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Abstract: In this paper, we aimed to clarify the problem of foam coverage dependence on wave
fetch, which is of interest in satellite microwave radiometry, but for which controversial results were
reported previously. The classical approach to investigating developing waves was applied. That
is, the waves are considered as coming from the coast under approximately constant wind velocity.
The study includes two scenes of intensive katabatic winds in the Gulf of Lion and the Gulf of
Tehuantepec. We used two Bands of Landsat OLI images to extract the wave spectral peak frequency
and the sea fraction covered by foam simultaneously along the wave fetch. The distributions of
the spectral peak frequency along the fetch obeying the classical wave growth law clearly showed
that we observed the developing waves. Along the fetch, the sea surface covered with foam grows
about three times with the power law. This development of foam coverage occurred at the range
of dimensionless fetches from 50 up to 7000 if the fetch is scaled using wind velocity and gravity
acceleration. A simple model of the foam coverage growth with wave fetch is suggested. We modeled
wave energy dissipation rate using the JONSWAP wave spectrum for developing seas. The model
explains the observations at the quantitative level. Reported results can be applied to investigations
of tropical cyclones using satellite microwave radiometry.

Keywords: ocean; wind-driven waves; wave breaking; Landsat imagery; fetch-limited wave growth;
sea foam; foam coverage modeling; storm winds

1. Introduction

Classical laws of wind-driven wave development are the basis of current numerical
modeling and forecasting of sea surface waves [1–3]. Hence, they remain the subject of
discussion, and both experimental [4–7] and theoretical [8–12] studies. The development
of these laws results in parametric models of the evolution of dominant wind waves,
which have an important practical application in studying and predicting wind wave fields
generated by tropical cyclones [13–15].

Dissipation of wind waves emerges on the sea surface due to wave breaking. This
supports permanent scientific interest in the investigation of wave breaking [16–22], related
bubble fraction in water [23–28], and direct numerical modeling of these processes (see,
e.g., [29–31]). Wave breaking intensifies the generation of air bubbles, water spray, and
undersurface turbulent mixing, which amplifies exchange processes between the atmo-
sphere and ocean [32–37]. Therefore, the problem of wave breaking evolution during wave
development has direct application to both climate predictions [34,38–40] and modeling
of tropical cyclone dynamics [34,41–43]. Together with wind velocity, wave development
determines the variability of the wave field in the tropical cyclone characterized by varying
wave ages from young to mature waves [13–15]. Thus, for tropical cyclone dynamics, the
issue of how wave age impacts wave breaking and modulates air–sea interactions can be of
principal significance.

Wave breaking through changing of sea surface physical properties affects the remote
sensing signals and contributes to formation of typical images of tropical cyclones. The
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challenging problem of tropical cyclone diagnostics via satellite data requires an under-
standing of the wave breaking field in the tropical cyclone. Tropical cyclones have typical
images in the radio-brightness temperature of the sea [44,45]. Possible interpretation of
these images can be related to wave breaking because, on the one hand, wave breaking
influences the signal of the microwave radiometer [46–51], and, on the other hand, we can
expect strong variations of the foam coverage in the tropical cyclone field [14].

Wave development from the coast obeys the power-laws [1–3]

ξ = ξ0χ−q, (1)

ε = ε0χp, (2)

where
ε = Eg2/U4, ξ = fpU/g, χ = Xg/U2 (3)

are the dimensionless energy, spectral peak frequency, and fetch, respectively. fp is the
spectral peak frequency, X is the distance from the shoreline, U is the wind speed, g is the
gravity acceleration. Wave energy E is the variance of the sea surface displacement related
to significant wave height,

HS = 4
√

E.

Wave age is equal to
ζ = cp/U = 1/(2πξ),

where
cp = g/(2π fp).

is the phase velocity of spectral peak waves in deep water. Coefficients q, p, ξ0 and ε0 in
power laws were evaluated experimentally ([2,51–53] among others), but their clarification
and possible dependence on wave age remain current scientific problems [5–9].

