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Abstract: Oak decline is a general term used for the progressive dieback and eventual mortality of
oak trees due to many compounding stressors, typically a combination of predisposing, inciting,
and contributing factors. While pinpointing individual causes of decline in oak trees is a challenge,
past studies have identified site and stand characteristics associated with oak decline. In this study,
we developed a risk map of oak decline for the Daniel Boone National Forest (DBNF), combining
GIS, remote sensing (RS), and public reporting (citizen science, CS). Starting with ground reports of
decline (CS), we developed a site-scale model (GIS and RS) for oak decline based on four previously
identified predisposing factors: elevation, slope, solar radiation, and topographic wetness. We found
that areas identified in the model as having a high oak decline risk also reflected areas of observed
oak decline (CS). We then optimized and expanded this risk model to the entire range of the DBNF,
based on both site characteristics (as piloted for the case study site) and stand inventory data. The
stand inventory data (including species composition and age) further improved the model, resulting
in a risk map at the landscape level. This case study can serve as a planning tool and highlights the
potential usefulness of integrating GIS, remote sensing, and citizen science.

Keywords: oak decline; Quercus; GIS; remote sensing; citizen science; forest health; remote sensing

1. Introduction

Oak-dominated forests are widespread in the United States (US), with three oak-
dominant forest types (oak–hickory, oak–pine, and oak–gum–cypress) accounting for
46% of all forest and woodland areas in the eastern US [1]. Oak form and physiological
characteristics have important impacts on population and community dynamics in these
forests. Their biomass and chemical composition modulate ecosystem processes such as
nutrient fluxes, carbon sequestration, decomposition rate, and energy flow [2]. Oak trees
are considered a “keystone” species from the perspective of biological diversity, supporting
a wide range of organisms and producing hard mast (acorns) that plays a vital role in the
food webs of oak forests [3]. Acorns are an important food source for many species of birds,
small mammals, and larger vertebrates [4]. Many oak species are also of high economic
value. Oak timber is used for furniture, flooring, and also for special purposes, such as
barrels for wine and distilling industries [5].

However, oak populations have been declining, and the abundance of oaks in the
eastern US has shrunk. This is largely related to a shift away from active forest management,
including silvicultural practices that promote oak regeneration and recruitment. In addition,
aging oak forests are increasingly vulnerable to a variety of existing and emerging biotic
threats [6–8]. Several invasive insects and pathogens can cause oak mortality, such as
the oomycete pathogen Phytophthora ramorum, which is not yet present in the eastern
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US but causing oak mortality via sudden oak death on the west coast, and the spongy
moth Lymantria dispar dispar, which is gradually moving south and west from its current
distribution throughout the Northeast, Mid-Atlantic, and Midwest [9].

In addition to specific diseases and insects that cause oak mortality, there is an observed
phenomenon called “oak decline” that is considered the most widespread problem plaguing
oaks [10–12]. Oak decline describes the progressive dieback and eventual mortality of oak
trees that has been observed across the central hardwood region of the US as well as in
Europe, primarily impacting mature trees of the red oak species [13,14]. Oak decline is
typically attributed to compounding tree stress due to a combination of predisposing factors
(e.g., underlying condition of trees due to their species, genetics, age, and site), inciting
factors (e.g., weather conditions such as drought or late spring freeze or defoliating pests),
and contributing factors (e.g., a wide range of insects and pathogens that opportunistically
affect trees) [10,15–17]. While many factors related to oak decline are hard to predict,
Bendixsen et al. 2015 [17] found that the mortality of oaks could be connected to a complex
of stress factors including site characteristics (e.g., distance to water, slope, elevation, and
aspect), and stand characteristics (e.g., abiotic and biotic threats).

Patterns of oak decline vary from a few trees in stands with diverse species composition
and age structure to areas covering several thousand hectares in landscapes with a more
uniform composition of susceptible, physiologically mature oak species. It has been
reported that tree death can occur within a few months, but usually develops in the span of
several years or decades and can range from a few trees to hundreds of hectares [12,18]. In
the US, oak decline is a recurring threat to the oaks in many regions, and during the past
several decades, oak decline has become increasingly common. For example, a study of the
Ozark Highlands showed an increase in red oak mortality from around 8 percent in 1999
to 16 to 18 percent in 2006 [19]. This increase in oak mortality has also been observed in
Kentucky and many surrounding states [20], and recent severe droughts in the region are
likely to exacerbate this issue in the coming decade [21]. In Kentucky, informal reporting of
oak decline has seemed to increase, from landowners who report their observations via
citizen science through apps such as TreeSnap or via reports to foresters and Cooperative
Extension agents. While recent solid data supporting these reports are missing, oak decline
is clearly an issue in Kentucky’s forests.

