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Abstract: This study aims to develop different-classification-scheme-based building-seismic-resilience
(BSR)-mapping models using random forest (RF) and a support vector machine (SVM). Based on a
field survey of earthquake-damaged buildings in Shuanghe Town, the epicenter of the Changning M
5.8 earthquake that occurred on 17 June 2019, we selected 19 influencing factors for BSR assessment to
establish a database. Based on three classification schemes for the description of BSR, we developed
six machine learning assessment models for BSR mapping using RF and an SVM after optimizing
the hyper-parameters. The validation indicators of model performance include precision, recall,
accuracy, and F1-score as determined from the test sub-dataset. The results indicate that the RF-
and SVM-based BSR models achieved prediction accuracies of approximately 0.64–0.94 for different
classification schemes applied to the test sub-dataset. Additionally, the precision, recall, and F1-score
indicators showed satisfactory values with respect to the BSR levels with relatively large sample sizes.
The RF-based models had a lower tendency for overfitting compared to the SVM-based models. The
performance of the BSR models was influenced by the quantity of total datasets, the classification
schemes, and imbalanced data. Overall, the RF- and SVM-based BSR models can improve the
evaluation efficiency of earthquake-damaged buildings in mountainous areas.

Keywords: earthquake; building seismic resilience (BSR); machine learning model (MLM); different
classification schemes

1. Introduction

An earthquake is a catastrophic natural event that occurs suddenly [1]. Due to the fre-
quency of earthquakes, greater emphasis is being placed on ensuring the seismic resilience
of cities and buildings. Resilience, derived from the Latin word ‘resilio’ [2], is a term that
emerged in the field of ecology in the 1970s to describe the ability of systems to maintain
or restore their functions after a disturbance [3]. Engineering [4,5], social science [6,7],
and other fields have all adopted the notion of resilience. The concept of resilience can be
applied in different dimensions. In the urban and architectural fields, building resilience
constitutes the ability to maintain normal function, resist damage, or recover from highly
damaging effects precipitated by the natural environment (including natural disasters) and
the passage of time [8]; resilience is also used to assess and quantify a building’s ability to
retain or recover its operations in the aftermath of catastrophic natural catastrophes such as
earthquakes [9].

BSR refers to the ability of buildings to maintain and quickly restore their functions
during/following an earthquake. There are many studies on the seismic resilience of
cities [10–13]. You et al. [14] proposed a methodology for assessing community resilience
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via the seismic performance of individual buildings. Based on the rough set method,
Gizzi et al. [15,16] analyzed the reliability of using earthquake-induced building damage
information to reduce the risks faced by earthquake-prone towns. At present, there are few
studies on BSR, and most of them are focused on aspects of structural components [17–19].
Various scholars have studied the seismic resilience of buildings with different systems.
Dong et al. [20] proposed a system for evaluating the seismic resilience of steel structures
while taking economic, social, and environmental factors into account. Using the concept
of fuzzy set theory, several studies [21] have described a new measurement standard for
the seismic resilience evaluation of bridges. For critical infrastructures such as hospitals,
Shang [22] provided a methodology for measuring hospital system seismic resilience, while
Hassan et al. [23] proposed a hospital seismic function and recovery process assessment
framework.

At present, there are four evaluation criteria for BSR [24]. FEMA P-58 [25] is a
performance-based seismic design method that was proposed by the Federal Emergency
Management Agency in 2012. Its performance evaluation results consist of the probability
distribution of performance indicators such as casualties, repair costs, and repair time.
Almufti and Willford [26] proposed an evaluation system for determining building re-
silience that improves the method for calculating repair time on the basis of FEMAP-58.
The United States Resiliency Council (USRC) [27] established a building performance eval-
uation system in 2015 [28] based on assessment results provided by FEMA P-58 and REDI.
The standard for BSR assessment [29] has been implemented in China since 1 February
2021; since then, it has helped relevant industries actively improve BSR. Clearly, BSR is
associated with physical conditions, such as a building’s structure, damage factors, and
the environment, and social factors, such as casualties, repair costs, and time. The former
set is known as physical resilience, and the latter has been termed social resilience. Zhang
et al. [30] also recommended dividing catastrophe resilience evaluation into physical and
social resilience, with physical resilience being more significant prior to disasters. Physical
resilience refers to the ability to resist disasters, while social resilience refers to the ability to
reconstruct after disasters.

