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Abstract: Urbanization has led to rapid growth in energy consumption and CO2 emissions in the
building sector. Building operation emissions (BCEs) are a major part of emissions in the building
life cycle. Existing studies have attempted to estimate fine-scale BCEs using remote sensing data.
However, there is still a lack of research on estimating long-term BCEs by integrating multi-source
remote sensing data and applications in different regions. We selected the Beijing–Tianjin–Hebei
(BTH) urban agglomeration and the National Capital Region of Japan (NCRJ) as research areas for
this study. We also built multiple linear regression (MLR) models between prefecture-level BCEs
and multi-source remote sensing data. The prefecture-level BCEs were downscaled to grid scale at
a 1 km2 resolution. The estimation results verify the method’s difference and accuracy at different
development stages. The multi-scale BCEs showed a continuous growth trend in the BTH urban
agglomeration and a significant downward trend in the NCRJ. The decrease in energy intensity and
population density were the main factors contributing to the negative growth of BCEs, whereas GDP
per capita and urban expansion significantly promoted it. Through our methods and analyses, we
contribute to the study of estimating greenhouse gas emissions with remote sensing and exploring
the environmental impact of urban growth.

Keywords: building operation; carbon emissions; urban growth; multi-scale; comparative study

1. Introduction

Global urbanization has accelerated since the 1950s, with more than 50% of the current
population living in urban areas, which is expected to reach 68% by 2050 [1]. Meanwhile,
carbon dioxide (CO2) emissions from energy consumption have increased significantly, with
global energy-related CO2 emissions exceeding 36 billion tons in 2021 [2]. Since buildings
are the main carriers of population and economic activities, energy consumption and CO2
related to building operations reached 35 and 38% globally, respectively; furthermore, CO2
from building operations accounted for 30 and 28% globally [3]. Given the high share and
growth trend of buildings’ energy demand and CO2 emissions under rapid urbanization,
reduced energy conservation and emissions in the building sector play an important role in
promoting low-carbon cities [4].

1.1. Calculation of CO2 Emissions from the Building Sector

Life cycle assessments have been widely used to determine buildings’ energy con-
sumption and CO2 emissions [5–8]. The life cycle assessment of buildings was divided into
three main parts: the processing and construction, operation, and demolition stages [5,9].
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Besides estimating CO2 emissions [10–14], existing studies analyzed the emissions between
residential and commercial buildings using various materials at different stages of the
building life cycle [6,9]. Based on estimating office buildings’ emissions at the construc-
tion stage, building height positively promoted unit area emissions [15]. In addition to
life cycle assessments, previous studies estimated buildings’ CO2 emissions at different
stages, such as material input, energy consumption, and human input, using input–output
methods [16–18]. By comparing emissions at different stages, researchers found that energy
consumption in the operation stage accounted for the highest proportion in the building’s
whole life cycle [6,7,9,19].

The operation stage mainly includes the energy consumed by heating, air conditioning,
lighting, and other functions of residential, commercial, and office buildings [20]. The
operation stage is the main source of energy consumption and CO2 emissions in the life
cycle of a building. Previous studies focused on estimating energy consumption and CO2
emissions at the operation stage using China’s building energy consumption calculation
method (CBECM). This method extracted energy consumption related to building oper-
ations from sector statistics in the energy balance sheet [21]. For the fine-scale emissions
of building operations in China, a regression model was established between building
operation emissions, air temperature, and economic factors at the provincial level and
downscaled them to a 1 km resolution [22]. A combined energy balance sheet with POI
weights and CO2 emissions from building operations in Beijing was mapped at a grid
scale [23]. Nighttime light data have been widely used to estimate energy consumption and
CO2 emissions [24–29]. Previous studies have proven its effectiveness in evaluating build-
ings’ material stocks [30,31] and have also used the linear regression model to downscale
the building sector’s carbon emissions in the United Kingdom [32]. In addition, nighttime
light data could explain more than 90% of the variation in building energy consumption in
the United States [26].

1.2. Influencing Factors of CO2 Emissions from the Building Sector

Natural and socioeconomic factors affect energy consumption and CO2 at the build-
ings’ operation stage [33,34]. Table 1 lists the building emissions’ influencing factors from
natural and socioeconomic dimensions. Under the background of climate warming, the rise
in temperature causes increased demand for cooling and lower demand for heating [35].
However, the decrease in emissions due to less heating could be negated by cooling if there
is no limitation to using air conditioning [36]. Existing studies explored the urban heat
island’s effect on buildings’ energy consumption and found that the energy consumption
of urban buildings for cooling in summer was higher than that of suburban buildings.
However, energy consumption for heating was reversed in winter [37]. With the rapid
urbanization process, vegetation cover loss is significant. Previous studies have indicated a
positive correlation between vegetation cover loss and land surface temperature, which
exacerbates the urban heat island effect and affects building energy consumption indi-
rectly [38,39]. The geographical location affects a region’s BCEs by determining energy
endowments and climatic characteristics, causing different energy consumption construc-
tures and energy demands between regions [40,41].

Energy demand and CO2 emissions from buildings are affected by urbanization, with
urban growth increasing the demand for central heating in winter and refrigeration in
summer [42–44]. Previous studies compared the impacts of population, economic, and
spatial urbanization on building energy consumption, with population urbanization having
the strongest positive effect [40,45]. As for factors influencing CO2 from China’s building
sector, Logarithmic Mean Divisia index (LMDI) model results revealed the positive effect
of the tertiary sector, indicating that an increase in consumption has driven significant
CO2 emission increases from buildings [41,46]. Similarly, residents’ lifestyles represent an
important factor affecting building energy consumption because of different income levels
and energy structures [47,48]. Improvements in the energy structure and technological
progress could effectively reduce BCEs [49,50]. Land development, which is used for
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commercial and residential land, has a positive effect on building CO2 emissions [42,50].
In addition, previous studies compared factors influencing residential and commercial
buildings. Their results showed that newer, higher-quality commercial buildings require
more electricity than residential buildings [51]. Residential energy intensity and the energy-
saving policies of commercial buildings promote the decoupling effect of CO2 emissions
from residential and commercial buildings, respectively [52,53].

Table 1. Influencing factors in previous studies.

Dimension Influencing Factors Influencing Results

Natural factors
temperature [35–37] positive (summer)/negative (winter)