As waves develop under the summary action of wind energy input, of nonlinear
energy transfer along the wave spectrum and dissipation of energy due to wave break-
ing [2,3], the study of wave breaking is of interest to understand the actual balance of these
processes finally determining the form of wave development laws [8,9,12]. However, the
dependence on the wave age of wave breaking intensity, particularly the surface fraction
covered by wave breaking, W, remains unclear. For example, theoretical and experimental
studies [20,54–57] reported that W falls with the growth of ζ. An analysis of the dataset
obtained by various authors [58], field experiments [59–61], and satellite data [62] showed
the inverse result. Additionally, field experiments [18,63] yielded non-monotonic depen-
dence W(ζ). Among the possible causes of disagreements are the unsteadiness of wave
fields [6,55] and influence of currents and tides [57,64] during wave breaking estimations.
Wave development laws may be distorted for the unsteady wave field [6,7]. It is reflected
in wave breaking intensity as reported in [55,57,60,64]. Thus, comparing the wave breaking
estimations obtained in different time moments or experiments can lead to erroneous
results if these effects are disregarded. However, if we perform wave measurements com-
plemented with the wave breaking estimations simultaneously along the entire wave fetch,
we can (i) inspect whether wave characteristics obey known stationary fetch-limited laws;
(ii) if it does, consider wave breaking dependence on the fetch. Satellite data provides the
opportunity to perform such experiments.

An evaluation of the parameters of the dominant wind waves was made from high-
resolution optical images from Landsat-8, Sentinel-2a and 2b, WorldView-3, and other
satellites [65–68]. Whitecaps on the crests of breaking waves and the spots of foam produced
by bubbles ascending to the surface after the active phase of wave breaking can also be
observed from satellites, see, e.g., [62,64,69,70]. The possibility to evaluate the W using
near IR images from Landsat-8 was demonstrated in the study [64]. In that study, the
obtained dependence of W on wind velocity agrees with previous measurements, and
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responses of wave breaking to the atmosphere and ocean features quantitatively agree
with known theoretical estimations (see list of references in [64]). Using the satellite image
where the waves and their breaking are visible simultaneously, which covers an area of
tens to hundreds of kilometers, we can investigate wave development augmented with
new data on wave breaking that evolves as waves develop.

Figure 1 shows the QuikSCAT wind velocity field average from the years 2000 to 2009.
Red rectangles in the figure show two near coastal areas, which are prominent due to a
relatively high mean velocity caused by catabatic jets of Mistral and Tehuantepec winds.
Waves generated by these winds develop from the shoreline in deep water conditions (see
bathymetry of these areas in the figure). Wind wave investigations and wave modeling for
these areas are presented in many papers (see, e.g., [55,63,71–73] for Mistral and [5,18,74] for
Tehuantepec). Thus, these places are rather suitable for investigations of wave development
laws. However, scenes free of clouds are difficult to find using Landsat optical images for
the study. We analyzed Landsat-8 images for several years but could select only two scenes;
these positions in the Gulf of Lion and Gulf of Tehuantepec are shown in zoomed maps in
Figure 1.
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Figure 1. Average QuikSCAT wind velocity for 2000–2009. The color bar shows wind speed in m/s.
Red rectangles show areas of Mistral winds (1) and Tehuantepec winds (2), in which zoomed maps
are shown on the right. In zoomed maps, near coastal water depths are shown in m, and boundaries
of Landsat-8 scenes are shown with red contours.

In this paper, the study of wave development in limited fetches was performed using
optical images taken from Landsat-8, from which characteristics of both waves and their
breaking were extracted. Two scenes are considered, wave growth under Mistral in the Gulf
of Lion and wave growth under wind jet in the Gulf of Tehuantepec. Section 2 describes
the data and methods used to evaluate the spectral peak frequency and surface fraction
covered by wave breaking. Section 3 presents obtained wave development laws for the
spectral peak frequency and surface fraction covered by wave breaking. Section 4 discusses
obtained results and suggests their interpretation using a simple model. Section 5 resumes
the article.