In light of this emerging forest health issue in Kentucky and surrounding states, there
is a great need to develop a formal oak decline risk assessment at landscape scales to
facilitate active forest management. However, due to the lack of spatially explicit report
data on the oak decline sites and associated environmental characteristics, risk assessment
and mapping at landscape and regional scales are challenging, as researchers in other
systems have also noted [22,23]. Other studies have successfully combined remote sensing
and ground truthing to strengthen resulting models in a variety of systems and for different
purposes, from mapping land cover [24] to testing models of habitat suitability [25]. Risk
maps for tree health issues that use GIS and satellite information have been developed in
a number of contexts, such as forest fire and disease spread [26,27]. In addition, there are
many examples of how GIS and citizen science data collection have been used in monitoring
and managing invasive species, both reporting new species and as a way to validate models
of spread [28,29]. However, to our knowledge, this has not been applied to oak decline or
related problems in the region.

Here, we piloted a framework using publicly reported data (citizen science), remote
sensing, and GIS to develop a risk map of oak decline for the Daniel Boone National Forest
of Kentucky. Specifically, we (1) used public reports and aerial imagery to identify pockets of
high oak decline in the Daniel Boone National Forest, (2) developed a site-scale oak decline
risk model for these areas based on key environmental characteristics identified in the
literature, (3) verified the risk model (in objective 2) based on field observations and aerial
imagery, (4) optimized this model to better reflect field observations and (5) developed an
oak decline risk map for the entire Daniel Boone National Forest based on these findings
and stand inventory data.
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2. Materials and Methods
2.1. Overall Framework

This study piloted a general framework for integrating GIS, remote sensing, and
citizen science as a proof of concept to build on in the future (Figure 1).
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Figure 1. Conceptual framework of research approach.

2.2. Study Area

The Daniel Boone National Forest (DBNF) is spread across 21 counties of southern
and eastern Kentucky containing more than 708,000 acres (287,000 ha) of national forest
system lands (https://www.fs.usda.gov/dbnf/, accessed on 5 February 2023) within about
2.1 million acres (850,000 ha) of the DBNF boundary in which private inholdings are
scattered throughout. The landform is characterized by steep forested slopes, sandstone
cliffs, and narrow ravines and lies within the Northern Cumberland Plateau Section of the
Eastern Broadleaf Forest (Oceanic) Province [30].

We received several reports of oak decline from the public via the TreeSnap app (www.
TreeSnap.org, accessed on 31 December 2019) and also from foresters at the DBNF [31].
For the purpose of this study, and in consultation with foresters at the DBNF, we visited
several areas of oak decline reported within forest stands, delineated oak decline polygons
covering the decline points, and developed this as a case study site within the DBNF
(Figure 2). Field examinations of these decline points in 2019 identified several contributing
factors to oak decline, including evidence of Ganoderma root and heart rot, Biscogniauxia
atropunctatum (also known as Hypoxylon canker), and Armillaria root rot. Signs of these
pathogens along with subsequent stem failure and/or root failure due to tree bole fractures
and/or uprooting, which also caused mortality of adjacent trees as diseased trees fell
into adjacent trees causing uprooting and/or stem fractures, were frequently observed.
Mortality resulting from oak decline was primarily observed within red oaks; however,
some white oaks were also affected in areas along higher slope positions. Red oak mortality
was located along higher slope positions along ridges and shoulders as well as lower slope
positions along backslopes. There were no significant defoliation events on record for these
areas that may have incited oak decline, but a severe drought occurred in 2016.

https://www.fs.usda.gov/dbnf/
www.TreeSnap.org
www.TreeSnap.org
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Figure 2. Daniel Boone National Forest (DBNF) and its boundary, which includes private inholdings
(gray color), and a case study site of a forest stand in DBNF.