less vegetation cover [38,39] positive
geographical location [41] /

Socioeconomic factors

urbanization [40,45] positive
economic growth [41] positive

tertiary industry [41,46] positive
population [40,54] positive

technological progress [49,50] negative
urban land use [42,50] positive

Emission reduction in the building sector is important for promoting the carbon peak
and carbon neutrality. Although studies have attempted to determine fine-scale estimations
of BCEs using remote sensing data, those exploring multi-source remote sensing data
to estimate long-term emissions are still inadequate. CO2 emissions from the building
sector in China have significantly grown due to rapid urbanization and are expected to
increase continuously [8,41,46]. In contrast to the trend of a rapid increase in CO2 emissions
in developing countries, developed countries are approaching an emissions peak and
some developed countries have reached an emissions peak [55]. One study of developed
countries’ indicates that CO2 emissions peaks and reduction experiences are important for
developing countries [56]. China and Japan are both located in Eastern Asia with large-scale
CO2 emissions. Japan experienced rapid urbanization in the first half of the 20th century
and the development and transformation of its manufacturing industry after the 1950s. CO2
emissions in Japan have shown a declining trend since the 2010s [55]. Given that China has
experienced a similar urbanization process to Japan, existing studies have compared the
CO2 emissions in China and Japan regarding their policies, technologies, and influencing
factors to explore valuable experiences for emission reductions [57–60]. However, due to
the limitations and difference in data between China and Japan, most studies have focused
on macro comparative analysis by country; quantitative studies of specific sectors and
areas are inadequate. Urban agglomerations in China and Japan have dense populations
and high economic activity and face more pressure to reduce their CO2 emissions. The
Beijing–Tianjin–Hebei urban agglomeration (BTH) is a major urban agglomeration in China
and forms an obvious high-emission cluster, with its CO2 emissions accounting for 11.8%
of total emissions [61]. In contrast, CO2 emissions in the National Capital Region of Japan
have significantly decreased since the 2010s [62]. Therefore, considering the similarities
in development and differences in CO2 emissions, comparative studies between the BTH
urban agglomeration and NCRJ are essential and valuable for CO2 reductions in megacities
in China.

Based on the above summary and evaluation of existing studies, we aimed to estimate
fine-scale BCEs by integrating remote sensing data and statistical BCEs and comparing the
method’s effectiveness between regions in different countries. The BTH urban agglomera-
tion and NCRJ were selected as study areas, and MLR models were constructed for remote
sensing data and prefecture-level BCEs. Based on our regression results, grid scales of
BCEs with a 1 km2 resolution were obtained from the study areas in 2000, 2005, 2010, 2015,
and 2019. Meanwhile, the estimation results of the method and the driving factors of BCEs
were compared in the BTH urban agglomeration and NCRJ. Our research contributes to the
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estimation method of multi-scale BCEs using remote sensing data and provides regional
comparisons for reducing building emissions and decarbonization.

2. Materials and Methods
2.1. Study Areas

We chose the Beijing–Tianjin–Hebei urban agglomeration (BTH) and the National
Capital Region of Japan (NCRJ) as research areas in this study (Figure 1). The BTH urban
agglomeration is a major urban agglomeration in China, located in Eastern China, which
includes the Beijing and Tianjin Municipalities and 11 prefecture-level cities in Hebei
Province. The BTH urban agglomeration covers an area of about 218,000 square kilometers.
In 2021, the total population of the BTH was about 110 million, accounting for 7.8% of
China’s total population; the GDP reached CNY 9635.59 billion, accounting for about 8.4%
of China’s total GDP. The NCRJ is located in the Kanto region of Japan, covering eight
prefectures, including Tokyo, Kanagawa, Chiba, Saitama, Ibaraki, Tochigi, Gunma, and
Yamanashi. The NCRJ covers an area of about 37,000 square kilometers, with a population
of about 44 million in 2021, accounting for about 35% of Japan’s total population. The
region’s GDP was about JPY 231,702.9 billion, accounting for about 40% of Japan’s total
GDP. There are similarities between the BTH and NCRJ from the natural conditions. BTH
is located at between 36 and 42 degrees north latitude with a high elevation of over 1000 m
in the northwest and low elevation of below 15 m in the southeast. The NCRJ is located
at between 35 and 37 degrees north latitude with a high elevation of over 800 m in the
northwest and low elevation of below 30 m around Tokyo Bay. Both the BTH and NCRJ
are in mid-latitude regions and have a similar topography. Although the BTH urban
agglomeration and NCRJ are different in terms of their population and scale, they are
both important economic, cultural, and political centers with intensive economic activities.
The population density and economic development of the NCRJ are higher than the BTH.
However, Japan’s carbon emissions have declined since 2013, according to data released
by the National Institute for Environmental Studies [63]. On the one hand, comparing
regions of different countries at different stages of development highlights the diversity
and regional characteristics of the results. On the other hand, the results can also provide
references for developing countries’ emission management and development planning to a
certain extent.

2.2. Data Sources

The nighttime light data used in this paper include the DMSP/OLS and NPP-VIIRS
datasets. The former was downloaded from https://www.ncei.noaa.gov/products/dmsp-
operational-linescan-system (accessed on 6 August 2021) and the latter from https://eogdata.
mines.edu/products/vnl/ (accessed on 6 August 2021), respectively. The nighttime light data
were preprocessed to obtain an annual value of a 1 km resolution. The two datasets were
integrated to obtain long-term datasets [64–66]. Population data and built-up land data were
downloaded from the Global Human Settlement Layer (GHSL) with a resolution of 1 km. The
built-up land was residential and non-residential. We regard the non-residential land as public
built-up land in this paper. The enhanced vegetation index (EVI) was downloaded from the
Global Monthly MODIS data (MOD13A3) with a resolution of 1 km and processed as the
annual value of the study area. The Land Surface Temperature dataset was downloaded from
MODIS with a resolution of 1 km (MOD11A2), including an average of 8 days of daytime
and nighttime data. The temperatures in June, July, and August and December, January, and
February were preprocessed to obtain the summer and winter mean temperatures, respectively.
The administrative division data for the study area were downloaded from the Resource
and Environment Science and Data Center (RESD) (https://www.resdc.cn/) (accessed on
26 August 2021) and the Ministry of Land, Infrastructure, Transport and Tourism (MLIT)
(https://nlftp.mlit.go.jp/ksj/) (accessed on 2 September 2021) Administrative divisions for
the study areas were focused on 2021.P.

https://www.ncei.noaa.gov/products/dmsp-operational-linescan-system
https://www.ncei.noaa.gov/products/dmsp-operational-linescan-system
https://eogdata.mines.edu/products/vnl/
https://eogdata.mines.edu/products/vnl/
https://www.resdc.cn/
https://nlftp.mlit.go.jp/ksj/
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Figure 1. Location and administrative division of the Beijing–Tianjin–Hebei urban agglomeration
and the National Capital Region of Japan.

2.3. Estimation of Multi-Scale Emissions from Building Operations

Mapping BCEs at the grid scale involves integrating remote sensing and statistical data,
analyzing spatial–temporal characteristics and influencing mechanisms of multi-scale BCEs.
The research framework for this paper includes three parts (Figure 2). Data processing
mainly focuses on preprocessing the calculation of prefecture-level BCEs and remote
sensing data. Based on prefecture-level datasets, we used a multiple linear regression
(MLR) model to build the relationship between prefecture-level BCEs and remote sensing
data. The results were used to downscale prefecture-level BCEs to a grid scale. In the third
part, an LMDI model was used to analyze the temporal and spatial characteristics of BCEs
at different scales and determine the factors affecting changes in BCEs.

2.3.1. Calculation of BCEs at the Prefecture Level

In the operation stage, carbon emissions from energy consumption are mainly caused
by living, commercial, and office activities. In this paper, we used the IPCC method to
calculate building operation emissions at the provincial and prefecture levels using the
BTH’s provincial energy consumption statistical data and the NCRJ’s prefecture-level
energy consumption data.

