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Abstract: The application of deep learning in remote sensing image classification has been paid
more and more attention by industry and academia. However, manually designed remote sensing
image classification models based on convolutional neural networks usually require sophisticated
expert knowledge. Moreover, it is notoriously difficult to design a model with both high classification
accuracy and few parameters. Recently, neural architecture search (NAS) has emerged as an effective
method that can greatly reduce the heavy burden of manually designing models. However, it remains
a challenge to search for a classification model with high classification accuracy and few parameters
in the huge search space. To tackle this challenge, we propose TPENAS, a two-phase evolutionary
neural architecture search framework, which optimizes the model using computational intelligence
techniques in two search phases. In the first search phase, TPENAS searches for the optimal depth
of the model. In the second search phase, TPENAS searches for the structure of the model from the
perspective of the whole model. Experiments on three open benchmark datasets demonstrate that
our proposed TPENAS outperforms the state-of-the-art baselines in both classification accuracy and
reducing parameters.

Keywords: computational intelligence; neural architecture search (NAS); remote sensing image
classification; multi-objective optimization; convolutional neural network (CNN)

1. Introduction

With the advancement of remote sensing technology, more and more abundant ground
information can be obtained from remote sensing images, which facilitates many research
directions and applications, such as change detection [1–6], land use classification [7,8],
remote sensing image classification [9,10], etc. As a basic task of remote sensing image pro-
cessing [11], remote sensing image classification is the classification of remote sensing scene
images into a group of semantic categories, which has been widely used in environmental
monitoring [12], geospatial object detection [13], and urban planning [14].

In recent decades, with the advancement of deep learning [15–18], many
algorithms [9,10,19] have been proposed to solve the remote sensing image classifica-
tion problem. These algorithms can roughly be categorized into traditional and deep
learning-based algorithms, which mainly differ in the way of feature extraction. The former
extracts the features of remote sensing images by manually designing feature extraction
operators, such as improved fisher kernel (IFK) [20], spatial pyramid matching (SPM) [21],
and bag-of-visual-words (BoVW) [22] algorithms. The latter automatically extracts re-
mote sensing image features through deep learning methods such as the autoencoder
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(AE) [23–25], CNN [26], and generative adversarial network (GAN) [27–29]. The traditional
methods need to specially design a feature extraction operator for the remote sensing image.
The extracted features are low-level features, such as texture, color, shape, and gradient,
resulting in low classification accuracy on remote sensing image classification tasks. In
contrast, deep learning-based methods can automatically learn high-level semantic features
of remote sensing images without the need for special feature extractors and achieve high
overall accuracy on the remote sensing image classification task. Otávio et al. [30] compared
the overall accuracy of deep learning methods with traditional methods on the UC Merced
Land-use (UCM21) dataset [22] and demonstrated that deep learning methods outperform
traditional methods.

In the past ten years, convolutional neural networks (CNNs) have made a signifi-
cant breakthrough in image classification. A large number of excellent CNN models have
emerged, such as AlexNet [31], VGGNet [32], ResNet [33], GoogleNet [34], and Den-
sNet [35]. However, when applied to remote sensing image classification, these classical
CNN models do not perform as well due to the unique characteristics of remote sensing
images, such as big intra-class diversity, high inter-class similarity, and coexistence of
multiple ground objects. Therefore, many deep learning models [36–39] are tailored for
remote sensing image classification. Yu et al. [37] proposed the HABFNet framework
to alleviate the problems of high intra-class diversity and high inter-class similarity in
remote sensing images. HABFNet uses ResNet50 to extract image features, then enhances
features at different levels through a channel attention scheme, and fuses features through
bilinear pooling. The fused features have a stronger discriminative ability, which im-
proves the classification accuracy of the algorithm in remote sensing image classification.
Wei et al. [38] proposed a novel CAD network that uses an attention mechanism to extract
more discriminative features, which alleviates the difficulty of classification caused by large
changes in object scale. Gong et al. [39] proposed D-CNN to alleviate the problems of
high intra-class diversity and high inter-class similarity in remote sensing images, thereby
further improving remote sensing image classification accuracy. Wang et al. [40] proposed
a semi-supervised classification framework by designing the inner-class dense neighbors
(IDN) algorithm to reduce the reliance on the labels of the samples and simultaneously
improve the classification accuracy of the model. CNN-based algorithms perform very
well on remote sensing image classification tasks.

Although deep learning methods have achieved high classification accuracy in re-
mote sensing image classification, it is extremely difficult for those without professional
knowledge about deep learning to design a model with high classification accuracy. In
recent years, NAS has emerged as a promising alternative method, which can automatically
design a CNN model with high classification accuracy without prior knowledge. The
existing NAS methods can be divided into three categories: NAS based on reinforcement
learning (NAS-RL) [41–43], evolutionary neural architecture search (ENAS) [44–46], and
NAS based on gradient (NAS-G) [47–49]. The evolutionary algorithm (EA) [50,51] is a
heuristic global optimization algorithm. Due to its powerful optimization ability and easy
parallel computation, the evolutionary algorithm has attracted more and more scholars’
attention in the automatic design of deep neural network structure. Real et al. [44] first
proposed using evolutionary computation to optimize the structure of a CNN. This method
does not require any human operations after the algorithm is executed and finally outputs
a fully trained CNN model. The algorithm achieves competitive classification accuracy
on the CIFAR-10 and CIFAR-100 datasets, but at a prohibitively high computational cost.
Since then, many researchers have proposed many schemes to reduce computational costs.
Elsken et al. [52] proposed a simple and efficient NASH algorithm, which uses network
morphisms [53] to generate weight-inherited sub-networks and efficiently optimizes an
excellent CNN architecture through a simple hill-climbing algorithm. Hui et al. [54] pro-
posed the EENA algorithm, which uses prior knowledge to guide the evolutionary process,
thereby accelerating the search process. Wang et al. [55] evaluated individuals with some
batch data randomly selected on the validation set, and the evaluation results of each batch
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data were averaged as the fitness value of the individual, which significantly improves
the evaluation speed of the individual. A population-based optimization algorithm, such
as a genetic algorithm, is one of the most commonly used evolutionary algorithms. The
evaluation of each individual in the algorithm is independent, so the population-based opti-
mization algorithm easily performs parallel computing. Based on this feature, Xie et al. [56]
built the BenchENAS platform. When evaluating individual fitness, individuals in the
population can be evaluated parallelly in a common lab environment, which significantly
speeds up population evaluation and promotes the development of ENAS. These methods
have achieved excellent performance on natural image classification tasks.