2.3. Model Development

An extensive literature review was conducted to study the environmental characteris-
tics that are associated with oak decline with a focus in the southeastern US (Table 1). Based
on past studies conducted in the region looking at site and stand characteristics associated
with oak decline, and what data were readily available, four predisposing environmen-
tal factors were selected for our oak decline model: elevation, slope, solar radiation (a
quantifiable metric related to the previously studied factor of aspect), topographic wetness
index (a quantifiable metric related to previously studied factors of soil moisture and
proximity to water). These were derived for the case study site from which we received
oak decline reports.

Table 1. Summary of oak decline literature review (site and stand characteristics associated
with decline).

Category Qualitative Factors References

Site-scale
environmental
characteristics

Poor soils (gravely, shallow, clay
content, xeric, low nutrients) [10,13,14,17,20,32–34]

High elevation [10,17,20,34]

Low pH [17,33,34]

Steep slopes [14,17,34]

Exposed aspect [10,17]

Low site index [10,14]

Soil moisture [28]

Proximity to water [17]

Stand-scale biological
characteristics

Species composition (e.g., red oak
more decline) [10,11,14,19,20,32,35–37]

Stand age (e.g., older more decline) [10,14,34,38]
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2.4. Predisposing Environmental Factors

A 5-foot horizontal/grid resolution digital elevation model (DEM) was obtained
from the data clearinghouse Kentucky Geoportal Network (https://kygeoportal.ky.gov/
geoportal/catalog/main/home.page, accessed on 5 February 2023). It was then clipped us-
ing the tool Clip in ArcGIS to derive elevation specifically for the case study area (Figure 3).
From this DEM, the other predisposing environmental factors were derived in ArcGIS.
Slope steepness and solar radiation were obtained using the tools Slope and Area Solar
Radiation, respectively. The topographic wetness index (TWI) was calculated in SAGA
GIS (System for Automated Geoscientific Analyses) to represent the soil moisture regime
regulated by topography. A one-step TWI tool was used to calculate the TWI for our study
area where the only input required is the DEM.
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Figure 3. GIS representation of the four predisposing environmental factors (elevation, slope steep-
ness, solar radiation, topographic wetness) in the case study site in the Daniel Boone National Forest.

All predisposing environmental factors were then reclassified using the tool Reclassify
in ArcGIS (Figure 4). The natural breaks (i.e., Jenks) classification was used to divide the
range of each environmental variable into three classes and reclassify these continuous
GIS-derived variables into categorical variables with three risk-ranking orders (1, 2, 3)
corresponding to the order of three low-to-high-value classes except in the case of the TWI.
For example, high elevation is mostly associated with oak decline in Kentucky, so among
the three classes, ranking index 3 (high risk) was given to the highest elevation value class.
In contrast for the TWI, the ranking was reversed because of its inverse relationship with
oak decline. Therefore, ranking index 3 (high risk) was given to the lowest TWI value class.

https://kygeoportal.ky.gov/geoportal/catalog/main/home.page
https://kygeoportal.ky.gov/geoportal/catalog/main/home.page
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Figure 4. Reclassified oak decline risk ranking (low, middle, high) of each predisposing environmental
factor (elevation, slope steepness, solar radiation, and topographic wetness) in the case study site in
the Daniel Boone National Forest.

2.5. Risk Assessment at the Study Site Scale

The Weighted Sum tool was applied to assess the oak decline risk within the case
study site based on the four predisposing environmental factors. In this tool, elevation,
slope, solar radiation, and TWI-based wetness were given respective weights of 0.4, 0.3, 0.2,
and 0.1. This weighting scheme was based on a literature review (Table 1). The output was
a continuous GIS map, which was further reclassified into a categorical map with three
risk levels (low, intermediate, high) using the natural breaks (Jenks) classification scheme
(Figure 5).

2.6. Field Verification at Study Site

A field visit was conducted 1 May 2019, and the locations of all observed recent oak
mortalities, including standing dead trees and recently uprooted trees, were recorded. The
one-meter resolution NAIP (National Agriculture Imagery Program) 2016 imagery was
used to digitize the potential oak decline polygons before the field visits. These potential
decline polygons were then visited in the field to distinguish oak decline from other causes
of gaps in the canopy.