CE = ∑
i=1

ECi × NCVi × CCi × COFi × 44/12 (1)

where CE refers to CO2 emissions caused by energy consumption; and ECi, NCVi, CCi,
and COFi are the energy consumption, net calorific value, carbon content, and carbon oxide
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rate of i type of energy. The energy consumption at the provincial level and the factors
above of the BTH referred to China’s Energy Statistical Yearbook (https://data.cnki.net/)
(accessed on 12 November 2022) We referenced the Agency for Natural Resources and
Energy (https://www.enecho.meti.go.jp/) (accessed on 12 November 2022) and Ministry
of the Environment (https://www.env.go.jp/en/) (accessed on 12 November 2022) for the
NCRJ’s energy consumption at the provincial level and the factors shown above.
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Considering the available data and estimation scales, the calculation of building
operation emissions (BCEs) in this study relied on dividing building operations’ energy
consumption from different sectors.

BCE1 = BCEc + BCEr + BCEo + BCEt (2)

BCE1 is one part of BCEs, including emissions from the commercial and retail sector
(BCEc), residential sector (BCEr), other sectors (BCEo), and transport sector (BCEt). Because
energy balance sheets in the BTH and NCRJ record various levels of energy consumption
by activity sectors, the energy consumption in commercial, residential, and other sectors
also includes energy related to transport; the energy related to transport in the above
sectors is removed to a certain extent. The specific proportion was referred to in previous
studies [21,41]. For instance, 95% of gasoline consumption and 35% of diesel consumption
in the commercial and retail sectors were removed, 95% of gasoline consumption and 35%
of diesel consumption in other sectors were removed, and 95% of gasoline consumption
and all diesel consumption in the residential sector were removed from the calculation.
Since the transport stations and storage are public buildings and need energy to maintain
operations, coal and 40% of electricity consumption were used to calculate the BCEs in
transport stations, storage, and post-sector.

BCE2 = BCEcheating −
(

BCEheating
c + BCEheating

r + BCEheating
o

)
(3)

https://data.cnki.net/
https://www.enecho.meti.go.jp/
https://www.env.go.jp/en/
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BCE2 are the emissions caused by heating. To avoid double counting, the heat used
by sectors in the energy balance sheet was removed, and heating emissions were calculated
based on central heating supply statistics (BCEcheating). Since the central heating supply is
concentrated in Northern China, Equation (3) applies to the BTH calculation. The emissions
from heating in the NCRJ were calculated by the consumption levels of sectors using
Equation (2).

BCE = BCE1 + BCE2 (4)

BCE represents the total emissions from building operations of the region.
The prefecture-level statistics of sectors’ energy consumption in Hebei Province are

limited. Therefore, the top-down decomposition method was adopted to obtain BCEs at
the prefecture level in Hebei Province. The corresponding decomposition indicators are
shown in Table A1 Appendix A.

2.3.2. Mapping BCEs at the Grid Scale by Integrating Remote Sensing Data and
Statistical Results

As previous studies have proved that the economic output, population, and urban ex-
pansion have positive effects on buildings’ carbon emissions because of increasing demand
for energy consumption [40–42], we selected nighttime light data, grid-scale population
data, and built-up land data to represent the socioeconomic factors influencing BCEs. Sum-
mer and winter temperatures affect the building energy consumption required to maintain
comfortable conditions [35–37]. Vegetation loss indirectly affects BCEs by intensifying the
urban heat island effect and influencing the temperature around buildings [38,39]. There-
fore, the summer mean temperature, winter mean temperature, and vegetation index were
selected as natural factors in regression models. The remote sensing data were adjusted to a
resolution of 1 km and Lambert conformal conic projection after preprocessing, normalized
using Equation (5).

NXi =
xi − xmin

xmax − xmin
(5)

The BCEs of public buildings (BCEP) included emissions from the commercial and
retail sectors, other sectors, and the transport sector. The BCEs of residential buildings
(BCER) include emissions from the residential sector. The emissions from central heating
were divided into public heating and residential heating using the proportion of heat in
the BTH’s energy balance sheet. Equations (6) and (7) show the multiple linear regression
(MLR) models for public and residential BCEs, respectively. NNTLi, NPOPi, NPBLi,
NRBLi, NEVIi, NSTi, and NWTi represent the nighttime light data, population, public
built-up land, residential built-up land, enhanced vegetation index, summer temperature,
and winter temperature after normalization, respectively.

BCEPi = β0 + β1NNTLi + β2NPOPi + β3NPBLi + β4NEVIi + β5NSTi + β6NWTi + εi (6)

BCERi = β0 + β1NNTLi + β2NPOPi + β3NRBLi + β4NEVIi + β5NSTi + β6NWTi + εi (7)

Based on the results of Equations (6) and (7), the models were applied to a 1 km grid.
To obtain the final results of grid-scale emissions (BCEg), prefecture-level emissions were
used to revise the estimation results.

BCEg =
BCEP′g

∑g=1 BCEP′g
× BCEP +

BCER′g
∑g=1 BCER′g

× BCER (8)

2.3.3. Decomposition of Factors Affecting BCE Growth

According to the Kaya model, BCEs can be decomposed using Equation (9):
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BCE =
BEC
EC
× EC

GDP
× GDP

P
× P

BL
× BL (9)

where EC, GDP, P, and BL refer to the energy consumption (GJ), gross domestic product,
population, and built-up land, respectively. The BEC

EC , EC
GDP , GDP

P , P
BL , and BL represent

the carbon emissions intensity (CEI), energy intensity (EI), GDP per capita (GP), popu-
lation density (PD), and urban expansion (UE), respectively, which cover the economic,
population, and built environment factors of regional growth.

The Logarithmic Mean Divisia index (LMDI) model is an extension of index decom-
position analysis (IDA) and has been widely used in exploring driving factors in energy
consumption, CO2 emissions, and other social and ecological subjects [67,68]. The LMDI
was applied to decompose the factors of BCE growth (∆BCE) in this study.

∆BCE = BCEt − BCE0 = ∆CEI + ∆EI + ∆GP + ∆PD + ∆UE (10)

BCEt and BCE0 represent BCEs in the year t and base year 0, respectively. According
to the LMDI model, the ∆BCE was decomposed into ∆CEI, ∆EI, ∆GP, ∆PD, and ∆UE.
Since the growth rate of BCEs was defined as the relative growth of BCEs in the base year,
the Growbce may be transferred using Equation (11):

Growbce =
∆BCE
BCE0

=
∆CEI + ∆EI + ∆GP + ∆PD + ∆UE

BCE0
(11)

Therefore, the contributions of ∆CEI, ∆EI, ∆GP, ∆PD, and ∆UE to the growth rate of
BCEs were calculated using Equations (12) to (16):

∆CEI =
BCEt − BCE0

lnBCEt − lnBCE0 ln
(

CEIt

CEI0

)
(12)

∆EI =
BCEt − BCE0

lnBCEt − lnBCE0 ln
(

EIt

EI0

)
(13)

∆GP =
BCEt − BCE0

lnBCEt − lnBCE0 ln
(

GPt

GP0

)
(14)

∆PD =
BCEt − BCE0

lnBCEt − lnBCE0 ln
(

PDt

PD0

)
(15)

∆UE =
BCEt − BCE0

lnBCEt − lnBCE0 ln
(

UEt

UE0

)
(16)

3. Results
3.1. Results of MLR Models and Evaluation of Multi-Scale BCEs
3.1.1. Results of MLR between BCE and Remote Sensing Data

Tables 2 and 3 show the multiple linear regression results for BCEs from public and
residential buildings by remote sensing data, respectively. Table 1 shows that the population
(POP), public built-up land (PLU), summer temperature (ST), and winter temperature (WT)
results are effective. These factors positively affect public BCEs, indicating that the large
population size, high proportion of public built-up land, and high temperatures in summer
and winter cause higher levels of CO2 to be produced in public building operations, which
is consistent with the trend of higher energy demand in urban areas where socio-economic
activities are concentrated. The NCRJ results showed that the nighttime light, population
size, public built-up land, and summer temperature were effective. The BCEs of prefectures
in the NCRJ have seen a downward trend in recent years, and increased factors, such as
nighttime light and public built-up land, have adversely affected public BCEs.
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Table 2. Results of regression between public BCEs and remote sensing data.