Most of the previous studies on physical resilience mainly considered the influence
of seismicity on buildings’ structural properties. However, buildings are not independent
of their environments. With regard to physical BSR, it is vital to couple the effect on
the building itself with other factors [8,31]. Several researchers [32] described a hybrid
information fusion strategy for statistically evaluating Nepal’s earthquake resilience by
developing nine indicators at the geological, architectural, and societal levels. Some
investigators [33] also quantified community resilience by selecting various indicators
while accounting for different dimensions. Referring to the previous studies, this paper
focuses on building seismic physical resilience (BSR) in mountainous areas. It constitutes
a new approach to exploring the combined effect of seismic factors, geological factors,
topography factors, environmental factors, and building factors on BSR.

One of the keys to achieving rapid functional recovery after earthquakes is the timely
assessment of the site [34]. Traditional on-site investigations usually require trained profes-
sionals, resulting in prolonged assessment times. However, an alternative exists, which
shows promise with respect to addressing the shortcomings of the traditional approach.
For this purpose, Shuanghe Town was chosen as the research location, and a database
containing 19 influencing factors was established, which included five dimensions: seis-
mic factors, geological factors, topography factors, environmental factors, and building
factors. Based on MLMs (RF and SVM) whose hyperparameters were tuned, we developed
evaluation models to predict the BSR level in mountainous areas. Through this evaluation
model, the state of BSR can be quickly judged, the cost of data collection can be reduced,
and potential risks can be identified at an early stage, thereby providing an academic and
practical resource for earthquake damage mitigation/prevention and building site selection
planning.
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2. Study Area and Earthquake-Damaged Building Inventory
2.1. Study Area

The study area is located in the center of Shuanghe Town (Figure 1). Shuanghe Town
is located near the southern border of Changning County, Sichuan Province, China, with
an area of 135.37 square kilometers and a total population of 18,955 people (2017). The
area’s highest elevation is 953.4 m, while its lowest elevation is 367 m. Therefore, it is
a mountainous and hilly terrain. Its lithology corresponds to thick mudstone and thin
sandstone. Cambrian, Ordovician, and Lower Silurian strata are exposed on the surfaces
of this region. Changning County is located on the Yangtze platform. There are many
secondary faults in the region. The epicenter is located in the Changning-Shuanghe large
anticline distribution area [35], for which the geological structure is complex.
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At 22:55 on 17 June 2019, a M 5.8 earthquake struck Changning County, Sichuan
Province, with a focal depth of 6.0 km and an epicenter (28.406◦N, 104.933◦E) near the
northeast of Shuanghe Town. The earthquake struck 8 surrounding counties, including
Changning County. According to preliminary statistics, 13 people died, 220 people were
injured, and the direct economic losses amounted to about USD 1.422 billion. The earth-
quake had a devastating effect, resulting in enormous losses of life and property, and 66%
of these losses were due to a lack of seismic measures [36]. In this study, Shuanghe Town
was selected as a case study area to assess BSR in a mountainous area.

2.2. Earthquake-Damaged Building Inventory and BSR Classification Schemes

Our research group conducted a post-disaster field survey at Shuanghe Town from
9–14 July 2019. Each building in Shuanghe Town was located using satellite images, and the
buildings were numbered using ArcGIS. The team was divided into two groups that were
assigned to visit each household in Shuanghe Town. We obtained an earthquake-damaged
building inventory. A total of 855 groups of field building data were collected in three
days, including with respect to building structure, number of floors, use categories, and the
degree of earthquake-induced damage. At the same time, UAV aerial photography was
carried out on site, and an orthophoto of Shuanghe town post-disaster was obtained.

Survey data showed that the proportions of building structure types in the study
area were as follows: 82.79% brick–concrete structures, 13.00% brick–timber structures,
3.04% steel and reinforced concrete structures, and 1.17% hybrid structures. The building
structures in the study area are relatively simple and easily observable, while the actual
damage parameters of various building materials, foundation could not be directly obtained
in the field. Using a visual technique, the buildings’ damage levels were assessed. With
reference to the relevant building damage grade standards in China, we focused our
investigation on uneven settlement cracks and inclinations of the structures.