2. Data and Methods
2.1. Data Description

We used images from Landsat-8, obtained with radiometer OLI in visible and near
IR bands with spatial resolution of 30 m. Data Level 1 were taken from the United States
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Geological Survey (USGS) Global Visualization Viewer (http://glovis.usgs.gov/ accessed
on 21 July 2021). For analysis, we selected two scenes in the regions of intensive katabatic
winds, which form jets over the sea, expanding from tens up to hundreds of kilometers.
The first scene was registered in the Gulf of Lion, the Mediterranean Sea, during the
Mistral storm winds (10:49 GMT 5 March 2015), the second in the Gulf of Tehuantepec,
Pacific, during the Tehuano storm winds (16:42 GMT 13 January 2015). We used ASCAT
scatterometer data (Level 2B) of resolution 12.5 km as quasi-synchronous wind fields (10:22
GMT and 16:30 GMT, respectively), which correspond to wind velocity at a standard
height of 10 m. These data were downloaded from the PODAAC archive, https://podaac.
jpl.nasa.gov/dataset/ASCATA-L2-Coastal, accessed on 21 July 2021. The accuracy of
wind measurements is 1.5 m/s in speed and 20◦ in direction [75]. Scatterrometer data
is unavailable near the shoreline (~15 km off the coast) due to the land contamination
of the microwave signal. We estimated sea surface temperature from Landsat-8 TIRS
measurements using a two-band algorithm proposed by Aleskerova et al. [76]. Data
on near-surface air temperature were obtained from the European Center for Medium-
Range Weather Forecasts ERA5 reanalysis. The meteorological conditions of the scenes are
considered in Appendix A.

Figure 2 shows a fragment of the Landsat-8 image in the Gulf of Lion region in Bands
5 and 7 operating at 0.525–0.6 nm and 2100–2300 nm, respectively. In high winds, wave
breaking is the main contributor to the sea brightness variations in the visible range [64].
It causes irregular patterns with high reflectance, see Figure 2a. In the near IR range, a
wave breaking contribution is less significant, and dominant wind waves are well visible,
see Figure 2b. Landsat-8 measurements have a higher signal-to-noise ratio than previous
Landsats [77]. As a result, we can observe the brightness contrast of 0.006 sr−1 between
crests and troughs of waves, which are visible in Figure 2b. In this study, we determined
the fraction of sea surface covered by wave breaking using the Band 5 data. The wind wave
characteristics were estimated using the Band 7 data. Additionally, Band 5 and Band 9 data
were used to filter out the land and clouds (see more detail about this data processing stage
in [64]).
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Figure 2. Fragments of the sea surface in Band 5 (a) and Band 7 (b) of Landsat-8 image. Reflectance is
shown in sr−1. The size of the fragment is about 4 km.

2.2. Method of Wave Measurements

Traditionally wave characteristics from images are measured using Fourier-transform
and analyzing brightness spectra of image fragments, SB(kx, ky), where kx and ky are
components of the wave vector (see, e.g., [65,68,78]). We estimated brightness spectra in
the square fragments of 2 km × 2 km using a conventional method, see, e.g., [79]. Further,
the sea elevation spectrum, SH, can be obtained by dividing it by the modulation transfer
function (MTF):

SH = SB/(Gxkx + Gyky)
2

http://glovis.usgs.gov/
https://podaac.jpl.nasa.gov/dataset/ASCATA-L2-Coastal
https://podaac.jpl.nasa.gov/dataset/ASCATA-L2-Coastal
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where Gx and Gy are constants, the determination of which requires a special calibration.
For calibration, an analysis of satellite sun glitter imagery of the ocean [65], an iteration
matching of brightness field and their physical model [68], and stereo processing of sea
images [78] were used. If MTF is unknown, neither the energy scaling factor nor angular
distribution can be evaluated without significant distortions [78]. Therefore, in this paper,
we used the only robustly quantified feature of the brightness spectrum, the wavenumber
of the spectral peak kp = (k2

px + k2
py)

1/2. Then, for wavelengths from 60 m to 120 m,
wavelength errors are from 2.5 m to 10 m (see, e.g., [79]). We also considered peak value
Smax = SB(kpx, kpy) to speculate on wave energy at the quality level.

2.3. Method of Wave Breaking Measurements

In the paper [64], an algorithm for quantitative evaluation of the sea surface fraction
covered with bright whitecaps and foam spots was suggested (referenced further as the KKS
algorithm). The method of the KKS is based on the fact that the reflectance of wave breaking
area and clear water surface differ by the order of value [80]. The KKS algorithm allows
estimation of the dependence of W on wind velocity, which agrees with other authors’
measurements [20,48,64]. Responses of wave breaking to the atmospheric and oceanic
features estimated with the KKS algorithm quantitatively agree with known theoretical
estimations (see list of references in [64]). In this study, we applied the KKS algorithm for
wave breaking measurements. The W was estimated in each pixel of the image (a square
of 30 m × 30 m) which does not locate to the near shoreline area and areas contaminated
by clouds. This approach does not resolve the spatial scale of wave breaking. However,
it is based on the average reflectance to which all breaking waves contribute. Thus, we
considered breaking of waves from spectral peak up to about 1 m wavelength, which
generates a water-bubble mixture with high reflectance [19,21]. These measurements differ
from traditional wave breaking estimations based on sophisticated analyses of optical sea
images [18,19,81]. They are closer to radiometric estimations of foam coverage [50,62].