Many methods [57–59] have been proposed to utilize NAS to solve object recognition
in satellite imagery tasks. In remote sensing image classification, gradient-based NAS
methods are the most commonly used methods. The general idea is to first search for an
optimal cell and then form a CNN model by stacking multiple cells. The main difference
between these algorithms is the optimal cell search scheme. Zhang et al. [57] proposed a
more efficient search algorithm for remote sensing image classification, named RS-DARTS,
which improves the model classification accuracy and speeds up the search for optimal
cells by adding noise and sampling the neural network. Peng et al. [58] proposed the
GPAS algorithm, which uses greedy and aggressive strategies to search for the optimal cell.
Chen et al. [59] proposed the CIPAL framework for remote sensing image classification,
which utilizes channel compression to reduce the time of structure search. Ma et al. [60]
proposed the SceneNet algorithm, which yields a competitive set of remote sensing image
classification models by optimizing the architecture of the model. Wan et al. [61] pro-
posed an efficient neural network architecture search method for remote sensing image
classification. By designing a two-step evolutionary search method, cells were constructed
from the eight kinds of lightweight operators, and the remote sensing image classification
model was constructed by stacking cells. Povilas et al. [62] proposed the NAS-MACU
algorithm for object recognition in satellite imagery. NAS-MACU automatically searches
for high-performance cell topologies using the NAS algorithm and then constructs an object
recognition model by stacking multiple candidate cells. These methods, with the exception
of SceneNet, first search for an optimal cell and then construct the final model by stacking
multiple identical cells, which will bring two problems. The classification accuracy of a
model would deteriorate if there were too few stacked cells, but if there were too many, the
model would become redundant and have more parameters and floating point operations
(FLOPs). On the other hand, all stacked cells are the same, and the network structure is not
considered globally. The impact of the number of blocks on the performance of a model is
not taken into account by SceneNet, despite the fact that it globally searches the structure
of a model. In addition, in the practical application of remote sensing image classification,
the CNN model is also limited by classification accuracy, computing power, memory ca-
pacity, and so on. Therefore, designing a CNN model must strike a balance between these
limiting conditions.

To this end, we propose TPENAS, which can automatically build a model with optimal
depth and output multiple alternative models for remote sensing image classification.
Specifically, users with limited deep learning knowledge can obtain a model with excellent
performance for remote sensing image classification. The algorithm is run once to generate
a set of models from which the most suitable one can be selected based on the limiting
conditions. The difficulty of remote sensing image classification tasks varies with different
scenarios. As a result, the depth of the CNN model should also be different. Therefore, we
design the first search phase to solve this problem. The depth and classification accuracy of
the CNN model are used to formulate a multi-objective optimization problem, and then a
population-based multi-objective optimization algorithm is used to solve this problem, in
which individuals representing CNN models with different depths are initialized in the
population and the diversity of the depth of the model is maintained during the population
update process. the depth of the CNN model is then determined according to the optimal
solution in the optimized population. In order to let the model output a set of models
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and search for the structure of the model globally, we design the second search phase. A
multi-objective optimization problem is formulated according to the complexity and overall
accuracy of the model, and we design a population-based multi-objective optimization
algorithm to solve the problem, in which individuals in the population are encoded into the
entire CNN model. By solving this multi-objective optimization problem, a set of models
with superior performance can be obtained.

The experimental results on three open benchmark datasets show the superiority of
our algorithm over other classic deep learning classification models and NAS algorithms.
The main contributions of this paper are as follows:

(1) We propose a two-phase evolutionary multi-objective neural architecture search (TPE-
NAS) framework for remote sensing image classification. The first search phase
explores the optimal the depth of the model, and the second search phase finds the
most suitable structure for the model. Our algorithm can automatically design a CNN
model suitable for remote sensing image classification, which eases the heavy burden
posed by manually designing a CNN model.

(2) We propose the first search phase that determines the depth of the CNN model. A
multi-objective optimization problem is established with the depth and classification
accuracy of the model as optimization goals. This problem is solved by a heuristic
multi-objective optimization algorithm to find the optimal the depth of model.

(3) We propose the second search phase that globally searches the structure of the CNN
model. We encode the entire CNN model as a binary string, allowing population
evolution to optimize the CNN structure globally. Furthermore, we simultaneously
optimize the classification error and complexity of the model so that the final result can
provide a set of Pareto solutions, giving users more options in practical applications.

(4) The effectiveness of the proposed TPENAS is verified on three public benchmark
datasets. Extensive experiments show that the model searched by the TPENAS out-
performs the classic classification CNN model. Compared with other NAS methods,
TPENAS not only has higher classification accuracy but also has advantages in the
GFLOPs and parameters of the model.

The remainder of this paper is organized as follows. Section 2 describes the proposed
TPENAS algorithm in detail. Section 3 describes the experimental settings and experimental
results. Section 4 analyses the number of models that the TPENAS should evaluate as well
as the implication of model depth on test performance. The conclusion of this paper is
given in Section 5.

2. Materials and Methods

In Section 2.1, we establish the optimization model of two search phases and give the
optimization algorithm framework. In Section 2.2, we introduce the algorithm of the first
search phase in detail, including encoding scheme, initialization, population evolution, and
solution selection. In Section 2.3, we discuss how to use the first search phase algorithm to
optimize the optimization problem in the second search phase and give a summary of the
overall algorithm.

2.1. The Overall Framework

The existing remote sensing image classification models can be summarized in two parts.
The first part is the image feature extractor, and the second part is the feature classifier. The
result of image feature extraction seriously affects the classification accuracy of the model. As
we all know, CNNs are one of the most commonly used image feature extractors, and feature
extractors with different structures will have a significant impact on classification accuracy.
Therefore, TPENAS focuses on developing efficient feature extractors.