Using the earthquake-damaged building inventory, based on the damage degree,
importance, quantity, and proportion of each dangerous component; the ability to maintain
a building’s function; and the reparability of a building, the BSR was divided into three
classification evaluation schemes considering the initial four different earthquake damage
degrees. Table 1 shows the detailed classification schemes. Table 2 shows the detailed
datasets corresponding to the three classification schemes. Here, 855 buildings in the study
area, whose complete information with respect to influencing factors have been obtained,
were employed as 855 groups of samples. In accordance with the C4 scheme, the numbers
of BSR level I, II, III, and IV are 256, 397, 125, and 77, and the corresponding percentages
of the total numbers are 29.94%, 46.43%, 14.62%, and 9.01%. According to a ratio of 7:3,
the whole dataset was randomly split into groups of 603 and 252 comprising training and
testing sub-datasets, respectively.
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Table 1. Classification evaluation schemes and description of BSR.

C2 C3 C4 Initial Earthquake-
Damaged Degrees

Description Field Photos UAV Images
1~2 A~C I~IV

1:
Repairable,

including levels
I, II, and III

A:
Intact I Intact The building’s structure is basically intact

and meets the requirements for safe use.
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Table 2. Detailed datasets correspond to three classification schemes of BSR.

Classification Schemes
C2 C3 C4

C21 C22 C3A C3B C3C C4I C4II C4III C4IV

Number of Buildings 778 77 256 522 77 256 397 125 77

3. Data and Methods
3.1. Data

Following an earthquake, BSR is affected by the building itself and other factors, such
as seismic factors, geological conditions, topography, environmental factors, and building
factors. Wen et al. (2023) considered and selected five types of factors for building seismic
resilience assessment [31]. By combining previous references [8,37–41], 19 factors were
selected to generate the factor database for the BSR mapping of buildings with earthquake-
induced damage. They are as follows: elevation, slope, aspect, curvature, plan curvature,
profile curvature, micro-landform, CRDS (relative to slope structure [42]), stratum, fault
wall, distance from faults, peak ground velocity (PGV), peak ground acceleration (PGA),
seismic intensity, distance from rivers, distance from roads, building structure, number of
floors, and building use category.

The PGV, PGA, and seismic intensity data were obtained from USGS (https://earthquake.
usgs.gov/earthquakes/eventpage/us600041ry/shakemap, accessed on 18 June 2019). The
stratum and fault wall data were obtained from the National Geological Archives of China
(http://www.ngac.org.cn/Map/List, accessed on 19 June 2019). The road and river net-
work data were derived from Google Earth remote sensing images. DEM can be used
to process and retrieve data concerning slope, aspect, curvature, plan curvature, profile
curvature, micro-landform, and CRDS via ArcGIS. In this study, we used ASTER GDEM
data, corresponding to a resolution of 1 arc-second (approximately 30 m). The data can
be downloaded for free from JAXA’s official website and can be integrated with ArcGIS
software and tools. The data on building structure, number of floors, and building category
were obtained through field investigation.

Changning County, Sichuan Province, is situated at the nexus of the Huaying Moun-
tain and Emei Mountain fault zones. This can affect the earthquake intensity with respect
to the distance from the fault (Figure 2k). Meanwhile, the ground motion amplitude of the
hanging wall is greater than the foot wall, which is described in Table 3. The study area,
Shuanghe Town, spans 4 reverse faults (Figure 2j). By using ArcGIS to calculate Euclidean
distance, the building distribution of hanging walls (above the fault plane) and footwalls
(below the fault plane) can be identified.
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Table 3. Categories and detailed descriptions of influencing factors.

Category Influence Factors Description

Topographic factors

Elevation
Elevation directly reflects the level of terrain and determines the extraction of
other slope factors. Different elevations affect different land, vegetation, and
climatic factors and human activities.

Slope Slope is the proportion in distance of horizontal to vertical height. The stress
distribution in different slopes is different.

Aspect
The slope’s aspect is the direction of projection. In a mountainous
environment, aspect has a significant impact on precipitation and has an
impact on hydrogeology.

Curvature Curvature is the second-order derivative of the surface, affecting the erosion of
soil via water flow.

Plan curvature Plan curvature refers to the change rate of surface aspect. The essence is to
extract the aspect of DEM and then extract the slope of this aspect.