Variables BTH NCRJ

NTL −0.059 −1.346 ***
POP 12.076 *** 1.893 ***
PLU 9.464 *** −0.538 ***
EVI 0.027 0.167
ST 0.081 ** 1.655 ***
WT 0.052 *** −0.130

Observations 65 40
R2 0.79 0.97

*** p < 0.01, ** p < 0.05.

Table 3. Regression results between residential BCEs and remote sensing data.

Variables BTH NCRJ

NTL 0.094 ** −0.439 **
POP 8.740 *** 1.189 ***
RLU 0.159 −0.065
EVI −0.009 −0.332 *
ST −0.029 0.604 **
WT 0.028 0.097

Observations 65 40
R2 0.85 0.99

*** p < 0.01, ** p < 0.05, * p < 0.1.

Table 3 shows the regression results between residential BCEs and remote sensing
data. The nighttime light and population size positively affect residential BCEs in the BTH.
The NCRJ’s regression results showed that the nighttime light, population size, enhanced
vegetation index (EVI), and summer temperature positively affect residential BCEs. In
particular, the population size and summer temperature positively affect the residential
BCEs, whereas nighttime light and enhanced vegetation index negatively affect residential
BCEs. On the one hand, they have been affected by reduced emissions from residential
buildings since 2015. On the other hand, due to a lower population density and social and
economic activities, areas with a higher degree of vegetation consume relatively less energy.

Although the significant effect of vegetation cover on surface temperature and urban
heat island which affecting buildings’ energy consumption indirectly are proposed from
previous studies [38,39], the regression results of EVI did not show a significant impact
on BCEs, especially in BTH urban agglomeration. We make a liner regression between
EVI and BCEs (Figure A1). It can be found that results in BTH does not show significant
correlation with BCEs but results in NCRJ show a relatively clear downtrend with EVI
increasing, which is basically consistent with MLR models. In general, the results improved
compared with the BCEs and NTL models (Tables A2 and A3). To further explain the
fitting results of study areas, we compared the prefecture-level estimation results with
prefecture-level statistical BCEs. Figures A2 and A3 show the comparison between the BTH
and NCRJ, respectively. Figure A2a,c are the fitting results between estimation results using
MLR and statistical results, showing almost consistent explanations for the estimations
of public and residential BCEs with R2, which are 0.76 and 0.82, respectively. Compared
with the fitting results between estimation results using nighttime light data and statistical
results (Figure A2b,d), estimation results using MLR are approaching the statistical results.
Fitting results between prefecture-level estimation results and statistical results in the NCRJ
also show consistency with Table 2, indicating the high explanation of statistical results
to estimation results of public and residential BCEs with R2, which are 0.97 and 0.99,
respectively (Figure A3). Table 4 lists the models for downscaling prefectures’ BCEP and
BCER to a grid scale in the BTH and NCRJ based on Equations (6) and (7).
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Table 4. Models for downscaling BCEs in the BTH and NCRJ.

Variables BTH NCRJ

Public BCE BCEP = 12.076 ∗ POP + 9.464 ∗ PLU + 0.081 ∗ ST + 0.052 ∗WT BCEP = −1.346 ∗ NTL + 1.893 ∗ POP− 0.538 ∗ PLU + 1.655 ∗ ST
Residential BCE BCER = 0.094 ∗ NTL + 8.74 ∗ POP BCER = −0.439 ∗ NTL + 1.189 ∗ POP− 0.332 ∗ EVI + 0.604 ∗ ST

3.1.2. The Validity of Multi-Scale Estimation Results

Based on the regression results in Table 2, BCEs with a 1 km resolution can be calculated
using effective factors of remote sensing data. To verify the results, the estimation results at
the prefecture and county (municipality) levels in 2000, 2005, 2010, 2015, and 2019 were
compared to emissions from the building sector provided by the Emissions Database for
Global Atmospheric Research (EDGAR). EDGAR is a global database of the total CO2
emissions and sector CO2 emissions at an approximately 10 km ∗ 10 km resolution. The
building sector’s CO2 emissions from EDGAR focus on emissions caused by the combustion
of fossil fuel at a country level, and the spatial proxies of it are fishing, the rural population,
and urban population [69]. Although the accuracy of grid emissions from EDGAR’s
building sector is affected by the population [70], it largely reflects the activity intensity of
the building sector and, is appropriate for comparison with the estimated results in this
study since the population is an important parameter in downscaling BCEs.

The fitting results at the prefecture level in the BTH showed that R2 and RMSE
were 0.81 and 11.91 million tons, respectively (Figure 3a). The R2 and RMSE between
estimation and EDGAR at the prefecture level in the NCRJ were 0.85 and 12.11 million
tons, respectively, which were higher in the BTH (Figure 3c). Counties in the BTH and
municipalities more than 100 square kilometers in the NCRJ were selected to verify the
estimation results of BCEs at a finer scale. We found that the R2 of county-level BCEs
and EDGAR in the BTH urban agglomeration was 0.67, lower than that of the prefecture
level, and the RMSE was about 0.95 million tons (Figure 3b). According to the fitting
results, the R2 and RMSE of the municipality level in the NCRJ were higher at 0.92 and
1.78 million tons, respectively (Figure 3d). The fitting results at different scales indicated
that this study’s estimation results of BCEs are highly consistent with the scale trend in
emissions from the building sector of the known database, among which the fitting effect
of the NCRJ is better at a multi-scale. However, considering RMSE, the RMSE of the BTH
urban agglomeration is lower.
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Since the existing grid-scale BCE dataset with a 1 km resolution is limited, the grid-
scale emissions of this study are resampled to a 10 km resolution to compare with EDGAR’s
building sector (Figure A4a,c). Existing studies use other data related to building to verify
their estimation results. Therefore, we compared grid-scale BCEs in 2019 with the grid-scale
building volume in 2020, which is calculated using the building height in 2018 and built-up
surface area in 2020 provided by the GHSL (Figure A4b,d). Although EDGAR’s building
sector and building volume both show a linear correlation with the grid-scale estimation
value of the BTH, the explanation for the fitting results is relatively lower compared with
that at the prefecture and county levels, indicating the limitation of grid-scale estimation
results in this study to a certain extent. Similarly, grid-scale fitting results in the NCRJ also
show a significant linear correlation with EDGAR’s sector and building volume. However,
the fitting results show a higher correlation between BCEs and EDGAR’s building sector,
the R2 of which is 0.86. In general, grid-scale estimation BCEs of this study have a relatively
higher correlation with relevant building sector data, but the results of girds with similar
volumes need to be further refined.