The purpose of our algorithm is to solve two problems, the first is to reduce the difficulty
of manually designing a classification model, and the second is to automatically design an
appropriate classification model in different scenarios. Our algorithm is divided into two
phases, the purpose of the first search phase is to find the appropriate depth of the model,
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and the second search phase is to find the appropriate structure of the model. Therefore, we
formulate the multi-objective optimization problem in two phases, respectively.

min{F1, F2},
{

F1 = n_incorrected_sample
n_all_sample

F2 = n_block
(1)

min{F1, F3},
{

F1 = n_incorrected_sample
n_all_sample

F3 = GFLPOs
(2)

In the first search phase, we regard F1 and F2 of the model as two optimization objectives,
as shown in Equation (1). F1 represents the overall accuracy of the model, which is the
misclassified samples divided by all samples in the test dataset. F2 represents the depth of the
model, which is the number of blocks of the model. By optimizing Equation (1), we are able
to select the appropriate number of blocks and consequently find the appropriate depth of the
model. Similarly, in the second search phase, we regard the F1 and F3 of the model as two
optimization objectives. F3 represents the GFLOPs of the model, as shown in Equation (2). By
optimizing Equation (2), we are able to obtain a set of optimal solutions, that is, there does not
exist a solution that is better than the optimal solution on both OA and GFLOPs.

We cannot confirm whether this is a convex optimization problem or a non-convex
optimization problem. Therefore, we use a genetic algorithm to design optimization
algorithms to solve these two optimization problems. A genetic algorithm is a heuristic
optimization algorithm that can solve both convex and non-convex optimization problems.
Therefore, we design the TPENAS algorithm, as shown in Algorithm 1, to optimize these
two optimization problems.

Algorithm 1 shows the pseudocode of TPENAS, which consists of two parts: the first
search phase and the second search phase. On the remote sensing classification problem
D, the first search phase (see lines 1–10) explores the depth of the model and the second
search phase (see lines 11–22) explores the structure of the model. In the first search phase,
N individuals are randomly initialized as the initial population, and each individual in the
population is evaluated on the problem D to obtain the encoding length and classification
error rate (see line 2) for each individual. Population P0 is optimized for T1 iterations
through population evolution (see lines 3–7). The optimal solution front~α is chosen from
population PT1 , and the optimal solution is then chosen based on ~α (see lines 8–9). By
calculating the length of the optimal solution, we determine that the individual code length
of the second search phase is l (see line 10). In the second search phase, similar to the
first search phase, R individuals are first randomly initialized as the initial population,
where each individual has an encoding length of l (see line 11). E is an external population,
and its role is to collect the population’s individuals in each generation. The population
evolution updates the population T2 times, and the external population obtains R × T2
individuals (see lines 12–19). The optimal Pareto front is computed from E, and the most
suitable individual is selected to decode it to the corresponding CNN model for the remote
sensing classification (see lines 20–22).
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Algorithm 1 The Pseudocode of TPENAS
Input:

T1: the maximum population iterations during the first search phase;
T2: the maximum population iterations during the second search phase;
N: the population size in the first search phase.
R: the population size in the second search phase.
D: remote sensing image classification problem.

Output:
The best model.

1: First Search Phase:
2: P0 ← Initialize and evaluate the population with the size of N;
3: i← 1;
4: while i ≤ T1 do
5: Pi ← population evolution (Pi−1, D);
6: i← i + 1;
7: end while
8: ~α← Calculate the best solution front from PT1 ;
9: p∗ ← Select the best individual from~α;

10: l← Calculate the length of the code in individual p∗;
11: Second Search Phase:
12: Q0 ← Initialize and evaluate the population with the size of R, where the length of the

code in each population member is l;
13: E← ∅;
14: t← 1;
15: while t ≤ T2 do
16: Qt ← population evolution (Qt−1, D);
17: E← E

⋃
Qt;

18: t← t + 1;
19: end while
20: ~β← Calculate the Pareto front from E;
21: q∗ ← Choose the best individual from ~β;
22: Decoding individual q∗ to the corresponding remote sensing image classification

model.

2.2. The First Search Phase

The number of layers and structure of CNN greatly affect the ability to extract features.
Therefore, we designed the first search phase with the aim of exploring the effect of the
depth of the CNN model on classification accuracy in remote sensing image classification.
Below, we detail the design of the first search phase.

2.2.1. Encoding Schedule

In order to optimize the depth and structure of the model using the genetic algorithms,
we need to represent the remote sensing image classification model as a binary string in order
to optimize Equation (1). The topology of a block can be regarded as a directed acyclic graph,
and its encoding rules corresponding to binary strings must meet the following three rules.

(1) A block with n nodes is represented by n groups of binary strings.
(2) The i-th group of codes is represented by i + 1 bit binary. The j-th bit of the i-th group

indicates whether the (i + 1)-th node is connected to the j-th node (i > j and i = n − 1),
1 means connection, 0 means disconnection.

(3) The last group has only one bit, which indicates whether there is a direct connection
from the input to the output.

For the convenience of identification, each group of binary strings is connected with
the symbol “-”. The formula for calculating the coding length of the feature extraction block
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is L = n(n−1)
2 + 1 , where L represents the coding length of the block and n represents the

number of nodes contained in the block.
Figure 1 shows the coding diagram of a block with 5 nodes. IFM and OFM represent

the input feature map and the output feature map, respectively. Each node represents a 3 × 3
convolution operation followed by batch normalization (BN) and a rectified linear unit (ReLU).
The dashed arrows point out the correspondence between the binary bit “1” in the binary
string and the edge of the directed acyclic graph. Population evolution in Section 2.2.3 can be
used to conveniently optimize the network structure using binary strings.
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Figure 1. The encoding diagram of a feature extraction block.

2.2.2. Initialization

It is clear from the coding scheme described in Section 2.2.1 that a block with n nodes
needs to be represented by n(n−1)

2 + 1 binary bits. Therefore, an individual with m blocks is

represented by m · ( n(n−1)
2 + 1) binary bits.

The search space of individuals in the first search phase can be obtained as shown
in Equation (3).

Ω = ∑m
i=1 2

in(n−1)
2 +i (3)

where Ω represents the search space and m represents the number of individuals with
different numbers of blocks. An individual with n nodes and m blocks in each block is
represented by lm = m(n2−n+2)

2 binary bits. The starting point of the optimization algorithm
is the initialization population. The population represents a collection of individuals,
each of which represents a remote sensing image classification model. We represent an
individual using a vector. Therefore, we randomly initialize K vectors that have length
li (i = 1, 2, . . . , m), each of which has a value of 0 or 1 as the initial population. Each
vector represents an individual in the population, thus the population size is mK. The
initial population serves as the starting point for population evolution in Section 2.2.3. We
decode each individual in the population and test the individual’s classification error on
the testing dataset after training on the training dataset. At the same time, we also calculate
the number of blocks in the individual.