Profile curvature Profile curvature refers to the change rate of the surface slope. In essence, the
idea is to extract the aspect of the DEM twice.

Micro-landform

Micro-landform is a small undulation with complex surface on a large
landform, which is mainly formed by erosion and accumulation under
weathering. The strength of rock and soil in different micro-landform units are
different.

Geological factors

CRDS CRDS refers to the reclassification of both stratum dip direction and slope
aspect. Different combination types have different slope stability values.

Stratum The formation time and weathering degree are different; the bearing capacity
and lithology of stratum is different.

Fault wall The ground motion amplitude of the hanging wall is greater than the foot wall.

Distance from faults Within a specific range, the closer the fault, the looser the soil, and the more
sensitive a building is to earthquake damage.

Seismic factors

PGV The maximum absolute value of surface particle velocity during earthquake
motion.

PGA The maximum absolute value of surface particle acceleration during
earthquake motion.

Seismic intensity The influence of earthquake on the surface and the structural properties of
buildings.

Environmental
factors

Distance from rivers
Within a certain range, the closer a region is to a river, the higher the water
content of soil layer; this relationship affects an area’s hydrogeological
conditions and foundation bearing capacity.

Distance from roads Within a certain range, the road construction leads to the stress redistribution
of the original rocky soil. The closer an area is to a road, the greater the impact.

Building factors

Building structure The earthquake damage degrees of different structures are different, as are
their BSR levels different.

Number of floors Building height is different, weight is different.

Building category The design principles and materials of buildings with different use categories,
such as industrial and civil use, are different.

Table 3 provides a detailed description of all 19 influencing factors noted above.
Figure 2 shows the thematic layers of the 19 influencing factors noted above (created using
ArcGIS).

3.2. Methods

Machine learning algorithms, such as RF and SVM, are increasingly being used in
disaster risk assessment [43–46]. Machine learning algorithms are also commonly used
to assess building vulnerability and resilience [8,47–49]. In this study, RF and SVM were
combined to verify or compare the BSR evaluation results.

Figure 3 depicts a flowchart of the methodologies employed in this work. This study
comprises three steps: (1) Via field investigation, combined satellite remote sensing images,
a digital elevation model, and related websites, we obtained an earthquake-damaged
building inventory and information relevant to BSR. A database of BSR influencing factors
was established. (2) The influence factor was used as the input layer of the model, and
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the BSR level was used as the output layer. Then, we used RF and SVM to train the
BSR evaluation models using a training sub-dataset. (3) The test sub-dataset was used to
validate and evaluate the models’ performance via validation indicators.
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3.2.1. Random Forest

RF uses multiple decision trees to randomly comb through different data subsets and
provide classification results with the maximum number of votes as the final output [50].
RF models show strong, robust, and accurate performance with respect to dealing with
complex data [51]. Wang et al. [41] used RF to propose quantitative risk assessment model of
based on landslide susceptibility mapping. The model presented good prediction capacity.
Zhang et al. [8] used RF to develop a building physical resilience evaluation model for
mountainous areas.

3.2.2. Support Vector Machine

Due to its excellent learning capacity with respect to tackling classification challenges
and minimal computing complexity, an SVM is often used as an effective method for solving
classification problems in the case of small samples. To date, many in-depth disaster risk
studies have been conducted using an SVM [30,33,52,53]. Zhang et al. [8] used SVM to
perform building physical resilience evaluation in a mountainous area.

On the basis of the above analysis, RF and SVM were selected to develop the BSR
assessment models in this study.

3.2.3. Model Evaluation Method

In analyses of prediction impact, confusion matrices are frequently used to ascertain
an algorithm’s performance. Each column represents the resilience level predicted by the
model, and the data contained in each column indicate the number of levels. Each row
represents the actual resilience level, and the data of each row represent the actual number
of this level.

One of the critical steps of MLM development is to evaluate a model’s prediction
ability. To simplify the formulation, the confusion matrix’s data corners are represented
by the combination of the actual and predicted resilience level (Table 4). In this study, Nij
indicates that the actual resilience level corresponds to I, while prediction corresponds
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to j. Then, some indicators calculated based on the confusion matrix, including accuracy,
precision, and recall, can further measure the models’ performance.