3.2. Spatial–Temporal Patterns of Multi-Scale BCEs
3.2.1. Total BCEs of the BTH and NCRJ

The BTH and NCRJ’s BCEs increased continuously from 2000 to 2015 and decreased from
2015 to 2019. The BTH’s BCEs increased from 76.07 million tons in 2000 to 158.57 million tons
in 2019, peaking at 165.04 million tons in 2015. The average annual growth exceeds 4 million
tons. The NCRJ’s total BCEs increased from 88.02 million tons in 2000 to 123.71 million
tons in 2015, and then decreased to 109.93 million tons in 2019 (Figure 4a). With rapid
economic development, the BTH’s BCEP increased rapidly from 25.9 million tons in 2000
to 73.5 million tons in 2015 and has remained above 60 million tons since 2010. Although
the NCRJ’s BCEP also maintains a fluctuating upward trend, the overall growth scale and
speed are lower than that of the BTH and show a significant downward trend from 2015
to 2019 (Figure 4b). Since the total population and built-up land of the BTH are higher
than those of the NCRJ, the BTH’s BCER is higher than the NCRJ’s BCER and increased
rapidly since 2005 from nearly 50.17 million tons to 91.56 million tons. The growth speed of
the NCRJ’s BCER is slower, which increased from 35.73 million tons to 50.91 million tons
and then dropped to 46.42 million tons in 2019 (Figure 4c). In general, the BTH’s BCEs
maintained a trend of rapid and large-scale growth since 2000, while the NCRJ’s BCEs
showed a fluctuant and small growth trend.
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3.2.2. Prefecture-Level BCEs

There are significant differences in scale and changes between prefecture cities in
the BTH (Figure 5). Although Beijing’s BCEs are the highest in the BTH compared with
other prefectural cities, Beijing is the first city in the region to show a downward trend
between 2015 and 2019. The BCEs in Beijing increased from 21.57 million tons in 2000 to
58.85 million tons in 2015, and fell to 44.14 million tons in 2019. Other prefecture cities in
the BTH maintained a trend of growth in BCEs from 2000 to 2019. Tianjin, Shijiazhuang,
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Tangshan, Baoding, and Handan showed relatively high growth in BCEs. Tianjin’s BCEs
increased from 13.69 million tons in 2000 to 26.36 million tons in 2019. Shijiazhuang,
Tangshan, Baoding, and Handan’s BCEs exceeded 10 million tons in 2019, about twice
the emissions in 2000. Cangzhou, Xingtai, Langfang, and Zhangjiakou’s BCEs exceeded
5 million tons in 2019. Hengshui, Qinhuangdao, and Chengde’s BCEs exceeded 3.5 million
tons in 2019. Overall, the decrease in the BTH’s BCEs in 2019 is mainly attributed to the
decrease in Beijing’s BCEs, while emissions of the other 12 prefecture cities in the region
maintained a growth trend and most prefecture cities experienced their highest increase in
emissions from 2010 to 2015.

Remote Sens. 2023, 15, x FOR PEER REVIEW  13  of  33 
 

 

 

Figure 5. BCEs of prefectures in the BTH urban agglomeration. 

The emissions of all prefectures in the NCRJ showed significant downward trends 

during the study period, which is different from the increased trend in the BTH (Figure 

6). Tokyo’s BCEs reached 48 million tons in 2015 and then dropped to 43.56 million tons 

in 2019. Kanagawa, Saitama, and Chiba’s BCEs maintained more than 10 million tons from 

2000 to 2019, and Kanagawa’s BCEs exceeded 20 million tons from 2015. However, Ibaraki, 

Tochigi, Gunma, and Yamanashi’s BCEs were relatively lower since they are further away 

from Tokyo. The first decline appears between 2005 and 2010, shown as a slight decreasing 

trend. A significant decline in BECs between 2015 and 2019 shows that Tokyo and Saitama 

Prefecture’s BECs decreased by 4.45 and 3.27 million tons in 2019, respectively. The de-

creases in Kanagawa, Chiba, and Ibaraki prefectures’ BCEs exceeded 1 million tons. On 

the whole,  the change  trend of prefectures  in  the NCRJ  is consistent, and a significant 

emission reduction has occurred in recent years. 

 

Figure 6. BCEs of prefectures in the NCRJ. 

Figure 5. BCEs of prefectures in the BTH urban agglomeration.

The emissions of all prefectures in the NCRJ showed significant downward trends
during the study period, which is different from the increased trend in the BTH (Figure 6).
Tokyo’s BCEs reached 48 million tons in 2015 and then dropped to 43.56 million tons
in 2019. Kanagawa, Saitama, and Chiba’s BCEs maintained more than 10 million tons
from 2000 to 2019, and Kanagawa’s BCEs exceeded 20 million tons from 2015. However,
Ibaraki, Tochigi, Gunma, and Yamanashi’s BCEs were relatively lower since they are further
away from Tokyo. The first decline appears between 2005 and 2010, shown as a slight
decreasing trend. A significant decline in BECs between 2015 and 2019 shows that Tokyo
and Saitama Prefecture’s BECs decreased by 4.45 and 3.27 million tons in 2019, respectively.
The decreases in Kanagawa, Chiba, and Ibaraki prefectures’ BCEs exceeded 1 million tons.
On the whole, the change trend of prefectures in the NCRJ is consistent, and a significant
emission reduction has occurred in recent years.
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3.2.3. County-Level BCEs in the BTH and Municipality-Level BCEs in the NCRJ

According to the Lorentz curve of county-level emissions of the BTH, the curves
deviate from the mean line, showing significant scale differences in BCEs between counties
in the BTH (Figure 7a). The degree of curve deviating from the mean line increases
continuously from 2000 to 2010, indicating that scale differences between counties’ BCEs
increase due to high-emission counties’ growth rate being faster than middle- and low-
emission counties. However, with the acceleration of the growth of middle- and low-
emission counties’ BCEs, the differences in the BCE scale between counties are reduced
and the curves of 2015 and 2019 are relatively approaching the mean line. Similarly, 10% of
counties’ BCEs accounted for 50% of the total BCEs in 2010, and this proportion increased
to 17% in 2019.
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the NCRJ.

The Lorentz curves of municipalities’ BCEs in the NCRJ also deviate far from the
mean line, but the multi-year curves almost overlap, which means that there are significant
differences in the scale between municipalities’ BCEs but the differences remain stable
and show barely interannual changes (Figure 7b). Since the municipalities’ BCEs maintain
similar growth and decline rates, the proportion of high-emission municipalities accounting
for 50% of the total BCEs was about 15.8% from 2000 to 2019.