2.2.3. Population Evolution

Figure 2 depicts a schematic diagram of population evolution. Consistent with the
paradigm of a genetic algorithm, the population evolution is primarily made up of crossover
and mutation, evaluation, as well as selection. First, individuals in the initial population are
randomly selected for crossover. Then, crossover and mutation operations are performed
on the selected individuals to obtain offspring individuals. Finally, all new individuals are
evaluated and a new generation population is selected. This process is looped until the
stop condition is met. We describe crossover, mutation, evaluation, and environmental
selection in detail below.
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Figure 2. The diagram of population evolution in TPENAS. Stem represents a convolution operation;
Block represents a feature extraction block; Pooling represents a pooling operation; GPA represents a
global average pooling operation; Linear represents a fully connected layer.

(1) Crossover and Mutation
Crossover and mutation operations are used to generate better-quality individuals,
which are common operations in genetic algorithms. We randomly pick two individ-
uals from the population and perform a crossover on them with probability pc. The
crossover operation involves selecting a continuous binary string of the same length
from two individuals and generating two new individuals by exchanging the binary
string segments. The two new individuals perform mutation operations respectively
to generate new individuals. The mutation operation is practiced by inverting each
binary bit with probability pm in turn. In the experiment, the crossover probability and
mutation probability are set to pc = 0.5 and pm = 1

l , respectively, where l represents
the code length of the individual.

(2) Evaluation
In the first search phase, we need to evaluate the overall classification accuracy and
the length of the individual. To meet the minimum optimization problem, we use
the overall classification error rate of the model on the testing dataset to evaluate the
individual’s overall classification accuracy. We use the number of blocks to evaluate
an individual’s length. Before evaluating an individual, we need to decode the
binary string representing the individual into the corresponding CNN model. The
model is trained on the training dataset and then tested on the testing dataset to
obtain the overall classification error rate of the model. It is worth noting that in the
whole optimization process, we save the binary code of the individual, the overall
classification error rate, and the number of blocks of the model into the external
population E, and, before evaluating each individual, we first query the individual
in the set E. If it exists, the overall classification error rate of the individual and the
number of blocks of the model are directly copied without retraining the model, which
saves time in the first search phase.
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(3) Environmental Selection
We select the offspring population by binary tournament selection. Specifically, two
individuals are selected firstly from the parent population, and then the most suitable
one from the two individuals is chosen and added to the offspring population. Repeat
N times to select N individuals as the offspring population.

2.2.4. Solution Selection

To determine the optimal depth in the remote sensing image classification model, we
first select the highest classification accuracy from individuals outputted by population
evolution in Section 2.2.3. This will form the optimal solution front. Then, the knee point
method [63] is used to select the optimal solution from the optimal solution front. Finally,
we determine the optimal depth of the model by calculating the number of blocks in the
optimal solution.

2.3. The Second Search Phase

During the second search phase, we explore the impact of the network’s structure
on the classification accuracy of remote sensing images. We consider both classification
accuracy and the complexity of the model. In the second search phase, we use the GFLOPs
of the model to represent the complexity of the model. Similar to the first search phase, we
build a multi-objective optimization problem using the classification error rate and GFLOPs
of the model. Because the number of blocks and evaluation metrics of the individual in the
second search phase differ from those in the first search phase, we can use the heuristic-
based multi-objective optimization algorithm designed in the first search phase to solve
the multi-objective optimization problem in the second search phase. Therefore, we can
modify some parts of the first search phase to implement the second search phase process.
There are three differences from the first search phase, as follows:

(1) In the first search phase, we determine the optimal number of blocks of individuals.
In the second search phase, we optimize the classification error rate and GFLOPs of
the model and no longer optimize the block number of the model. Therefore, when
initializing the population as in Section 2.2.2, M individuals with the same number of
blocks are randomly initialized.

(2) In the second search phase, the two optimization objectives are the classification
error rate and GFLOPs of the model. Therefore, when evaluating individuals as in
Section 2.2.3, we evaluate the individual’s classification error rate and calculate the
individual’s GFLOPs.

(3) We do not select the optimal individual from the final population as in Section 2.2.4.
This is because we use the binary tournament selection method when choosing the
offspring population, which may overlook some Pareto solutions. As a result, we
aggregate all of the individuals from each generation into an external population Ω
and then select the Pareto front from Ω.

As mentioned above in Section 2.1, we specifically set these two problems as multi-
objective optimization problems and designed the TPENAS algorithm to solve these prob-
lems employing a genetic algorithm paradigm. TPENAS solves for the depth of the model
in the first search phase and produces a set of solutions that balance overall accuracy
and GFLOPs in the second search phase. The result of TPENAS in two phases is a set of
solutions, and we can choose the appropriate one according to our practical needs.

3. Results

In this section, we discuss experimental details to validate TPENAS. Section 3.1 intro-
duces the datasets used in the experiments. Section 3.2 describes the experimental settings.
Section 3.3 shows the experimental results.
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3.1. Datasets

The proposed method is verified on three datasets, namely UCM21 [22], PatternNet [64],
and NWPU45 [65] datasets. The characteristics of the three datasets are summarized in Table 1.
Table 1 shows the three obvious characteristics of the three datasets. First, the large variation in
the scene classes between the UCM21 dataset and NWPU45 dataset. The number of scenes in
the NWPU45 dataset is more than double that of the UCM21 dataset. Second, the large variation
in the size of the three datasets. NWPU45 datasets are 15 times larger than UCM21 datasets.
PatternNet dataset has eight times the number of images per class as the UCM21 dataset. Third,
the large variation in the spatial resolution of the three datasets.

Table 1. Characteristics of the three datasets in our experiments.

Dataset Scene
Classes

Total
Image

Image
per Class

Spatial
Resolution (m)

Image
Size

UCM21 21 2100 100 0.3 256 × 256
PatternNet 38 30,400 800 0.06∼4.69 256 × 256
NWPU45 45 31,500 700 0.2∼30 256 × 256

The spatial resolution of the UCM21 dataset is fixed at 0.3 m. The spatial resolution of the
PatternNet dataset has a small range of 4.63 m, while the NWPU45 dataset has a large range of
28.8 m. Some samples are shown from the three datasets in Figures 3–5, respectively.

agricultural airplane beach buildings chaparral

forest freeway golfcourse harbor intersection

overpass parkinglot river runway storagetanks

Figure 3. Some samples from the UCM21 dataset.
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airplane beach bridge cemetery chaparral

overpass railway river runway closed road

crosswalk forest freeway harbor intersection

Figure 4. Some samples from the PatternNet dataset.
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beach bridge chaparral

airplane airport beach bridge chaparralairplane airport beach bridge chaparral
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church cloud desert forest freewaychurch cloud desert forest freeway

Figure 5. Some samples from the NWPU45 dataset.