Table 4. Four-classification confusion matrix.

Prediction Level (j)

I II III IV

Actual level
(i)

I N11 N12 N13 N14
II N21 N22 N23 N24
III N31 N32 N33 N34
IV N41 N42 N43 N44

The accuracy (Acc) rate is the percentage of samples achieving correct predictions in
the overall sample. It is the most fundamental, logical, and straightforward technique for
determining how well a categorization model has been evaluated. However, due to the
unbalanced nature of these data, the use of only accuracy rate is insufficient for evaluating
model performance.

Precision (Pre) and recall (Rec) are two evaluative indicators that are widely used in
statistical classification [8,54]. In this study, the number of samples is not balanced, and
it is mainly the prediction effect of each BSR level of the model that is measured. Rec is a
measure of the ability of the prediction model to select a specific level from the data sets.
(1-Rec) denotes the missing judgment rate (MJR) of the model prediction. Pre concerns the
effect of prediction, which refers to the fraction of the true values of the level projected as
a given level in all the samples, revealing the model’s precision and fulfilling the actual
demands. (1-Pre) denotes the error judgment rate (EJR) of the model prediction. Both
precision and recall are biased evaluative indicators, while F1-score (F1) is a comprehensive
evaluative indicator of the previous two indicators. For multi-classification problems, the
Rec, Pre, and F1 of different BSR levels should be calculated separately.

Based on Table 4, the four evaluative indicators, Acc, Pre, Rec, and F1, are expressed as
Equations (1)–(4), respectively.

Acc = ∑4
i=1 Nii/∑4

i=1 ∑4
j=1 Nij (1)

Prej = Nii/∑4
i=1 Nij (2)

Reci = Nii/∑4
j=1 Nij (3)

F1i = 2 ∗ Prei ∗ Reci/(Prei + Reci) (4)

4. Results
4.1. Optimization of Models via Hyperparameter Tuning

Hyperparameter tuning is an important factor influencing an MLM’s perfor-
mance [8,55]. Based on the R language, the RF model has two key hyper-parameters,
namely, Mtry and ntree, which indicate the number of variables used in the binary tree at
the node and the number of decision trees, respectively. By calling the RF program package,
the optimal parameter mtry = 3 was selected by using for-loop iteration, and the optimal
mtry was substituted into the code to observe the stability of the model error and determine
the optimal ntree value (in this case, ntree = 1500).

In the SVM, the kernlab package is implemented using the R language. In the clas-
sification model, type selection C-svc and the kernel function kernel selection rbfdot are
the best performing. At this stage, two key hyper-parameters are included, i.e., sigma and
C, which indicate the width of the kernel function and the cost of violating the constraint,
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that is, the tolerance for allowing classification errors, respectively. By employing for-loop
iteration using a ten-fold cross-validation method, the optimal parameter combinations
were determined, namely, kpar = list (sigma = 0.300) and C = 15.

Table 5 lists the optimized key hyper-parameters of the RF and SVM.

Table 5. The results of hyper-parameters’ tuning.

RF SVM
mtry ntree Sigma C

3 1500 0.300 15

Based on the above optimal parameters, the ten-fold cross-validation method was
used to find the optimal sample. To limit the error produced by the individual sampling
techniques with respect to the model outputs and increase the accuracy of the test algorithm,
the training sub-dataset was randomly divided into ten portions, nine of which were
utilized as training data and one as a test dataset. Due to the unbalanced nature of the
data, the weights of the four BSR levels were adjusted using the ‘classwt’ code after finding
the optimal sample. After debugging, it was found that if the proportion of level III and
IV data is increased, some level I and II data are misclassified to level III and IV, and the
model’s results are poor. On the contrary, if the proportion of level I and level II is increased,
the classification ability of these two types will be significantly strengthened, while the
classification ability of the original minority dataset will be slightly poor. Overall, the
model prediction effect is improved after weight adjustment.

4.2. Results of the Different BSR Classification Schemes

Table 6 provides a detailed list of the validation indicators of the six BSR models. In
summary, based on the Pre, Rec, and F1 scores, the table shows that C21, C3B, and C4II are
satisfactory results for either the RF or SVM-based models. The overall model performance
of the C2 scheme is superior, followed by C3 and C4. Since the C4 scheme should be more
comprehensible in practice, the results of the C4 scheme are discussed in further detail
below.