3. Results
3.1. Approach to Data Analysis

Figures 3 and 4 show the source data of our study: the wind speed, U, and wind
direction at the height of 10 m, the fraction of sea surface coved with whitecaps, W, the
wavelength of spectral peak waves, λp = 2π/kp, the values of spectral maximum, Smax,
water, and air temperatures for two considered scenes. Empty pixels in the maps correspond
to areas excluded from analysis due to cloud impact or proximity to the shoreline. As
the spatial resolution of the image was 30 m, we obtained only wavelengths of dominant
waves longer than 60 m. Thus, wavelength measurements are absent in areas close to the
shoreline, where the length of developing waves is less.

As follows from Figures 3 and 4, offshore wind jets over the sea expanding several tens
of kilometers are observable in both scenes. Waves develop along the jets. This is indicated
by the growth of spectral peak wavelength and wave energy, which at the qualitative level
emerges as the growth of the spectral maximum. Wave development is accompanied by
the intensification of wave breaking. Both events occurred at approximately constant wind
velocity. In Figure 2b atmospheric internal lee waves in the Gulf of Lion can be observed.
White-capping manifests these as periodic strips of wave breaking intensification. See a
more detailed description of this phenomenon in [64].

It is known that a scatterometry wind velocity does not match the in-situ value
exactly [60,75]. However, although the scatterometer winds are of the highest possible
resolution, this is still insufficient to capture small-scale wind variability, which is resolved
in the maps of the Landsat whitecap fraction [64]. In our study, a comparison of Figure 3a,b
shows that we see no indication of atmospheric lee waves in Figure 3a, but they are visible
in Figure 3b. Therefore, we further analyzed the data relying on patterns of whitecap
spatial distributions.
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Figure 3. Wave development in the Gulf of Lion: (a) wind velocity vectors; (b) fraction of sea surface
coved with wave breaking, W; (c) wavelength of spectral peak waves, λp; (d) the values of spectral
maximum, Smax; (e) water temperature; (f) air temperature. The thick red line shows the shore
contour. Locations of analyzed sections are shown in the plate (b) using white lines. The black line in
plate (c) shows 30 m-isobath.
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shore contour. Locations of analyzed sections are shown in the plate (b) using white lines. The black
line in plate (c) shows 30 m-isobath.

Figures 3b and 4b show that the wind blow splits into several thin jets. It is more
evident in Figure 4b, where no atmospheric internal waves are presented. It can be ex-
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pected that wave development along such jets is the closest to classical ideas (1) and (2)
on wave growth from the shore. Using visual inspection of W fields, we selected sections
matching thin wind jets and crossing the areas of wavelength measurements. We selected
four sections in the Gulf of Lion (see Figure 3b) and five sections in the Gulf of Tehuan-
tepec (see Figure 4b). Further analysis was conducted only for these sections. Although
wave development laws imply the wind blowing perpendicular to the shoreline, Ardhuin
et al. [4] argued that slanting fetch does not affect wave development, at least when wave
direction relative to the normal to the shoreline does not exceed 30 degrees. As classical
representations (1) and (2) imply the spatially uniform wind velocity [1,2], the wind speed is
commonly averaged to be used in wave development analysis [5,7,53]. The wind velocities
averaged over all sections are UL = 21.3 m/s and UT = 14.4 m/s for the Gulf of Lion and
the Gulf of Tehuantepec, respectively. Further, these constant values were used to analyze
wave and whitecap development.

We obtained 201 and 206 estimations of spectral peak wavelength along sections in
the Gulf of Lion and the Gulf of Tehuantepec, respectively. The source whitecap fraction
W estimated with a spatial resolution of 30 m has high random variations. We averaged
W along the section over 2 km intervals corresponding to the resolution of wavelength
estimations λp. Additionally, the W was measured in near shoreline areas where the
wavelengths were shorter than 60 m and waves were unresolvable. As a result, we have 267
and 331 estimations of whitecap coverage W in the Gulf of Lion and the Gulf of Tehuantepec,
respectively.

