28 5.79
SNS8 1123.05 727.28 174 14.6515 −29.3574 4.31

5. Discussion

Star identification is to find the correspondence between a captured star image and
the pre-stored guide star catalog and obtain the identity of the guide star in the FOV
in preparation for the high-precision spacecraft attitude measurement. However, most
existing algorithms perform poorly in terms of identification accuracy and running time
under noisy conditions, which has been the main motivation of this study for developing
an efficient star identification algorithm that can perform well under different noisy condi-
tions. The proposed algorithm was compared with five state-of-the-art algorithms under
different conditions, and the results have indicated that the proposed algorithm has certain
advantages over the existing algorithm, which could be summarized as follows:

1. The confidence factor is defined for each guide star, and the proposed DEQ method is
used to select NSs. Compared with the BR and ED methods, in the proposed method,
the probability of wrong NS selection is reduced, and the selected NSs are more evenly
distributed, which increases pattern identifiability;

2. Compared with the existing pattern-based algorithms, neither the MST nor the CCA
pattern in the proposed algorithm depends on the reference star or edge. Therefore,
the proposed algorithm is more robust to noise than the existing algorithms;

3. The MST and CCA patterns fully consider the global characteristics of stars, thus sig-
nificantly enhancing the anti-noise ability of the identification algorithm. In addition,
the combination of MST and the K vector can significantly improve the efficiency
of the candidate DMS search. Moreover, the dynamic threshold adopted in the pro-
posed algorithm not only ensures the identification accuracy but also reduces the
interval search time. The CCA pattern requires determining only one NS, and then
it completes the global identification of other NSs by simply shifting to achieve an
alignment.

Despite the aforementioned advantages, the proposed algorithm has certain limita-
tions, which are as follows:

1. The proposed DEQ method can be used only in combination with a large-FOV star
sensor. Namely, under the small-FOV conditions, with the increase in detection capa-
bility, the number of faint stars in the FOV increases significantly, and the confidence
discrimination of guide stars decreases, resulting in an NS selection error. In the
future, we will try to build a virtual FOV through multi-frame star images stitching
and combine the incomplete star catalog to make it also suitable for small-FOV.

2. The MST pattern is constructed based on the Euclidean distance between stars, but
it is susceptible to positional noise. To address this shortcoming, in the proposed
algorithm, an iterative dynamic threshold interval is defined to ensure identification
accuracy, but this can be achieved at the cost of an increase in the running time. In
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the future, we will try to use optimization methods to determine an optimal static
threshold to eliminate the running time of iterations.

6. Conclusions

The practical significance of the proposed algorithm is that when the star sensor is in
the LIS mode, the algorithm can identify stars accurately and rapidly and provide accurate
attitude information for the satellite.

In this study, a global star identification algorithm based on the MST index and multi-
order CCA is developed using the Euclidean distance and star angle pattern with a rotation
invariance. First, aiming at the shortcomings of the BR and ED methods in neighboring
star selection, a confidence factor is defined for stars. The proposed DEQ method can more
effectively reduce the loss and mis-selection rate of neighboring stars caused by different
noises than the BR and ED methods. In addition, the starting star vertex is randomly
selected, and the Prim algorithm is employed to construct the MST pattern for each main
star and combine it with the K vector algorithm; a dynamic threshold interval matching
method is used to search for main star candidates rapidly. Finally, the Jackard similarity
coefficients of the multi-order CCA (with 1 − (N − 1) columns in each matrix) between the
captured image and main star candidates are calculated, and a voting strategy is used to
identify the correct main star. Simultaneously, the neighboring stars are identified by using
a multi-order CCA (1 − N rows in the matrix) cyclic shift of the neighboring star of the
correct main star. The robustness and rapidity of the proposed algorithm are verified by
comparison experiments with five state-of-the-art algorithms, considering the identification
accuracy and running time under position noise, false star noise, and magnitude noise.
Moreover, the experimental results obtained on 3128 real star images verify the excellent
performance of the proposed algorithm.

In the future, combined with the research of the high-precision centroid extraction
algorithm, the performance of the algorithm under high dynamic conditions should be
verified; in addition, researchers should continue to optimize the proposed algorithm and
complete the on-orbit applications.
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Appendix A

Table A1. Definition of the abbreviations used in this study.

Abbreviations Definitions

DMS/SMS Main star in database/image
DNS/SNS Neighboring star of DMS/SMS in database/image

LIS Lost-in-space
LUT Look-up table
SPD Star pattern database

ED Euclidean distance method used to screen DNS/SNS for
DMS/SMS

BR Brightness method used to screen DNS/SNS for DMS/SMS
DEQ Proposed method used to screen DNS/SNS for DMS/SMS
MST Maximum spanning tree
CCA Continuous cycle angle
AIT Average running time
MIT Running time under the maximum noise
AIA Average identification accuracy
MIA Identification accuracy under the maximum noise
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