3.2. Experimental Settings
3.2.1. Parameter Setting

The experiment is divided into two parts. The first part is the search phase, including
the first search phase and the second search phase. The second part is the retraining phase.
The hyperparameters of the two parts are shown in Table 2. In total, 80%, 40%, and 20% of
samples of the UCM21, PatternNet, and NWPU45 datasets are split into training datasets,
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and the rest are used as testing datasets. The hardware configuration and software version
of the experimental environment are shown in Table 3.

Table 2. Hardware configuration and software version of the experimental environment.

Versions

CPU Inter(R) Core(TM) i7-10700
GPU NVIDIA GeForce 3090

Pytorch 1.11.0
Python 3.10.4

Table 3. Hyperparameters of the proposed algorithm.

Phase Hyperparameter Name Hyperparameter Value

Population size 64
Number of blocks from 1 to 8
Number of nodes 6

Crossover probability 0.5
Mutation probability 1

Encoding_length
Batch size 16
Optimizer SGD

First search phase Momentum 0.9
Weight decay 5e−4

Learning strategy Cosine
Learning rate 0.03

Epoch_UCM21 50
Epoch_PatternNet 20
Epoch_NWPU45 50

Population size 40
Number of nodes 6

Crossover probability 0.5
Mutation probability 1

Encoding_length
Batch size 16
Optimizer SGD

Second search phase Momentum 0.9
Weight decay 5e−4

Learning strategy Cosine
Learning rate 0.03

Epoch_UCM21 50
Epoch_PatternNet 15
Epoch_NWPU45 20

Eopch 1000
Batch size 16
Optimizer SGD

Retraining phase Momentum 0.9
Weight decay 5e−4

Learning strategy Cosine
Learning rate 0.03
Loss function Cross Entropy Loss

3.2.2. Evaluation Metrics

In order to evaluate the effectiveness of the proposed algorithm, we use the overall
accuracy (OA) and confusion matrix (CM) as the evaluation metrics for the classification
accuracy of the model and use the FLOPs and parameters (Params) as evaluation metrics
to assess the computational cost and parameters of the remote sensing image classifica-
tion model.

OA indicates the overall classification accuracy of the model, which represents the
ratio of correctly classified samples to all samples in the testing dataset. OA and CM are
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calculated using Equations (4) and (5), respectively, where S and Sc denote all samples
and samples of category c in the testing dataset, respectively; K indicates the number of
categories in the testing dataset; I() is the indicator function; f () denotes the remote sensing
image classification model; x denotes the input sample; yc denotes the label of the category
c sample. CM is a matrix with K rows and K columns. CMi,j denotes the proportion of
samples of category i misclassified as samples of category j among all samples of category i
in the testing dataset.

OA = 1
S ∑K

c=1 ∑Sc
t=1 I( f (xc,t) = yc) (4)

CMi,j = ∑K
c=1 ∑Nc

t=1
1
Sc

I( f (xc,t) = yj) (5)

We calculate FLOPs and Params by using Equations (6) and (7), where Hin and Win
denote the height and width of the input feature map, respectively; Cin and Cout denote the
number of input channels and output channels of the convolution kernel, respectively; I and
O denote the number of input and output nodes in the fully connected layer, respectively;
k denotes the size of the convolution kernel.

FLOPs =

{
FLOPsconv. = 2HinWin(Cink2 + 1)Cout

FLOPsFC. = (2I − 1)O
(6)

Params =

{
Paramsconv. = Cout(k2Cin + 1)
ParamsFC. = (I + 1)O

(7)

3.3. Comparison of the Proposed TPENAS with Other Methods
3.3.1. Results on UCM21 Dataset

We conducted experiments on the UCM21 dataset, the first publicly available remote
sensing image classification dataset.

In the first search phase, 80% of data in the UCM21 dataset are randomly divided as
the training dataset, and the rest as the testing dataset by a stratified sampling algorithm.
The search results of the first search phase are shown in Figure 6. The red dotted line shows
a downward trend as the number of blocks increases and stabilizes when the number of
blocks equals five. We can see that as the number of blocks increases, the classificatin
error rate of the model decreases. However, after the number of blocks is equal to five, the
classificatin error rate of the model does not decrease significantly, but increases slightly.
As a result, in the first search phase, the optimal solution is chosen when the number of
blocks equals five.

According to the optimal solution obtained in the first search phase, using the same
training dataset and testing dataset as the first search phase, we further search for the
structure of the network in the second search phase. Through the second search phase,
we obtain the Pareto front, as shown in Figure 7. It can be seen from the Pareto front that
the GFLOPs of the solution vary from 0.5∼4.5, which provides a variety of solutions. In
order to select the model with the lowest classification error rate, we train each network in
the Pareto solution set from scratch for 1000 epochs using the same dataset as the second
search phase and select the individual with the lowest classification error as our chosen
solution. Because the solutions in the Pareto solution set are only trained for 50 epochs,
they are not fully trained. After full training, in the Pareto solution set, individuals with a
high classification error rate may obtain a lower classification error rate than those with a
low classification error rate. We will discuss this in Section 4.

In the retraining phase, we use five-fold cross-validation, with four folds as the training
dataset and one fold as the testing dataset, to evaluate selected individuals. A total of
5 independent models are trained for 1000 epochs and tested, respectively. The average
of the test accuracy of the five models is compared to other algorithms, including classic
classification models such as AlexNet, VGG16, ResNet50, and others, as well as NAS-based
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methods such as NASNet, SGAS, DARTS, and so on. Additionally, we also compared their
GFLOPs and Params, as shown in Table 4. Compared with classic classification models,
TPENAS achieves the highest OA, and the GFLOPs are only higher than AlexNet, while the
parameters are significantly lower than other models. Compared with NAS-based methods,
the OA of TPENAS is 9.91% higher than NASNet and 2.03% higher than RSNet, and the
parameters of TPENAS are at least half lower than those of NASNet, SGAS, and DARTS.
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Figure 6. Search results of the first search phase for the UCM21 dataset. The red dots represent the
optimal solution in a particular block, while the blue circles represent nonoptimal solutions. The
pentagram represents the chosen solution. The red dotted line represents the front of the best solution.
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Figure 7. Pareto front of the second search phase for the UCM21 dataset. The red dots represent
the optimal solution, while the blue circles indicate the nonoptimal solutions. The Pareto front is
represented by the red dotted line. The pentagram indicates the chosen solution.
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Table 4. The OA, GFLOPs, and Params of TPENAS are compared with the other methods on the
UCM21 dataset (the ratio of training samples to test samples is 8:2). The upward arrow (↑) indicates
that the larger the number, the better the result. The downward arrow (↓) indicates that the smaller
the number, the better the result.