3.2. Spectral Peak Frequency versus Fetch

The wave fetches X for points of each section were determined as a distance from
the point to the shoreline along the section. Spectral peak frequency was calculated from
spectral peak wavelength via the linear dispersion relation for deep water,

fp =

(
g

2πλp

)1/2
.

Dimensionless variables ξ = fpU/g and χ = Xg/U2 were obtained using averaged
wind velocities. Classical laws (1) and (2) are valid for deep water only [1]. The waves are
considered to be in deep water if half of the wavelength does not exceed the sea depth [3].
Figures 3c and 4c show 30 m-isobaths to confirm that our wavelength measurements were
in deep water areas.

Figure 5 shows the obtained law of wave development for both scenes together with
data from [52] (see Table 1) and [7] (see Table A1), obtained by in situ measurements in the
Black Sea, and [5] (see Tables 1 and 2), obtained by aircraft measurements in the Gulf of
Tehuantepec. All data agree, and the clouds of our data are densely localized and overlap.
Least-square estimation applied to logarithms of our data yields the power law

ξ1 = ξ01χ−q1 , ξ01 = 1.45+0.04
−0.04, q1 = 0.232± 0.004 (4)

With a coefficient of determination R2 = 0.93. Hereinafter, the confidence intervals
correspond to double standard error [79]. The joint cloud of all data in the figure leads to
the power law

ξ2 = ξ02χ−q2 , ξ02 = 2.04+0.08
−0.07, q2 = 0.271± 0.005 (5)

with a coefficient of determination R2 = 0.96. Figure 5 shows both laws. Both estimations
agree with generally accepted views on the values of parameters of the law (1) (see,
e.g., [6,8,9]).

Thus, two selected scenes can be, considered with certainty as wave development at
limited fetches, and data on dimensionless fetch χ can be used to study the law of whitecap
coverage development. Furthermore, in this paper, we accept the law (4) as based on a
more extensive dataset and have a better coefficient of determination.
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Figure 5. Dependence of dimensionless spectral peak frequency on dimensionless wave fetch. Thick
and thin lines show power laws (3) and (4), respectively.

3.3. Whitecap Coverage versus Fetch

Figure 6a shows whitecap coverage W in dependence on the distance X from the
shoreline. The values of W certainly grow with the fetch increasing about three times. For
the Gulf of Tehuantepec data, it is not caused by a local increase in wind speed, see Figure 4,
where wind speed decreases with distance from the shore. As argued in Appendix A, the
growth of W cannot be explained by changes along the sections in wind velocity, water,
and air temperatures, or atmosphere stratification]. Figure 6b shows the same data versus
wind velocity compared with W(U) curves from other studies. Our data are presented as
bin-averaged over dimensionless fetch χ.
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study data are color-coded using dimensionless fetch.

At a given wind velocity, the values of whitecap coverage from various studies vary
more than the order of the value [48] (Figure 1), [20] (Figure 1). This data spread is mainly
related to the fact that the wave breaking act consists of active phase A with a bright
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whitecap on the crest of a breaking wave and passive phase B, which is visible due to the
gradual ascending of the plume of air bubbles after wave breaking [24,58,81,82]. Phase B is
commonly referenced as foam. Whitecap coverage belonging to phase A is significantly
less than the foam coverage (see, e.g., [83]). Methods of whitecap coverage measurements
based on brightness thresholding lead to data where both phases are mixed to varying
degrees. Figure 5 aims to show to which phase our data belong. It shows the upper and
lower boundaries of the parameterizations cloud from the paper [48] corresponding to the
active wave breaking phase A, Wwhitecap, and total surface fraction covered by both phases,
where phase B dominates, W f oam:(

Wwhitecap

)
M

= 2.92 · 10−7U3.204 (6)

(
Wwhitecap

)
K
= 3.5 · 10−6U2.3 (7)

(
W f oam

)
M

= 1.95 · 10−5U2.55 (8)

(
W f oam

)
H
=

{
0.3(u∗ − 0.11)3 0.11 < u∗ < 0.4

0.07u2.5
∗ u∗ ≥ 0.4

u∗ = C1/2
D U, CD = 10−4(−0.016U2 + 0.967U + 9.058)

(9)

Equations (6) and (8) are obtained in [84,85], respectively. They agree with more recent
results (7) and (9) obtained in [21,50], respectively. Equation (7) was derived using video
processing accounting for whitecap kinematics to filter out slowly moving foam [81]. Equa-
tion (9) summarizes whitecap coverage estimations derived from microwave radiometer
measurements and accounts well for sea foam contribution. The friction velocity u∗ in (9)
is calculated using the drag coefficient CD presented in [50]. Figure 5 demonstrates that
our data belong to phase B growing with the increase in wave fetch.