From the perspective of spatial patterns, there are significant interannual changes
in BCEs at the county level within the BTH (Figure 8). The BCE of most counties ex-
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ceeded 200,000 tons in 2000. Chaoyang, Haidian, Fengtai, Changping, Shunyi, Tongzhou,
Daxing, and Fangshan in Beijing and Dongli, Beichen, Xiqing, and Binhai New District
in Tianjin’s BCEs exceeded 1 million tons, forming a significant high-emission cluster.
With the emissions of the BTH increasing rapidly between 2005 and 2010, the number of
counties generating more than 1 million tons in Beijing and Tianjin increased significantly.
In addition, counties’ BCEs in Tangshan, Shijiazhuang, and Handan also continued to
increase. For example, the BEC of Fengrun and Qianan in Tangshan, and Wuan in Handan
exceeded 1 million tons. The number of counties with BECs over 200,000 tons in Chengde
and Langfang also increased. The BEC of most counties in the BTH still maintained a
significant growth trend from 2010 to 2015, and the main patterns include the concentration
of high-emission counties in Beijing and Tianjin, the distribution of counties with emissions
higher than 1 million tons in Shijiazhuang and Baoding, and the increase in the number of
counties with emissions exceeding 500,000 tons in Shijiazhuang, Baoding, Cangzhou, and
Handan. Compared with the previous period, the number of counties with high emissions
increased in Tianjin, Shijiazhuang, and Tangshan in 2019. In general, counties’ BCEs in the
BTH observably increased from 2000 to 2019. Due to the rapid speed of development with
a relatively large population size and dense buildings, the change in BECs of counties sur-
rounding core areas in Beijing, Tianjin, Shijiazhuang, and Tangshan exceeded 500,000 tons.
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Municipalities’ BCEs in the NCRJ are more stable and vary within a smaller range
(Figure 9). Most municipalities’ BCEs reached 100,000 tons, and the emissions of most
municipalities in Tokyo, Kanagawa, Saitama, and Chiba prefectures exceeded 200,000 tons.
Most of the high-emission municipalities with emissions above 1 million tons are concen-
trated in Tokyo including Hachioji, Machida, Shinjuku, Koto, Ota, Setagaya, and other
areas located on the fringes of the special ward. The changes in most municipalities’ BCEs
in the NCRJ were less than 50,000 tons, but the changes in BECs of parts of municipalities
in Ibaraki, Saitama, and Chiba were between 50,000 tons and 100,000 tons. Changes in
municipalities’ BCEs in Tokyo, Kanagawa, and southern Chiba exceeded 100,000 tons.
Areas with changes exceeding 300,000 tons mainly included Hachioji, Machida, and the
fringes of the Tokyo special wards, which are consistent with the high-emission areas.
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3.2.4. Spatial Pattern of and Change in BCEs at the Grid Scale

High-emission grids are mainly concentrated in core areas of cities in the BTH, and the
number of grids with emissions exceeding 30,000 tons per km2 continued to grow during
the study period. The high-emission grid spreads to the periphery of core areas (Figure A5).
The grids with more than 30,000 tons in the NCRJ are mainly concentrated in the special
wards of Tokyo. The grids with emissions between 10,000 tons and 30,000 tons are mainly
found in the midland of Tokyo and eastern Kanagawa. In general, the high-emission areas
in the NCRJ are more concentrated and the highest emissions at the grid scale are lower
than those of the BTH (Figure A6).

Except for the mountainous areas in the northwest of the BTH, most areas show
positive growth in BCEs compared with 2000 (Figure 10a). The grids with more than
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3000 tons of BCEs are concentrated in the urban areas of Beijing, Tianjin, and Shijiazhuang.
The high-emission growth in Beijing forms a continuous distribution pattern with a large
area and much of those show changes in emissions exceeding 10,000 tons. The growth
in BCEs in other cities is mostly scattered across urban areas or the surrounding towns.
The position of the prefectural government provided by RESD and MLIT is defined as
the urban center of prefecture-level areas, and buffer statistics for each 10 km range are
conducted based on the center to analyze the growth of BCEs with the distance range
(Figure 10b,d). The BCEs’ total growth in Beijing, Tianjin, and Shijiazhuang within 60 km
was 21.03, 10.77, and 6.98 million tons, respectively. The BCEs’ growth within 30 km in
most cities accounted for 50% or more of BCEs’ total growth in the city. For the cities with
relatively high economic development represented by Beijing, Tianjin, Shijiazhuang, and
Tangshan, since the development of urban areas and surrounding suburbs are relatively
parallel, there are not very large differences in BCEs’ growth within 0–10 km, 10–20 km,
and 20–30 km of the city; for instance, the BCEs’ growth within 0–10 km, 10–20 km, and
20–30 km in Tianjin is 1.8 million tons, 1.96 million tons, and 2.09 million tons, respectively.
Due to the development of towns around the urban areas in Baoding, Handan, Cangzhou,
and Langfang, the growth outside the 20 km range accounts for a higher proportion of the
total growth.
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Figure 10. Change in BCEs at a grid scale and the statistics by distance.(a,c) show changes in BCEs
between 2000 and 2019 at grid scale; (b,d) count the total changes in BCEs within a certain distance in
BTH and NCRJ, respectively.

The grids with a BCE growth exceeding 7000 tons in the NCRJ are mainly situated in
Tokyo, and grids in most special wards around Chiyoda increased by more than 10,000 tons
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(Figure 10c). Besides the grids in eastern Kanagawa showing an increase in BCEs between
3000 and 7000 tons, the growth of other grids’ BCEs was mostly less than 3000 tons across the
study period. A significant difference in BCE change between Tokyo and other prefectures
was caused by larger changes in the BCEs and downscaling factors of Tokyo. Tokyo shows
relatively intensive regional development and sustained population attraction compared
with other prefectures. In summary, the obvious changes are more concentrated in Tokyo
and Kanagawa. Comparing the growth of BCEs within the corresponding distance, it is
found that the growth of BCEs within 10–20 km in most prefectures accounts for the highest
proportion of total BCE growth due to the larger area and similar scales of population, built
environment, and economic activity with core areas (Figure 10d).

3.3. Decomposition of Influencing Factors for BCE Growth
3.3.1. Characteristics of BCE Growth

By comparing the growth rates of BCEs at different scales between the BTH and
NCRJ, we found that the growth rates of BCEs in the BTH were higher than those in the
NCRJ. The growth rate of BCEs in all BTH cities was >0.6 from 2000 to 2019, among which
Langfang had the highest rate at 1.47, followed by Cangzhou with 1.43. Zhangjiakou
and Qinhuangdao City had lower growth rates of 0.71 and 0.76, respectively, and the
BCE growth rates in other cities were >0.9 (Figure 11a). By contrast, the BCE growth
rates in the NCRJ prefectures were <0.4, and the differences between prefectures were
minor, particularly in Chiba, Tokyo, Kanagawa, and Ibaraki, which were relatively high
at >0.2 (Figure 11c). The average growth rates of all counties, urban areas, and other
BTH counties were 1.21, 1.03, and 1.34, respectively (Figure 11b), which were higher than
the municipalities (0.32), urban areas (0.23), and other municipalities (0.33) in the NCRJ
(Figure 11d). In addition, the growth rates in 50% of the BTH counties ranged from 0.8 to
1.4, whereas the growth rates of 50% of municipalities in the NCRJ ranged from 0.12 to 0.35.
Urban areas and other counties in the BTH had higher growth rates than urban areas and
other municipalities in the NCRJ. However, the growth rates of BCEs in urban areas were
relatively low, indicating that suburban development and population growth accelerated
the growth of BCEs around urban areas. This feature was more significant due to the rapid
urbanization of the BTH during the study period.