Method OA (%) ↑ GFLOPs ↓ Params (M) ↓ Search Strategy

AlexNet [66] 81.19 0.92 57.09 manual
VGG16 [32] 78.57 20.18 134.35 manual
ResNet50 [33] 85.24 5.37 23.56 manual
ConvNeXt [67] 84.29 20.07 88.57 manual
DenseNet161 [35] 86.19 10.17 26.52 manual
Fine-tuned AlexNet [66] 92.14 0.92 57.09 manual
Fine-tuned VGG16 [32] 95.48 20.18 134.35 manual
Fine-tuned ResNet50 [33] 98.57 5.37 23.56 manual
Fine-tuned ConvNeXt [67] 97.86 20.07 88.57 manual
Fine-tuned DenseNet161 [35] 98.33 10.17 26.52 manual

NASNet [43] 89.62 0.77 4.26 NAS
SGAS [68] 92.05 0.81 4.69 NAS
MNASNet [69] 94.52 0.43 3.13 NAS
RTRMM [70] 96.76 0.38 0.82 NAS
DARTS [47] 95.19 0.71 3.97 NAS
PDARTS [71] 91.52 0.73 4.19 NAS
RSNet [72] 96.78 1.19 1.22 NAS
CIPAL [59] 96.58 - 1.58 NAS
ALP [73] 93.43 - 2.63 NAS
TPENAS (ours) 98.81 2.76 1.80 NAS

The classification confusion matrix are shown in Figure 8. C01∼C21 represent the
categories agricultural, airplane, baseball diamond, beach, buildings, chaparral, dense
residential, forest, freeway, golf course, harbor, intersection, medium residential, mobile
home park, overpass, parking lot, river, runway, sparse residential, storage tanks and tennis
court, respectively. The classification accuracy of TPENAS in the scenes “buildings” and
“storage tanks” is 90%, the classification accuracy of “tennis court” is 95%, and the other
scenes are 100%, which proves the excellent performance of our proposed algorithm.
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Figure 8. The classification confusion matrix on UCM21 dataset.

3.3.2. Result on PatternNet Dataset

To further verify the performance of TPENAS, we validate experiments on the PatternNet
dataset, which contains more scenes and more samples than the UCM21 dataset. During
the first search phase, 40% of the data is selected at random as the training dataset and the
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remainder as the testing dataset. Figure 9 shows the search results in the first search phase.
We can see that as the number of blocks increases, the red dotted line gradually decreases and
flattens out after block equals 3. This demonstrates that as the number of blocks increases,
the classification error rate of the model gradually decreases. However, when the number of
blocks exceeds 3, the classification error rate of the model does not decrease significantly. As a
result, the individual’s block in the second search phase is set to 3. On the UCM21 dataset,
the optimal number of blocks in the first search phase is 5. It demonstrates that the optimal
number of blocks for the model varies depending on the dataset.
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Figure 9. Search results of the first search phase for the PatternNet dataset. The red dots indicate
the optimal solution in a particular block, while the blue circles indicate nonoptimal solutions. The
pentagram represents the chosen solution. The red dotted line represents the front of the best solution.

We searched the architecture of the model in the second search phase using the same
dataset as the first search phase, and the result is shown in Figure 10. Each solution in
the Pareto solution set has a unique network structure, and each solution in the Pareto
solution set dominates at least one nonoptimal solution. Therefore, the second search
phase is able to provide multiple models for remote sensing images classification. Each
solution in the Pareto solution set is trained from scratch for 1000 epochs. The solution
with the highest classification accuracy in the testing dataset is chosen for comparison with
other algorithms.

During the retraining phase, 40% of the data in the PatternNet dataset is randomly
selected to train the selected solutions from scratch and tested on the remaining 60% of
the data. The experiment was repeated 5 times and the average overall accuracy was
calculated, and the result is shown in Table 5. The OA of TPENAS is higher than classic
classification models. Compared with NAS-based methods, the OA of TPENAS is higher
than other algorithms, except that it is slightly lower than PDARTS. TPENAS has lower
GFLOPs than classic classification models and roughly twice the GFLOPs of NAS-based
methods. It is worth noting that parameters of TPENAS is at least one-twentieth of the
classic classification models and NAS-based methods.
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Figure 10. Pareto front of the second search phase for the PatternNet dataset. The red dots represent
the optimal solution, while the blue circles represent the nonoptimal solution. The Pareto front is
represented by the red dotted line. The pentagram indicates the chosen solution.

Table 5. The OA, GFLOPs, and Params of TPENAS are compared with the other methods on the
PatternNet dataset (the ratio of training samples to test samples is 4:6). The upward arrow (↑)
indicates that the larger the number, the better the result. The downward arrow (↓) indicates that the
smaller the number, the better the result.

Method OA (%) ↑ GFLOPs ↓ Params (M) ↓ Search Strategy

VGG16 [32] 97.31 20.18 134.42 manual
GoogLeNet [34] 96.12 1.96 56.64 manual
ResNet50 [33] 96.71 5.37 235.96 manual
Fine-tuned VGG16 [32] 98.31 20.18 134.42 manual
Fine-tuned GoogLeNet [34] 97.56 1.96 56.64 manual
Fine-tuned ResNet50 [33] 98.23 5.37 23.59 manual

DARTS [47] 95.58 0.71 3.98 NAS
PDARTS [71] 99.10 0.73 4.21 NAS
Fair DARTS [74] 98.88 0.53 3.32 NAS
GPAS [58] 99.01 - 3.72 NAS

TPENAS (ours) 99.05 1.30 0.15 NAS

The confusion matrix is shown in Figure 11. C01∼C38 represent airplane, baseball
field, basketball court, beach, bridge, cemetery, chaparral, christmas tree farm, closed road,
coastal mansion, crosswalk, dense residential, ferry terminal, football field, forest, freeway,
golf course, harbor, intersection, mobile home park, nursing home, oil gas field, oil well,
overpass, parking lot, parking space, railway, river, runway, runway marking, shipping
yard, solar panel, sparse residential, storage tank, swimming pool, tennis court, transformer
station and wastewater treatment plant, respectively. Each scene has a classification accu-
racy greater than 97%, and more than half of the scenes have a classification accuracy of
100%. The experimental results on the PatternNet dataset show that the proposed TPENAS
method can find acceptable depth and structure of the CNN model.
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Figure 11. The classification confusion matrix on PatternNet dataset.