Figure 7 illustrates the wave development analysis of the foam coverage data. As
supported by Figure 7a, the data can be described by the equation

W f oam = A1Unχb1 , A1 = (8.83+2.79
−2.12) · 10−6, n = 2.40± 0.07, b1 = 0.244± 0.014 (10)

with a coefficient of determination R2 = 0.91. Coefficients in (10) were least square-
approximated using the logarithms of the data. The obtained value of n falls into the range
of the estimations known in the literature [20,48,58]. Using (5), we come to dependencies
of W f oam on dimensionless spectral peak frequency and wave age:

W f oam = 1.6 · 10−5Unξ−0.83, (11)

W f oam = 7.3 · 10−5Unζ0.83. (12)

Equations (10)–(12) are derived for data from the ranges of 50 < χ < 7 · 103, 0.19 < ξ < 0.35,
and 0.45 < ζ < 0.84, respectively. Figure 7b shows the degree of compliance with the data
and parameterization (12). Equations (10)–(12) provide laws of development for sea surface
fraction covered with foam under limited wave fetches.



Remote Sens. 2023, 15, 2222 11 of 18

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 19 
 

 

diometer measurements and accounts well for sea foam contribution. The friction veloc-

ity *u  in (9) is calculated using the drag coefficient DC  presented in [50]. Figure 5b 

demonstrates that our data belong to phase B growing with the increase in wave fetch. 

Figure 7 illustrates the wave development analysis of the foam coverage data. As 

supported by Figure 7a, the data can be described by the equation 

0.014224.0,07.040.2,10)83.8(, 1

679.2

12.211
1 ==== −+

− bnAUAW
bn

foam   (10) 

with a coefficient of determination 91.02 =R . Coefficients in (10) were least 

square-approximated using the logarithms of the data. The obtained value of n falls into 

the range of the estimations known in the literature [20,48,58]. Using (5), we come to de-

pendencies of foamW  on dimensionless spectral peak frequency and wave age: 

,106.1 83.05 −−= nfoam UW  (11) 

83.05103.7 nfoam UW −= . (12) 

Equations (10)–(12) are derived for data from the ranges of 
310750   , 

35.019.0  , and 84.045.0   , respectively. Figure 7b shows the degree of 

compliance with the data and parameterization (12). Equations (10)–(12) provide laws of 

development for sea surface fraction covered with foam under limited wave fetches. 

  
(a) (b) 

Figure 7. Laws of development for sea surface fraction covered with foam under limited wave 

fetches as dependencies of 
foamW  on (a) dimensionless fetch and (b) wave age. Black lines show 

Equations (10) (a) and (12) (b). 

4. Discussion 

Experimental and theoretical studies by [20,54–57] reported that W falls with an in-

crease in wave age  . Non-monotonic dependence )(W  was found in field experi-

ments [18,63]. On the other hand, field experiments of Stramska and Petelski [59], God-

dijn-Murphy et al. [60], and Sugihara et al. [61] indicated that at a given wind velocity, 

the W is higher for more developed rather than young waves. Analysis of an enormous 

volume of satellite data [60] showed that at given wind velocities exceeding 12 m/s, the 

foamW  grows with the increase in wave height and period of dominant waves (see right 

columns in Figures 6 and 7 in their article). This indirectly supports the increase in foamW  

Figure 7. Laws of development for sea surface fraction covered with foam under limited wave fetches
as dependencies of W f oam on (a) dimensionless fetch and (b) wave age. Black lines show Equation
(10) (a) and Equation (12) (b).