The finalized oak decline polygons were then overlapped with the oak decline risk
map to compute the number of low-, intermediate-, and high-risk-level pixels within
the observed oak decline areas. These numbers were then compared with the available
proportion of each corresponding risk level over the entire case study site using a chi-
squared test of the goodness of fit. The null hypothesis was that the proportion of each risk
level within the observed oak decline areas would be the same as the expected proportion
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(i.e., the available proportion over the entire case study site). The risk assessment map may
be considered to sufficiently represent realistic oak decline risk distributions if the null
hypothesis is rejected, and the observed oak decline mostly occurs in the areas designated
as intermediate- and high-risk levels.
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2.7. Optimized Risk Assessment Model Based on Field Observations

Based on the observations from the in-field assessment of oak decline at this site,
we reassessed the relative weights of the parameters used in the risk assessment model.
To achieve this, we tested a wide range of potential relative weight combinations for the
parameters of elevation, slope, solar radiation, and TWI (instead of retaining the weights
suggested by our review of the literature). Each parameter’s weight varied from 0.1 to 0.7
with an increasing step of 0.1, and the four parameters’ weights were constrained to have a
sum of 1. There were a total of 84 (i.e., nine choose three) such combinations.

The weighted sum output under each relative weight combination was a continuous
GIS map, which was further reclassified into a categorical map with three risk levels (low,
intermediate, high) using the natural breaks (Jenks) classification scheme. The categorical
risk maps were assessed with the field observation polygons, which were considered as
presence data under the habitat suitability modeling framework.

We then employed the P/E (predicted to expected ratio) curves proposed by
Boyce et al. [39] to evaluate the ability of each model to predict the oak decline presence.
For each of the three risk levels, P was computed as the fraction of oak decline within
the risk level to the total observed oak decline area, E as the relative area covered by the
corresponding risk level, and P/E as the ratio of P to E. For an appropriate weighting
scheme, the P/E ratio should be less than 1 for the low-risk level and greater than 1 for
the high-risk level. In addition, the P/E curve (plot of P/E ratio against the risk-ranking
order) should exhibit a monotonic increasing pattern for models properly delineating the
risk. The P/E curve and various metrics derived from this curve are considered power-
ful tools to assess presence-only habitat models [40]. We used a variation of the Boyce
Index [39,40] to summarize the three P/E ratios, in which the P/E ratio of the high-risk
level was subtracted from the P/E ratio of the low-risk level and added with half of the P/E
ratio of the intermediate-risk level. We considered the model with the highest Boyce metric
the superior model for oak decline risk delineation as it balanced modeling sensitivity
and specificity.
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2.8. Risk Mapping at the Landscape Scale

Once the model derived from the case study site was optimized based on our field
observation according to the calculated Boyce metric, we developed a risk map for the
entire DBNF. First, we used the USDA US Forest Service Field Sampled Vegetation Database
(FSVeg) for the DBNF, which contains species composition and age information at the stand
level, to identify forest stands predisposed to oak decline based on stand characteristics
(Table 1). Stands that were more than 90 years old and dominated or co-dominated
by oaks (from both red and white groups) were selected. These stands were further
divided by counties (political areas averaging approximately 920 km2 each). GIS variables
representing environmental characteristics (e.g., elevation, slope, solar radiation, and TWI)
for these stands were derived at the county scale since the computation of certain GIS
variables (e.g., solar radiation) and reclassification of continuous variables to categorical
variables may be less accurate if conducted at the regional scale. There were 18 counties
that intersected with these stands. A risk map was produced for each of these counties
following the same modeling procedure developed for the case study site. Specifically, we
used the natural breaks method to convert the four continuous GIS variables into categorical
variables at the county level (hence, each county has its own breaking values to reflect
the local conditions) and applied the same optimized weighting scheme to summarize
all four environmental factors. We then used the reclassification tool to classify stands
that did not contain a primary oak-dominant forest type as very low risk, the stands with
oaks but a stand age of less than 90 years as low-risk, the pixels belonging to the oak-
containing stands older than 90 years but with less conducive environmental characteristics
as medium-risk, the pixels belonging to the old oak stands (>90 years) with intermediate
conducive environmental characteristics as high-risk, and the pixels belonging to the old
oak stands and with highly conducive environmental characteristics as very high risk.
These 18 county-scale risk maps were merged into one regional-scale map to show the oak
decline risk of the entire Daniel Boone National Forest.