Table 6. Details of the validation indicators of the six BSR models.

Classification Schemes
C2 C3 C4

C21 C22 C3A C3B C3C C4I C4II C4III C4IV

RF
Pre 0.94 1.00 0.88 0.75 1.00 0.64 0.65 1.00 0.8

Rec 1.00 0.38 0.58 0.98 0.13 0.62 0.85 0.33 0.50

F1 0.97 0.55 0.7 0.85 0.22 0.63 0.74 0.50 0.62

SVM
Pre 0.94 0.5 0.80 0.78 1.00 0.71 0.62 0.50 0.67

Rec 0.99 0.38 0.62 0.94 0.38 0.65 0.80 0.25 0.29

F1 0.96 0.5 0.80 0.85 0.55 0.68 0.70 0.33 0.40

Figure 4 lists the two confusion matrices of the training sub-datasets and test sub-
datasets based on the RF-based model according to the C4 scheme’s results. Figure 5
lists the two confusion matrixes of the training sub-dataset and test sub-dataset for the
SVM-based model according to the C4 scheme’s results. The yellow highlights are the
models’ Acc values as determined using Equation (1). As we can see by comparison, the
RF-based model’s performance is relatively better than that of the SVM-based model.
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As we can see in Figures 4 and 5, the RF-based model’s prediction accuracy values are
0.94 and 0.67 for the training and test sub-datasets, respectively. The SVM-based model’s
prediction accuracies are 0.99 and 0.64 for the training and test sub-datasets, respectively.
The SVM-based model has a more obvious degree of overfitting than the RF-based model.

4.3. Model Performance
4.3.1. Accuracy Analysis

Based on the integration of the data in Table 6 into Equation (1), we can obtain the Acc
values (Figure 6) of the six BSR models.

According to the results of all the different classification schemes, the accuracy values
of the RF-based and SVM-based models are 0.67 and 0.64 for the C4 scheme, respectively.
The accuracy values of the RF-based and SVM-based models are 0.77 and 0.78 for the C3
scheme, respectively. Furthermore, the accuracy values of the RF-based and SVM-based
models are 0.94 and 0.93 for the C2 scheme, respectively. (Figure 6). The results show that
the BSR models’ prediction accuracy noticeably increases with a decreasing classification
number.



Remote Sens. 2023, 15, 2226 15 of 20
Remote Sens. 2023, 15, 2226 15 of 21 
 

 

 

Figure 6. The six BSR models’ accuracy with respect to the different classification schemes accord-

ing to the test sub-dataset. 

According to the results of all the different classification schemes, the accuracy values 

of the RF-based and SVM-based models are 0.67 and 0.64 for the C4 scheme, respectively. 

The accuracy values of the RF-based and SVM-based models are 0.77 and 0.78 for the C3 

scheme, respectively. Furthermore, the accuracy values of the RF-based and SVM-based 

models are 0.94 and 0.93 for the C2 scheme, respectively. (Figure 6). The results show that 

the BSR models’ prediction accuracy noticeably increases with a decreasing classification 

number. 

Based on Figure 6, we can further discuss the BSR models’ accuracy. The accuracy of 

the BSR models in mountainous areas is mainly affected by the small overall sample size, 

the classification schemes employed, and the unbalanced nature of the data. 

(1) The small overall sample size: Under the limitations of few investigators, a short re-

search period, and occasional poor communication, the team collected 855 buildings 

of Shuanghe Town. The overall samples collected are relatively small, which specifi-

cally impacts the prediction performance of the MLM. 

(2) Classification scheme: The classification algorithm was used initially to study the bi-

nary classification problem. This study concerns different BSR classification schemes 

of two to four levels. The C3 and C4 schemes are not a simple accumulation of the 

data from the binary classification, which leads to misclassification or indivisibility 

and affects the prediction accuracy for BSR to a certain extent. 

(3) Unbalanced nature of the data: When data are highly unbalanced, the performance 

of an MLM will decrease due to the C4 scheme, the proportions of buildings with 

four BSR levels (I, II, III, and IV) in the total sample are unequal. In RF, the character-

istics of a small number of categories will be regarded as noise, which is usually ig-

nored. In an SVM, the classification hyperplane tends to correspond to level III and 

level IV minority classification datasets, so some support vectors are divided into 

level II and level I majority classification datasets. Due to the unbalanced nature of 

the sample dataset, the predicted results based on the two different MLMs (RF and 

SVM) all show that the results obtained by the classification algorithm should be bi-

ased towards a large number of classifications. 