3.3.3. Result on NWPU45 Dataset

Following experiments on the UCM21 and PatternNet datasets, we tested the TP-
MEANS method on the NWPU45 dataset, which is currently the largest remote sensing
image classification dataset. In the first search phase, 20% of the data are randomly selected
as a training dataset, and the remaining 80% are used as a testing dataset. The results of the
first search phase are shown in Figure 12.
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Figure 12. Search results of the first search phase for the NWPU45 dataset. The red dots indicate
the optimal solution in a particular block, while the blue circles indicate nonoptimal solutions. The
pentagram represents the chosen solution. The red dotted line represents the front of the best solution.

Consistent with the experiments on the UCM21 dataset, the overall accuracy of the
model decreases as the number of blocks increases until it reaches five. When the number
of blocks exceeds five, the overall accuracy of the model becomes stable. As a result, we
chose five blocks as the optimal individual length for the second search phase.
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The second search phase is performed using the same dataset as the first search phase,
and the obtained Pareto front is shown in Figure 13. The solutions in the Pareto solution
set have different structures and are not superior to other solutions in the Pareto solution
set in terms of GFLOPs and test error. This demonstrates that by running the algorithm
once, we can generate multiple competing models for remote sensing image classification.
Similar to the UCM21 dataset, we train all solutions from scratch for 1000 epochs and select
the solution with the lowest test error to compare with other algorithms.
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Figure 13. Pareto front of the second search phase for the NWPU45 dataset. The red dots represent
the optimal solution, while the blue circles represent the nonoptimal solutions. The Pareto front is
represented by the red dotted line. The pentagram indicates the chosen solution.

In the retraining phase, we use five-fold cross-validation to evaluate the selected
solutions. Different from the UCM21 dataset, we chose one fold as a training dataset and
the remaining four folds as a testing dataset. A total of 5 independent models were trained
from scratch for 1000 epochs, and their test results were averaged. We also compare classic
classification models and NAS-based methods, as shown in Table 6. TPENAS_large denotes
that the solution with the highest classification accuracy is selected from the Pareto solution
set, and TPENAS_small denotes that the solution selected from the Pareto solution has
higher classification accuracy and fewer parameters than other NAS-based models. The
OA of TPENAS_large is 90.38%, which is better than both classic classification models and
NAS-based methods. The GFLOPs of TPENAS_large are lower than VGG16, GoogleNet,
and ResNet50, and slightly higher than AlexNet. With the exception of the RTRMM method,
the parameters of TPENAS_large are significantly lower than those of classic classification
models such as AlexNet and VGG16 and are at least half that of other NAS-based methods.
Table 6 shows that the parameters of TPENAS_small are half that of RTRMM and the OA is
higher than that of NAS-based methods.
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Table 6. The OA, GFLOPs, and Params of TPENAS are compared with the other methods on the
NWPU45 dataset (the ratio of training samples to test samples is 2:8). The upward arrow (↑) indicates
that the larger the number, the better the result. The downward arrow (↓) indicates that the smaller
the number, the better the result.

Method OA (%) ↑ GFLOPs ↓ Params (M) ↓ Search Strategy

AlexNet [66] 79.85 0.92 57.19 manual
VGGNet16 [32] 79.79 20.18 134.44 manual
GoogleNet [34] 78.48 1.97 5.65 manual
ResNet50 [33] 83.00 5.37 23.60 manual
Fine-tuned AlexNet [66] 85.16 0.92 57.19 manual
Fine-tuned VGG16 [32] 90.36 20.18 134.44 manual
Fine-tuned GoogLeNet [34] 86.02 1.96 5.65 manual

NASNet [43] 67.48 0.77 4.28 NAS
SGAS [68] 75.87 0.81 4.70 NAS
DARTS [47] 67.48 0.77 3.41 NAS
MNASNet [69] 81.92 0.43 3.16 NAS
PDARTS [71] 82.14 0.73 4.21 NAS
RTRMM [70] 86.32 0.39 0.83 NAS

TPENAS_large (ours) 90.38 1.65 1.67 NAS
TPENAS_small (ours) 87.79 1.27 0.41 NAS

Figure 14 depicts the classification confusion matrix. C01∼C45 represent airplane,
airport, baseball diamond, basketball court, beach, bridge, chaparral, church, circular
farmland, cloud, commercial area, dense residential, desert, forest, freeway, golf course,
ground track field, harbor, industrial area, intersection, island, lake, meadow, medium
residential, mobile home park, mountain, overpass, place, parking lot, railway, railway
station, rectangular farmland, river, roundabout, runway, sea ice, ship, snow berg, sparse
residential, stadium, storage tank, tennis court, terrace, thermal power station and wetland,
respectively. As shown in Figure 14, 20% of the place images are misclassified as church
images and 9% of the church images are misclassified as place images. As shown in
Figure 15, the category church is very similar to the category place, making it extremely
difficult for the model to extract discriminative features from these images. TPENAS
achieves high classification accuracy in other categories.
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Figure 14. The classification confusion matrix on the NWPU45 dataset. We removed categories with
classification accuracy higher than 95% in the confusion matrix and did not display numbers less
than 0.01.
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Figure 15. Some samples in the categories church and place. The four images in the first row are in the
category church, and the four images in the second row are in the category place.

3.3.4. Compared to Other CNN-Based Methods

Our proposed method is compared with other CNN-based remote sensing image
classification methods, as shown in Table 7. The OA of TPENAS is higher than other
CNN-based methods, which shows that the OA of our algorithm on remote sensing image
classification tasks is satisfactory.

Table 7. The OA of TPENAS is compared with the other CNN-based methods on the UCM21 dataset
and NWPU45 dataset (the ratio of training samples to test samples is 8:2).