3. Results

The oak decline risk map derived from the literature-based weighting scheme (Figure 5)
for the case study site identified areas distributed in mid and upper slopes, areas with
south-facing aspects with high solar radiation, and areas with steep convex slope segments
with a dry soil moisture regime as very high risk (Figure 5 vs. Figure 3). Based on the
site-scale oak decline model, low-risk areas covered 43% of the entire study area, while
medium- and higher-risk levels covered 21% and 36%, respectively (Figure 6). In contrast,
the observed oak decline occurred mostly in the designated high-risk areas (47%), followed
by low-risk (30%) and medium-risk areas (23%). The chi-square test showed that the
observed oak decline proportion distribution was significantly different from the mapped
risk distribution (X-squared = 396.61, d.f. = 2, p-value < 0.001), suggesting that a significant
portion of the actual oak decline areas fall within the category of high- and medium-risk
groups of the risk map.

The prediction performance of the model using the literature-based weighting scheme
(0.4, 0.3, 0.2, and 0.1 for elevation, slope, solar radiation, and TWI-based wetness) was
ranked fifth according to the Boyce metric among all the 84 relative weight combinations
(Figure 7). The model optimized with the highest Boyce metric value had the weighting
scheme of 0.3, 0.2, 0.4, and 0.1. These two models had a similar P/E ratio for the low-
risk category, but the optimized model had a higher P/E ratio for the high-risk category
and a more steadily increasing pattern of the P/E curve than the literature-review-based
model. The mean relative weights of the top five models were 0.32, 0.26, 0.32, and 0.1 for
elevation, slope, solar radiation, and wetness, respectively. The mediocre models tended to
be the ones with a high relative weight for wetness at the expense of radiation or elevation
(Figure 7). For example, Figure 8 shows the high-risk category predicted by a mediocre
model extended its coverage to low-elevation areas compared to the one predicted by the
optimized model, suggesting a possible decrease in modeling specificity (Figure 8).
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Figure 6. Percentage of low-, intermediate-, and high-risk areas available in the oak decline map of
the case study site on the Daniel Boone National Forest derived from the literature-review-based
weighting scheme and observed in the delineated oak decline polygons derived from aerial imagery
and field observation. Error bar indicates 95% confidence interval of the observed percentage under
the null hypothesis that the observed percentage is the same as the available percentage.

The risk map for the entire DBNF shows that high-risk sites are scattered throughout
the forest (Figure 9). Areas with higher elevation, higher slope steepness, and higher solar
radiation are also the areas that are likely to have experienced oak decline or to experience
oak decline in the future. Approximately 12.8% or 36,800 ha of the stands within the Daniel
Boone National Forest that are dominated by an oak component were identified as having
a very high risk for oak decline, while 16.7% (47,900 ha) were identified as having a high
risk, 7.6% (21,700 ha) had a medium risk, and 36.2% (103,900 ha) a low risk. An additional
76,900 ha (26.8%) were identified as very low risk due to the lack of a significant oak
component (Figure 10). Within the stands older than 90 years and with an oak component
(106,000 ha), approximately 34.6% were identified as very high risk, 45.0% as high, and
20.4% as medium risk.
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Figure 7. The 84 weighing schemes varied with the relative weights for elevation, slope, solar
radiation, and TWI-based wetness and the corresponding model’s prediction performance measured
by P/E (prediction-to-expected ratios at low-, intermediate-, and high-risk levels: PE.L, PE.I, PE.H)
curve and the Boyce metric. Blue line shows the optimized (i.e., highest Boyce metric) model with
the weighting scheme of 0.3, 0.2, 0.4, and 0.1 for elevation, slope, radiation, and wetness. Green line
shows the reference model with the weighting scheme determined from the literature review (0.4, 0.3,
0.2, and 0.1 for elevation, slope, radiation, and wetness). Red line shows an example of a mediocre
model with the weighting scheme of 0.1, 0.3, 0.4, and 0.2 for the four model parameters.
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Figure 9. Oak decline risk map of the Daniel Boone National Forest.
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4. Discussion

Oak decline is a multi-scale issue with predisposing, inciting, and contributing factors
interacting across a variety of spatial scales [21]. While stressors that contribute to oak
decline have been well studied, the process of translating this information to spatially
explicit data useful for management is less clear given the many compounding issues at
play. Here, we used a combination of approaches (e.g., GIS, remote sensing) to develop
a model for assessing oak decline risk across a broad and heterogeneous area, the Daniel
Boone National Forest. Using available stand- and site-level GIS data, this work suggests
that oak decline risk is high or very high for almost 30% of the forest and, based on this,
we expect to see oak mortality increase in those stands over time as trees age. While the
long-term implications of this increasing risk for forest stand composition are unclear [41],
these findings highlight priority areas to consider in light of anticipated future changes,
particularly if any new issues, such as the arrival of spongy moth, were to arise.