4.3.2. Precision Analysis 

With regard to the C4 scheme for determining BSR, based on Figures 4 and 5, the 

accuracy and recall values of the models are shown in Figure 7. 

Figure 6. The six BSR models’ accuracy with respect to the different classification schemes according
to the test sub-dataset.

Based on Figure 6, we can further discuss the BSR models’ accuracy. The accuracy of
the BSR models in mountainous areas is mainly affected by the small overall sample size,
the classification schemes employed, and the unbalanced nature of the data.

(1) The small overall sample size: Under the limitations of few investigators, a short
research period, and occasional poor communication, the team collected 855 build-
ings of Shuanghe Town. The overall samples collected are relatively small, which
specifically impacts the prediction performance of the MLM.

(2) Classification scheme: The classification algorithm was used initially to study the
binary classification problem. This study concerns different BSR classification schemes
of two to four levels. The C3 and C4 schemes are not a simple accumulation of the
data from the binary classification, which leads to misclassification or indivisibility
and affects the prediction accuracy for BSR to a certain extent.

(3) Unbalanced nature of the data: When data are highly unbalanced, the performance of
an MLM will decrease due to the C4 scheme, the proportions of buildings with four
BSR levels (I, II, III, and IV) in the total sample are unequal. In RF, the characteristics
of a small number of categories will be regarded as noise, which is usually ignored.
In an SVM, the classification hyperplane tends to correspond to level III and level IV
minority classification datasets, so some support vectors are divided into level II and
level I majority classification datasets. Due to the unbalanced nature of the sample
dataset, the predicted results based on the two different MLMs (RF and SVM) all show
that the results obtained by the classification algorithm should be biased towards a
large number of classifications.

4.3.2. Precision Analysis

With regard to the C4 scheme for determining BSR, based on Figures 4 and 5, the
accuracy and recall values of the models are shown in Figure 7.

(1) For the RF-based model, the precision values are 0.64, 0.65, 1.00, and 0.80 for BSR
levels I, II, III, and IV, respectively (Figure 7a). For the SVM-based model, the precision
values are 0.71, 0.62, 0.50, and 0.67 for levels I, II, III, and IV, respectively (Figure 7b).
As a whole, the precision values of the RF-based model are higher than those of
the SVM-based model. From among the 1-Pre values, the highest number of error
judgments were made in reference to level I, followed by level II.

(2) For the RF-based model, the recall values are 0.62, 0.85, 0.33, and 0.50 for BSR level I,
II, III, and IV, respectively (Figure 7c); for the SVM-based model, the precision values
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are 0.65, 0.80, 0.25, and 0.29 for level I, II, III, and IV, respectively (Figure 7d). As a
whole, the recall values of the RF-based model are higher than those of the SVM-based
model. From among the 1-Rec values, the highest number of missing judgments were
made in reference to level III, followed by level IV.
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5. Discussion
5.1. Analysis of BSR Models’ Performance Differences

For either the RF-based or SVM-based models, the precision of model prediction is
the highest within the same column for any BSR level. As mentioned in Zhang et al.’s
study (2022) [8] concerning three-classification models for mountainous building resilience
assessment, in general, RF-based models exhibit slightly higher accuracy and lower overfit-
ting, thus demonstrating their relatively better performance compared to SVM-based BSR
models. These models can be considered to yield correct classification and accurate results
for most buildings, indicating their good reference value for BSR assessment.

Based on the results presented in Table 6 and Figures 4, 5 and 7, we observed that
the RF and SVM models exhibited different performance with respect to various datasets.
This indicates that we should select different models for different datasets to achieve
optimal predictive performance. To gain further insights into the differences in performance
between these models, we used “1-Rec” to denote the missing judgment rate (MJR) of the
model’s prediction and “1-Pre” to denote the error judgment rate (EJR) of the model’s
prediction. Overall, the MJR and EJR of the RF- and SVM-based models exhibited a
generally consistent trend, but there were noticeable differences. For example, at the C3C
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level, the RF-based model’s MJR was lower than that of the SVM-based model, while at
the C4IV level, the RF-based model’s MJR was higher than that of the SVM-based model.
Additionally, the RF-based models’ EJR was higher than the SVM-based models’ EJR for
most of the BSR levels, but at the C4I level, the RF-based model’s EJR was lower than that
of the SVM-based model.