Method UCM21 NWPU45

MARTA GANs [75] 94.86 75.03
Attention GANs [76] 97.69 77.99
VGG-16-CapsNet [77] 98.81 89.18
GBN [78] 98.57 -
MSCP [79] 98.36 88.93
TPENAS (ours) 98.81 90.38

3.3.5. Compared to Other ENAS Methods

TPENAS was compared with other ENAS methods, as shown in Table 8. On the
NWPU45 dataset, SceneNet, E2SCNet, and TPENAS were all trained using 80% of the
dataset and then tested on the remaining 20% of the dataset. Experimental results show
that our algorithm has a higher OA than SceneNet and E2SCNet, and that Params and
GFLOPs are not the worst among the three algorithms.

Table 8. The OA, Params, and GFLOPs of TPENAS are compared with the ENAS methods on the
NWPU45 dataset (the ratio of training samples to test samples is 8:2). The upward arrow (↑) indicates
that the larger the number, the better the result. The downward arrow (↓) indicates that the smaller
the number, the better the result.

Method OA ↑ Params (M) ↓ GFLOPs ↓
SceneNet [60] 95.22 1.02 9.47
E2SCNet [61] 95.23 3.88 0.60
TPENAS_large (ours) 95.70 1.65 1.67

4. Discussion
4.1. Analysis of the Number of Evaluated Models

We compare the number of evaluated models for the proposed TPENAS and traversal
search. In this paper, traversal search means that models with different numbers of blocks
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perform the second search phase respectively, and then the best model is selected from all
the search results. In our experimental setup, the models have 8 different block numbers,
so the traversal search needs to evaluate 32,000 models. TPENAS only needs to evaluate
4640 models. According to the current experimental settings, the number of models to
be evaluated by TPENAS is ϑ1 = 8× 10× ϑ + 40× 100, and the number of models to be
evaluated by traversal search is ϑ2 = 40× 100× ϑ, therefore, TPENAS evaluates ϑd fewer
models than traversal search, where ϑd = ϑ2 − ϑ1 = 3920× ϑ− 4000, and ϑ is the number
of blocks that can be selected. It can be seen that as ϑ increases, ϑd increases linearly. This
demonstrates that our algorithm is more time-efficient.

4.2. Analysis of the Depth of the Model in the Second Search Phase

The aim of the first search phase is to find the optimal depth of the model, which is the
number of blocks of the model. We use the overall accuracy of the model and the number of
blocks of the model as two optimization objectives to build a multi-objective optimization
problem, as shown in Equation (1). The optimal solution to this optimization problem is the
appropriate number of blocks. We designed the first search phase algorithm to optimize
this optimization problem. On the UCM21 dataset, the number of blocks output by the
first search phase algorithm is five, but this does not indicate an optimal solution to this
optimization problem.

We selected five different block numbers to conduct ablation experiments on the
UCM21 dataset to validate the effectiveness of the first search phase. Figure 16 shows the
Pareto front of the experimental results. As we can see, it is not true that the greater the
number of blocks, the better the Pareto front of the individual. For example, the Pareto
front with seven blocks is worse than the Pareto front with six blocks, indicating that the
former is superior. We discover that the Pareto front is optimal when the block equals five,
which matches the results in our first search phase.
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Figure 16. The Pareto fronts obtained by experiments with five different block numbers during the
second search phase.



Remote Sens. 2023, 15, 2212 23 of 27

4.3. Analysis of Fully Trained Models and Non-Fully Trained Models

In the Pareto front obtained from the second search phase, we fully train each solution
from scratch and then select the solution with the lowest classification error to compare
with other methods. The reason is that after fully training from scratch, the solution with
the lowest classification error may not be the solution with the lowest classification error
in the Pareto solution set. Therefore, we conducted four sets of comparative experiments,
as shown in Figure 17. In the upper left figure, after the solutions in the Pareto solution
set with blocks equal to three are fully trained, the solution with the lowest classification
error is the optimal solution in the Pareto set. However, the other three subplots show that
after training completely from scratch, the solution with the lowest classification error is
not the solution with the lowest classification error in the Pareto solution set. This further
illustrates the rationality of our choice of the final solution.
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Figure 17. The horizontal axis represents the GFLOPs of the individual, and the vertical axis repre-
sents the test error of the individual on the UCM21 dataset. The blue curve represents the Pareto
front on the second phase. The red curve represents the result obtained by fully training the solution
on the Pareto front from scratch.

4.4. Analysis of TPENAS Algorithm with Fewer Training Samples

Fewer training samples have two effects on the TPENAS algorithm. Firstly, it decreases
the runtime of the TPENAS algorithm. Since the runtime of TPENAS is spent primarily on
evaluating the model, reducing the training samples will linearly reduce the evaluation
time of the model. Specifically, a Γ-fold reduction in training samples will reduce the time
to evaluate a single model by approximately a factor of Γ. Furthermore, it also enables the
algorithm to reduce its reliance on sample labels. Secondly, it is not conducive to TPENAS
outputting well-structured models. This is because too few training samples will make
the model easily overfitted during training. In the second search phase, the overfitted
model will not evaluate the model accurately, resulting in low OA for well-structured
individuals in the population. Therefore, a reasonable selection of the number of training
samples is able to both reduce the running time of the TPENAS algorithm and search for
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structurally appropriate models. Such individuals can easily be eliminated in selecting the
next-generation population, which leads to difficulties for the TPENAS algorithm to output
a well-structured model.

5. Conclusions

In this paper, we propose TPENAS, a two-phase evolutionary neural architecture
search for remote sensing image classification, which overcomes the shortcomings of
manually designed CNN and NAS algorithms. In the first search phase, we optimize
the classification accuracy and depth of the model to determine the maximum depth
of the model on the benchmark dataset. In the second search phase, we optimize the
classification accuracy and GFLOPs of the model to obtain a set of models for remote
sensing image classification. The experimental results on the NWPU45 dataset show that
TPENAS improves overall classification accuracy by 4.02% when compared to other NAS
algorithms. Furthermore, it reduces the parameters by at least 13 times when compared
to classic classification methods. In future work, we will explore how to design a more
discriminative deep learning method to greatly promote the classification of similar images.
In addition, in practical application scenarios, enough training samples can sometimes be
difficult to obtain, and how to design high-accuracy remote sensing image classification
models with small samples remains an open research question.
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