This case study provides a valuable addition to other existing analyses of risk to forests
and a model for future work. For example, the Terrestrial Condition Assessment (TCA) for
USDA Forest Service lands lists the entirety of the DBNF as being in very good condition
from both a vegetation departure metric and uncharacteristic tree mortality metric [42].
However, while the TCA, which is based on FIA data, is a useful tool, it does not reflect
the on-the-ground conditions observed by managers in the area or the more nuanced but
significant tree risks. The approach employed in our study, scaling up from local reports
to individual sites and then expanding to a landscape level in an iterative manner, offers
greater specificity and, in this case, can provide foresters with more locally specific tools
for management.

This study used a set of four different predisposing site factors to determine risk
(elevation, slope, solar radiation, and topographic wetness index) as well as two predispos-
ing stand factors (species composition and age). Aspect was also used initially but later
discarded from the modeling due to its overlap with solar radiation, which was used in this
study instead since it directly represents aspect influences on solar energy distribution at
the site scale. Similarly, although proximity to water has been used as a moisture index in
studies of oak decline [17], the topographic wetness index is used since it is easier to derive
in the GIS and is quantitative in nature. Based on the literature review, high elevation, steep
slopes, and high solar radiation were given relatively larger weights for ranking in this
study initially, meaning that areas with these characteristics are more likely to experience
oak decline. The topographic wetness index was given the lowest weight because it was
least important in our overall risk assessment compared to other factors. Upon comparison
with in-field observations of oak decline at the small study site, we found that the top five
risk models determined elevation and solar radiation are most important factors, with the
highest mean relative weight (0.32), followed by slope (0.26), while topographic wetness
remained at the lowest weight (0.1).

Several past studies have also used soil depth as a predisposing factor for assessing
oak decline, but we were unable to include this factor due to data limitations in our study
area. For example, data from the Soil Survey Geographic Database (SSURGO), the most
widely used digital soil maps in the US, were very coarse in our study area within the
DBNF. Therefore, although this risk map is informative, a model that contains additional
environmental factors, including adding information about potential contributing and
inciting factors, should be developed in future studies.

It is worth noting that the site-scale risk models derived from slightly different weight-
ing schemes could vary greatly in terms of prediction performance (Figure 7). However,
the model we initially developed for oak decline risk, based on our assessment of the im-
portance of various site conditions described in the past literature, was relatively similar to
the one we later developed (and that we considered “optimized”) by matching all potential
combinations of parameter weights. Only slight differences in the weights of elevation
(lowered from 0.4 to 0.3), slope (lowered from 0.3 to 0.2), and solar radiation (raised from
0.2 to 0.4) resulted. Another interesting feature of this optimized model selection technique
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was that simply selecting for maximum match of oak decline in the field to a “high” rating
(i.e., high predicted frequency) on the model was undesirable. While other factor weighting
schemes could maximize this, it generally resulted in far more area being ranked “high”
(i.e., high expected frequency), and thus the result was less meaningful from a management
perspective; if all of the area is ranked “high”, then this designation loses its meaning.
Because of this, we instead opted to rank models in a way that valued a balance between
model sensitivity and specificity (i.e., P/E ratio) instead of simply using the closest match
to field observations.

Remote sensing (specifically aerial photography) was used in this project through the
digitization of decline polygons using NAIP imagery from 2016 to find areas inside the
DBNF that appeared to contain some canopy gaps, indicating tree mortality. In addition,
LIDAR remote sensing was used in developing the input variables for the risk modeling.
When a sample of these sites were visited, some contained patches of oak decline, where
oak trees had died, while other sites contained non-oak trees that had died (both resulted in
canopy gaps). However, some of the digitized polygons were found to be just canopy gaps,
with no recent tree mortality. While aerial imagery can provide helpful suggestions for
field visit sites, decline digitization needs to be field-verified before coming to a conclusion,
especially in highly diverse stands, to confirm species composition.