Based on an analysis of Figure 6 and the previous results, it can be observed that the
C2 scheme has the highest accuracy (Acc) value, while the C4 scheme has a comparatively
lower Acc value. This implies that as the number of classes increases, the overall accuracy
of the models tends to decrease. Additionally, the recall values for the C22, C3C, and
C4IV levels of the BSR dataset are relatively low. This can be attributed to the fact that the
proportion of data in these levels in the sample is significantly lower compared to the other
categories, resulting in an imbalance in the resilience levels across the three classification
schemes. This finding is consistent with our previous research [8,31], highlighting that
imbalanced data related to resilience levels can negatively impact model performance.

5.2. BSR Model Recommendation and Performance Improvement

Although the overall performance of the models using the C2 scheme is better than
that of the C4 scheme with respect to identifying BSR levels, it is worth noting that the C4
scheme is more refined and aligns better with the practical requirements of BSR assessment.
Therefore, we recommended prioritizing the improvement of a model’s performance with
respect to the four-classification scheme in BSR assessment.

To further enhance the performance of the unbalanced-data-based MLM multi-
classification models, several strategies can be implemented. Firstly, obtaining more BSR
data from other earthquake-damaged buildings can be used to train the MLM while miti-
gating the impact of unbalanced data. It is believed that with a sufficiently large volume
of data, the performance of the unbalanced-data-based models could reach an acceptable
level. Secondly, in this study, certain influential factors, such as the building foundation
type, foundation burial depth, and building service life, which are crucial for determining
BSR, were difficult to obtain via low data coverage; thus, they were omitted. However, the
exclusion of these key factors may result in decreased model performance. Therefore, we
suggest the further incorporation of relevant influential factors that are pivotal to BSR, while
considering the feasibility of data acquisition. Lastly, from a methodological perspective,
hybrid optimization techniques or ensemble-learning models, such as hybrid optimization
based on the Synthetic Minority Over-sampling Technique (SMOTE) and hyperparameter
tuning, can be employed to improve the performance of unbalanced-data-based MLM
models for BSR assessment [31]. Additionally, ensemble learning can be considered to
combine the strengths of various models and enhance the efficiency of earthquake damage
assessment for buildings in mountainous areas. During the iterative optimization process,
it was identified that the generalization ability for particles was not strong. Therefore,
complementary hybrid optimization methods can be used to optimize models and further
enhance their performance and accuracy. We believe that the application of these strategies
will help us more substantially address the issue of earthquake- induced damage on build-
ings in mountainous areas and provide more precise and reliable support for the seismic
evaluation of buildings.

6. Conclusions

In this study, which concerned earthquake-damaged buildings in Shuanghe Town,
by considering the combined effects of seismic, geological, topographical, environmental,
and building factors on the BSR in the region’s mountainous area, we identified 19 factors
influencing BSR and established a corresponding BSR database. Based on the training
sub-dataset, we developed six assessment BSR models by combining two MLMs and three
classification schemes. The important findings and recommendations of this study are as
follows:
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(1) For machine learning models, the performance of identifying whether or not buildings
have suffered earthquake-induced damage is better than that for identifying different
degrees of earthquake-induced damage.

(2) The C2 scheme has the highest Acc value, while the C4 scheme’s performance is more
dependent on practicality with regard to BSR assessment. That is to say, the BSR
assessment models’ performance was affected by the small number of total samples,
the classification scheme used, and the unbalanced nature of the data.

(3) The RF-based model, with a slightly higher Acc and lower overfitting, offers better
performance than that of the SVM-based BSR model, which can provide a reference
for BSR assessment in mountainous areas.

The main focus of this study is the assessment of the physical BSR in mountain areas.
If the relevant data regarding the influencing factors of social resilience are collected later,
which can also be processed by the BSR model, the proposed models can be extended, and
their performance can be further improved by flexibly adding more BSR training data and
relevant BSR factors of different dimensions.
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