3.3.2. Decomposition of Influencing Factors at a Multi-Scale

From the perspective of prefecture-level growth in socioeconomic activities, the growth
of the tertiary industry is significantly higher than the energy consumption, built-up land,
and population, indicating the strong driving effect of consumption. Except for Beijing,
the built-up land growth is higher than the population growth in other prefectures, which
is an important driving factor following the tertiary industry. It is worth noting that the
population in most prefectures has barely increased, which indicates potential land spread
and inefficient use (Figure A7a). Based on the decomposition of influencing factors on
BCE growth in the BTH, the growth of GDP per capita and built-up land significantly and
positively contribute to the growth of BCEs, among which the contribution rate of GDP per
capita is above 2.5, which is higher than the growth of built-up land (Figure 12a). These
findings are consistent with urban growth and also indicate that economic development
and urban expansion significantly increase building operations’ energy consumption and
carbon emissions. By contrast, the population density, energy intensity, and emission
intensity negatively contribute to the growth of BCEs. Reducing the energy intensity
involves improving energy efficiency and technology and reducing the energy required per
unit of economic output. Due to a nearly 80% decline in energy intensity between 2000 and
2019, BTH cities demonstrate the greatest negative contribution to BCEs, below −1.5. At
the same time, decreased emissions per GJ and population per 1 km2 of built-up land also
negatively impacted changes in BCEs.
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tively; (b,d) show the growth rate of all counties (municipalities), urban districts, and other counties
(municipalities) in BTH and NCRJ, respectively.
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Prefecture-level growth in the energy consumption, tertiary industry, built-up land,
and population in the NCRJ show patterns with significantly lower growth rates compared
with the BTH. Built-up land is the major growth factor in prefectures during the stable
development stage of the NCRJ. Meanwhile, except for the positive growth of the tertiary
structure and population in Tokyo and Kanagawa, the growth of the population and
economy in other prefectures is rare or even negative (Figure A7b). Decomposition results
of factors influencing the growth of BCEs also show a consistent effect with urban growth.
Compared to the BTH, the NCRJ’s positive and negative contribution rates have a lower
absolute value due to the stable economic development, population, and urban scale of its
prefectures (Figure 12b). The population density and energy intensity contribute negatively
to changes in the BCEs of prefectures. In particular, the negative impact of the reduction
in population density is noticeable, which is caused by population outflow and low birth
rates. The increase in built-up land positively contributes to the growth of BCEs, which
is higher than the GDP per capita and emission intensity in most prefectures. Similarly,
existing studies also revealed the positive effect of urban land expansion on BCEs due to
tertiary development [71].

County-level factors also show high growth in the tertiary industry and built-up
land. The tertiary industry’s growth in most counties is above 10. Counties with high
growth in built-up land are concentrated around core urban areas. Combined with the
tertiary industry and population growth, it can be inferred that urban areas and suburban
areas have experienced rapid development (Figure A8). The decomposition results of
influencing factors at the county and municipality levels are divided into urban and other
areas. For the county results in the BTH, the GDP per capita and built-up land expansion
positively contribute to urban and suburban areas in the BTH. Conversely, the population
density, energy intensity, and emission intensity are the main negative contributing factors
(Figure 13a,b). In suburbs, however, the average contribution rates of GDP per capita and
built-up land expansion are 3.81 and 2.92, respectively (Figure 13b), which are higher than
core urban areas with 3.17 and 1.46 (Figure 13a). Similarly, the population density and
energy intensity have a greater negative impact in the suburbs than in urban areas.
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Municipality-level growth in energy consumption, tertiary industry, built-up land,
and population are lower than in the BTH. Municipalities in Tokyo and Kanagawa show
relatively rapid growth in the tertiary industry and population and weak growth in built-up
land, indicating the activity intensity per unit area increased in core urban areas of the
NCRJ (Figure A9). The decomposition results show that the contribution rates ranged from
−0.435 to 0.84, and the variation range was significantly smaller than that of the BTH’s
urban areas (Figure 13c). According to the decomposition results for influencing factors, the
reduced energy required for economic output was the main negative contributing factor.
Due to their close geographical location and the high and relatively stable development
of Tokyo’s special wards, Yokohama and Kawasaki, the absolute value of positive and
negative contribution rates of the municipalities were generally lower than those in Saitama,
Chiba, and Sagamihara. In addition, the population density negatively impacted munici-
palities in Saitama, Chiba, and Sagamihara. The population density was the main negative
contribution factor for other municipalities outside the main urban areas (Figure 13d).
By contrast, the GDP per capita, energy intensity, emission intensity, and built-up land
expansion positively contributed to most municipalities’ BCEs. The effect of built-up land
expansion was also relatively high. Our results revealed that most municipalities have
been facing a decline in population density due to low birth rates or population outflows.
Under stable economic growth, land development and utilization have become the main
source of BCE growth. However, for core areas in Tokyo and Kanagawa, the population
inflow positively contributed to the population density of BCEs.

4. Discussion

The main contributions of this study could be summarized as three points. First, the
study aims to mapping long-term BCEs combined remote sensing dataset and statistical
energy consumption of building sector. Then, we explored the validity and improvement
of MLR models compared with results obtained by nighttime light data along. Third,
the mapping and analysis of BCEs are applied in BTH and NCRJ, which provides the
differences in models’ validity and multi-scale BCEs between two regions. The discussion
part mainly evaluates estimation results, effect of urban growth on BCEs, and limitations of
this study.

4.1. Evaluation of Method for Estimating BCEs

This study explored the effectiveness of multi-dimensional remote sensing data in
estimating emissions from building operations in the BTH and NCRJ. Multi-scale BCEs
showed high consistency with existing databases in terms of the scale trend. However,
similar trends do not mean fewer differences in specific emission scales. Figure A4 shows
the differences between estimation results and statistical results of public and residential
BCEs in the BTH and NCRJ. It can be found that the estimation results of the high-emission
prefectures are similar to the statistical results, but there is an overestimation of the prefec-
tures with emissions below 10 million tons (Figure A10a–c). However, differences between
the estimated residential BCEs and statistical residential BCEs in the NCRJ are significantly
smaller (Figure A10d), which is consistent with the small RMSE in Figure A3b. Although
there are differences in the emission scale between estimation results and statistical results,
the results after correction using statistical results are practicable because of a similar trend
between them.

Although existing studies have confirmed the effectiveness of nighttime light data
in estimating greenhouse gas emissions at different scales [64,72,73], the MLR model’s
accuracy was improved by adding other factors. Moreover, factors related to sector activ-
ities should be considered when estimating sectors’ CO2 emissions based on nighttime
light data [26]. However, the effect of vegetation index on BCEs was not significant as
expected. On the one hand, the results indicate the effect of EVI on BCEs is different
among regions. On the other hand, the limited samples could not explain the appropriate
relationship between vegetation and BCEs. For the improvement approaches, existing
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studies made regressions by groups which were divided by climate zones, natural condi-
tions, and economic conditions [22,61]. Moreover, the data of vegetation dynamics could
be considered using alternative dataset, such as gross primary production (GPP) and net
primary production (NPP). GPP and NPP are defined as the energy captured per unit
area per unit time through the process of vegetation photosynthesis and the energy after
subtracting plant respiratory costs from GPP, respectively [74]. Both of them are important
parameters for carbon cycle since the consideration of the production of biomass or carbon
in ecosystem [74–76] and existing studies have explored the performances of vegetation
indices in estimating GPP and NPP [77–79]. In addition, previous studies also combined the
NPP and economic factors to calculate carbon footprint pressure and analyze the driving
factors of carbon intensity [80–82]. From the direct relationship with vegetation cover, GPP
and NPP are alternative to be used to analyze the influencing factors of BCEs.