Past studies of oak decline in the eastern US largely relied on detailed stand informa-
tion for particular areas [18–20,34] or compiling large numbers of observations from Forest
Inventory and Analysis (FIA) datasets [11]. While this dataset is very valuable and provides
a snapshot of forest conditions across the country, it is limited for informing understanding
of recent changes in a specific area given the spatial resolution (limited number of plots) and
the sampling interval (each plot measured at regularly, but infrequently). While FIA data
are very useful for detecting trends over time, issues at a finer spatial scale are more likely
to be observed by the individuals who own or manage those areas. Reports of oak mortality
from landowners are major indicators of oak decline in Kentucky since most forested land
is privately owned. While these anecdotal reports are not solid data, they provide an idea
of the pervasiveness of oak decline and another avenue to use in future investigations.

Our pilot study points to a future strategy for combining these public observations
with remote sensing and GIS to assess forest health issues across a broad spatial area. Based
on this work, we propose an integrated approach for future forest health risk assessment
including the following:

• Reporting by the public: public providing alerts about forest health problems
(e.g., citizen science, working forest professionals).

• Stand-level assessment: foresters and scientists working together to predict area
impacted using GIS (based on known predisposing site factors), stand inventories,
and remote sensing.

• Landscape-level assessment: expanding models beyond study areas across a
broader scale.

• Verification and improvements: validating model results and changing models to
better fit in-field observations.

• Public dissemination: sharing results with partners and the public and encouraging
continued public reporting of issues that can provide insight into future models.

Expanding this collaborative approach in the future may be a beneficial strategy
for leveraging the expertise of engaged members of the public, forest professionals, and
scientists. Citizen scientists (landowners and other non-professional scientists) can scout
for and report issues, increasing access to information on both public and private lands.
Foresters and land managers can provide detailed site information and scientists can
provide GIS and remote sensing (RS) analysis, drawing these different observations together
to better inform future management. Continuous incorporation of reports from on-the-
ground observations (CS) with other methods (GIS and RS) would also allow for a scalable,
iterative approach.
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This study makes a case for incorporating citizen science observations into oak decline
and other tree health risk models. On the one hand, our optimized model, based on in-
field observations, was remarkably similar to the model developed exclusively based on
reviewing the literature on oak decline. However, these changes, while relatively minor
on a landscape level, may have important implications on a stand level, although further
testing is needed to determine whether they hold across a broader spatial scale. We feel that
these findings point to both the value of literature in developing core model parameters
and the potential for citizen science observations and other on-the-ground information to
fine-tune these.

Already, citizen science has proved a valuable tool in the detection and management
of new invasive species with the potential to impact forest health [43–45]. However, there
are limitations to this approach as well as important implications that should be considered,
ranging from issues with consistency of data quality to structural challenges in experimental
design. For example, some species or approaches may lend themselves well to citizen
science study, resulting in high-quality data comparable to expert collections, while in other
scenarios this potential is more limited or at least nuanced [46–48].

Another concern that is particularly relevant for the type of approach proposed here is
the difference between opportunistic reporting (largely of presence data) versus a more
systematic protocol that reflects information on both presence and absence. Depending
on the questions being asked and downstream analysis planned, it may be more or less
important to compensate for these shortcomings of citizen science data collection [49]. In a
modeling context, this issue is also present in the difference between using non-probability
(e.g., purposive) and probability (e.g., random) samples to build models [50]. Nonetheless,
we believe that this combined approach holds great potential to inform management related
to oak decline (as well as other threats) in the future.

5. Conclusions

Oaks (Quercus spp.) are important tree species in the eastern United States, being
central to many forest types and highly valuable ecologically and economically. However,
there are many threats to oaks, ranging from poor management practices to invasive species.
Among the most important of these threats is oak decline. An enhanced understanding of
site and stand issues underlying oak decline risk will enable land managers to better plan
stand treatments to improve forest health and resilience in the face of current and future
threats. By combining public reporting (e.g., citizen science), GIS, and remote sensing,
here we present a model of oak decline in the Daniel Boone National Forest that identifies
high-risk sites scattered throughout the forest. In addition, this work provides a framework
for collaboration between scientists, forest professionals, and the public that is scalable
and iterative. Working together, these groups can develop informative models that allow
for better forest management, especially under conditions of increasing disturbances and
emerging threats.
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