4. Discussion

Experimental and theoretical studies by [20,54–57] reported that W falls with an
increase in wave age ζ. Non-monotonic dependence W(ζ) was found in field experi-
ments [18,63]. On the other hand, field experiments of Stramska and Petelski [59], Goddijn-
Murphy et al. [60], and Sugihara et al. [61] indicated that at a given wind velocity, the W
is higher for more developed rather than young waves. Analysis of an enormous volume
of satellite data [60] showed that at given wind velocities exceeding 12 m/s, the W f oam
grows with the increase in wave height and period of dominant waves (see right columns
in Figures 6 and 7 in their article). This indirectly supports the increase in W f oam as waves
develop. Bortkovskii and Novak [58] analyzed a combined dataset of many authors to
reveal possible relations of W and various dimensionless combinations of wind velocity,
wave parameters, and kinematical viscosity of water ν. We note the following dependence
derived by them (see string 13 in Table 2 in their article):

W f oam ∼
(

u∗(ν fp)
−1/2

)2.1
. (13)

As follows from (9), the drag coefficient CD equals 0.0020 and 0.0022 at wind veloc-
ities of 14.4 and 21.3 m/s, respectively. So further, we consider the CD constant. Then
Equation (13) means

W f oam ∼ ν−1/2U3.15ξ−1.05, (14)

that is, the W f oam grows if waves develop at a constant wind velocity.
As the growth of W f oam with an increase in wave age was found in our study, we

suggest an interpretation of this result. Following [86–89], we consider the W f oam is propor-
tional to wave energy dissipation rate due to wave breaking:

W f oam ∼
∞∫

0

D( f )d f .

In this approximate consideration, we omit the angle dependency of the integrand.
The spectral rate of energy dissipation D( f ) can be evaluated through energy input to
waves from the wind [90,91]:

D( f ) ≈ β( f )S( f ),
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where β is the wind growth rate, and S( f ) is the frequency wave spectrum. To model
wave development, we adopt the spectrum parameterization JONSWAP [2] depending on
dimensionless wave fetch χ:

S( f ) = αg2(2π)−4 f−5
p F(η), η = f / fp, α = 0.076χ−0.22.

The wind growth rate we take in the form derived theoretically to describe wave
development laws (1) and (2) [92]:

β( f ) = 0.05
ρa

ρw
2π f

(
2π f U10

g

)4/3
, (15)

where the ratio of air and water densities is ρa/ρw = 1.3 · 10−3. In studies [10,11], numerical
simulations of wave development were performed for various parameterizations of the
β( f ), and the Form (15) was found the best consistent with experimental, theoretical, and
numerical considerations. So, the foam coverage equation takes the form

W f oam ∼ 0.05α
ρa

ρw
(2π)−5/3g2/3U4/3 f−5/3

p

∞∫
0

η7/3F(η)dη,

and finally,

W f oam = Aα(χ)U3ξ−5/3 = A(2π)5/3α(χ)U3ζ5/3, A = const. (16)

Figure 8 summarizes the results of the discussion. First, it shows the uncertainty of
known data regarding the dependency of wave breaking coverage on fetch and wave age.
Data [18,55,58] are presented as examples. Bin-averaged data of Kleiss and Melville were
taken from Figure 9b,d of [18]. Parameterizations of Lafon et al. ([55], Equation (12)) and
Callaghan et al. ([57], Equation (3)) are

WL = 0.106χ−0.24,

WC = 0.000311ζ−4.63,

respectively. These results are obtained by combining data for different wind velocities, so
they are independent of U, although such a dependence should be [62].

Second, Figure 8a,b show our parameterizations (10) and (12), respectively, in the
ranges of parameters in which they are derived in this study. Note that disagreement in
values with other data may be linked with different methods of wave breaking measure-
ments. Additionally, the slope of W f oam dependency (13) on wave age is shown in Figure 8b.
Model estimations (16) are shown for wind speeds of 14.4 and 21.3 m/s with the constant
A = 0.65 · 10−4(m/s)−3, selected to locate the curves in the considered ranges of W f oam.