Given the limitation of seasonal statistical data on the energy consumption of buildings,
the estimations of BCEs at a multi-scale in this study are calculated by year. However,
emissions from central heating account for a high proportion of prefecture-level BCEs in
the BTH, indicating the high demand of energy in summer and winter (Figure A11). In
addition, the differences in proportion between prefectures revealed the different patterns
of heating supply between areas with large-scale urban populations and areas with large-
scale rural populations. Therefore, analysis by seasons and urban–rural regions is essential
for collecting finer statistical data and remote sensing data.

4.2. Implications of Urban Growth and Changes in BCE

The growth rate of BCEs at a multi-scale level in the NCRJ was relatively low despite
its high-level and stable development. The differences in BCE growth rate between pre-
fectures were also minor. Therefore, the prefectures within the NCRJ showed the same
trend in BCEs during the study period and began to decline after 2015. By contrast, the
overall growth rate of the BTH was relatively high. Due to rapid development and greater
differences within the BTH urban agglomeration, the trend in BCEs was inconsistent in
prefectures. For instance, Beijing showed a decline in BCEs after 2015, whereas the BCEs of
most cities in Hebei Province continued to grow. From the perspective of urban growth,
prefecture populations in the BTH urban agglomeration have increased significantly, with
the growth rate exceeding 10%, namely in Tianjin (59%) and Beijing (68%). By contrast,
Tokyo, Kanagawa, Saitama, and Chiba showed positive population growth, whereas other
prefectures within the region had a negative growth rate during the study period. In terms
of urban expansion, although the growth rates of built-up land in the BTH and NCRJ were
higher than the population growth rate, the growth rates of built-up land in Beijing, Tianjin,
Shijiazhuang, Tokyo, and Kanagawa were relatively low. They showed fewer differences
than the population growth rate. However, the growth rates of built-up land in other
prefectures were much higher than the population growth rate.

We found that population growth and built-up land expansion were important drivers
for BCE growth during the rapid development stage. However, the positive effects of
population growth and built-up land decreased during the stable development stage. The
positive effect of built-up land expansion was higher than the population growth, according
to the NCRJ’s results. For developed regions, the increase in emission intensity per unit
area is the driving force behind BCE growth under the net population growth and urban
sprawl control during the stable development stage [54]. These findings are similar to those
of higher energy consumption and emissions per capita caused by low-density suburban
development, higher energy consumption, and emissions per square meter in high-density
core areas [83,84]. Urban growth impacts on BCEs are related to population increase,
economic structure, and urban expansion [43]. The green innovation of commercial and
public buildings for economic development is stressed along with the positive contribution
of GDP per capita [85,86]. The positive contribution of urban expansion to BCEs also
encourages compact urban planning and the rational allocation of land resources to support
development demand [87]. Considering economic growth, reducing energy intensity
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negatively affected BCE growth in the BTH and NCRJ, underlining the need to optimize
the industrial structure and improve the proportion of clean energy [88].

4.3. Limitations

As proposed in previous studies, the remote sensing data used for downscaling mainly
included factors that impact BCEs. However, data directly related to buildings were not
considered in the regression model due to data availability. We used prefecture-level
nighttime light data as one factor to estimate the BCEs. This is a useful metric because
nighttime light data not only reflects the intensity of public and residential buildings’
activities but also includes light from roads and vehicles. Therefore, the grid-scale emissions
in the BTH may be slightly underestimated. To improve the results using nighttime light
data, distinguishing urban and rural areas before estimating and processing nighttime
light data to remove the light that is not included in the estimation scope is recommended.
In addition, there was no comparison between the results of the MLR model used in this
study and the machine learning or Cubist model used in previous studies. Due to the focus
on socioeconomic factors in the analysis of BCE growth, the impact of natural factors was
not included. Moreover, specific energy consumption comparisons and the policy-making
influence were not considered in the analysis of socioeconomic factors.

5. Conclusions

This study focused on the downscaling of BCEs using integrating multi-source remote
sensing data and the influence factors of BCE growth. The BTH urban agglomeration and
the NCRJ were selected as the study areas. The prefecture-level BCEs in 2000, 2005, 2010,
2015, and 2019 were calculated using statistical data. The MLR model was constructed
between prefecture-level BCEs and remote sensing data including the nighttime light,
population, temperature, enhanced vegetation index, and built-up land to downscale BCEs
to grid scale on a 1 km resolution in the BTH and NCRJ. Compared with the downscal-
ing method using nighttime light data alone, adding other factors effectively improved
the downscaling results. The R2 (coefficient of determination) of fitting results between
prefecture-level BCEs and EDGAR in the BTH and NCRJ are both above 0.8. The R2 of
county-level fitting results in the BTH and municipality-level fitting results in the NCRJ
are 0.67 and 0.92, respectively. In general, the multi-scale estimation results in this study
presented relatively high accuracy.

The BCEs of the BTH urban agglomeration increased from 76.07 million tons to
158.57 million tons from 2000 to 2019. The increases in BCEs at the prefecture, county, and
grid levels are obvious. The emission scale of Beijing was the highest in the region and
showed a downward trend between 2015 and 2019. Other cities in the BTH maintained an
increasing trend during the study period. From the perspective of the spatial distribution,
high-emission areas were concentrated in Beijing, Tianjin, and Tangshan. The total BCEs
of the NCRJ increased slowly and dropped from a peak of 123.71 million tons in 2015 to
109.93 million tons in 2019. The BCEs at the prefecture level, municipality level, and grid
level showed a significant downward trend between 2015 and 2019. The most high-emission
areas were concentrated in Tokyo.

An LMDI model was used to decompose the influencing factors of BCE growth. It was
found that the decrease in energy intensity and population density are the main negative
factors, and the growth of GDP per capita and urban expansion significantly promote the
growth rate of BCEs. Due to the rapid development of the BTH urban agglomeration, the
intensity of positive or negative effects of influencing factors is higher than that of the NCRJ.
This study attempted to verify the feasibility and accuracy of downscaling BCEs using
multi-source remote sensing data in different regions. Based on the multi-scale emission
analysis and the decomposition of influencing factors in study areas, the regional emission
characteristics in different development stages are highlighted to provide a reference for
the rapidly developing BTH urban agglomeration from the perspective of urban growth.
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Appendix A

Table A1. Corresponding indicators for downscaling the BCE to prefecture level in Hebei province.

BTH

Commercial and retails Total retail sales of consumer goods
Residential Electricity consumption for residential

Other Gross domestic product of tertiary industry

Transport Passenger traffic/Freight traffic/Number of public transportation
vehicles and taxis/

Heating Urban central heating

Table A2. Regression results between BCEP and NTL.

BTH NCRJ

NTL 0.366 *** −0.607
R-squared 0.475 0.039

*** p < 0.01.

Table A3. Regression results between BCER and NTL.

Title 1 Title 2 Title 3

NTL 0.250 *** −0.277
R-squared 0.676 0.012

*** p < 0.01.
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