As follows from Figure 8, the Model (16) explains well the data obtained in this study.
Additionally, Equation (13), following from the analysis of Bortkovskii and Novak [58],
shows a close tendency. Thus, the data considered can be physically interpreted in the
frame of general laws of wave development. However, it will be interesting to find
their interpretation considering the dynamics of bubbles generated in wave breaking.
Achievements in laboratory research of bubble fraction (see, e.g., [23–28] among others),
and also direct numerical modeling of relevant processes (see, e.g., [29–31]) give the hope
that more accurate explanation of results (10)–(12) will be found in the future.
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5. Conclusions

This paper reports an investigation of wave growth laws under limiting fetches focus-
ing on the wave spectral peak frequency and sea foam coverage due to wave breaking and
using Landsat-8 imagery. Two scenes were selected with intensive katabatic winds in the
Gulf of Lion and the Gulf of Tehuantepec. The spectral peak frequency and the sea foam
coverage were extracted from Band 7 and Band 5, respectively, of the same Landsat OLI
images at the various fetches along wind jets. We aimed to solve the problem of foam cov-
erage dependence on wave fetch, for which controversial results were reported previously.
To our knowledge, a one-moment-registered distribution of developing waves along the
fetch augmented with foam coverage estimations was investigated for the first time.

As found, the distribution of the spectral peak frequency along the fetch obeys classical
wave growth law and agrees well with previously obtained experimental results [5,7,52].
We observed the developing waves under approximately constant wind velocity at dimen-
sionless fetches of a wide range from 50 to 7000. The distribution of the foam coverage
shows approximately three-times the growth with a fetch increase, obeying power-law
dependencies on fetch, spectral peak frequency, and wave age, see Equations (10)–(12).
It supports the findings of Stramska and Petelski [59], Sugihara et al. [61], and Salisbury
et al. [62], that foam coverage is higher for older than for younger waves. At the qualitative
level, the lows (11) and (12) are close to Equation (13) obtained by Bortkovskii and No-
vak [58]. A simple model of the foam coverage growth with wave fetch is suggested using
the JONSWAP [2] wave spectrum for developing seas. The model explains the observations
at the quantitative level.

We anticipate that reported results on the significant growth of the foam coverage
under wave development can be further used in different research applications, in particular
for the satellite-based investigations of tropical cyclones using microwave radiometers,
where the foam contributes to radio emission anomalies [44,49,93].
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Appendix A. Meteorological Conditions

The dependency of foam coverage W f oam on water temperature TW , air temperature
TA, and stratification of the near water layer of the atmosphere, characterized by the
difference ∆T = TA − TW , was revealed in several studies (see, e.g., [58,60,76,82]). Further,
we consider whether the variations of these characteristics and wind velocities along
analyzed sections explain observable variations of W depicted in Figure 5a.

Figure A1 summarizes the variability of wind velocity and water and air temperatures
presented in Figures 2 and 3. These parameters are bin-averaged over the distance from
the shoreline along all the sections. Table A1 gives the minimum and maximum values
of parameters on the sections and expected relative responses ∆W f oam/W f oam on such
variations. Response to wind velocity variations was estimated adapting that W f oam ∼ U3:

∆W f oam/W f oam ≈ 3∆U/U.

In a study by Salisbury et al. [60], an analysis was performed of giant data volume on
W f oam retrieved from satellite-based radiometric observations at a frequency of 37 GHz
(W37). In Figures 9b and 10b,d of their article, the responses ∆W f oam/W f oam are shown on
TW , TA, and ∆T, respectively. They derived these estimations for various wind velocities
up to 20 m/s. We used these Figures for wind velocities of 20 m/s and 14.3 m/s for filling
Table A1.

Table A1. Estimations of relative responses ∆W f oam/W f oam on variations of wind velocity U, water
temperature TW , air temperature TA, and atmosphere stratification characterized by ∆T = TA − TW .

Gulf of Lion Gulf of Tehuantepec

min max
∣∣∣∆Wfoam

∣∣∣/ ¯
Wfoam

min max
∣∣∣∆Wfoam

∣∣∣/ ¯
Wfoam

U, m/s 19.2 22.1 0.4 13.0 15.5 0.5
TW , ◦C 10.9 13.8 <0.01 25.1 27.5 <0.1
TA, ◦C 10.7 11.7 <0.02 25.5 27.5 <0.1
∆T, ◦C −2.3 −0.2 <0.04 −0.4 2.2 0.07

As follows from Table A1, the variability of meteorological parameters along the
sections cannot explain the increase in foam coverage of 3.6 times in the Gulf of Lion and
2.7 times in the Gulf of Tehuantepec, demonstrated in Figures 5 and 6.

https://rscf.ru/en/project/21-17-00236/
https://rscf.ru/en/project/21-17-00236/
http://glovis.usgs.gov/
https://podaac.jpl.nasa.gov/dataset/ASCATA-L2-Coastal
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