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Abstract: This paper investigates the spatial and temporal variability of significant wave height
(Hs) and wind speed (U10) using altimeter data from the Australian Ocean Data Network (AODN)
and buoy data from the National Data Buoy Center (NDBC). The main goal is to evaluate spatial
and temporal criteria for collocating altimeter data to fixed-point positions and to provide practical
guidance on altimeter collocation in deep waters. The results show that a temporal criterion of 30 min
and a spatial criterion between 25 km and 50 km produce the best results for altimeter collocation, in
close agreement with buoy data. Applying a 25 km criterion leads to slightly better error metrics but
at the cost of fewer matchups, whereas using 50 km augments the resulting collocated dataset while
keeping the differences to buoy measurements very low. Furthermore, the study demonstrates that
using the single closest altimeter record to the buoy position leads to worse results compared to the
collocation method based on temporal and spatial averaging. The final validation of altimeter data
against buoy observations shows an RMSD of 0.21 m, scatter index of 0.09, and correlation coefficient
of 0.98 for Hs, confirming the optimal choice of temporal and spatial criteria employed and the high
quality of the calibrated AODN altimeter dataset.

Keywords: altimeter collocation; altimeter–buoy comparisons; ocean significant wave height; marine
surface winds

1. Introduction

Long-term observations of significant wave height (Hs) and 10 m wind speed (U10)
are crucial for several activities and studies, including extreme value analysis [1–3], climate
studies [4–8], the validation of hindcast data [9–11] and forecast products [10–14], data as-
similation [15–18], and the development of post-processing bias correction algorithms [19].
Satellite altimetry has emerged as one of the most valuable sources of reliable information
regarding Hs and U10, following the launch of GEOSAT in 1985 [20]. Since 2002 [21], a
large number of satellites and quality-controlled altimeter datasets with high accuracy
have become available [22–24], which now provide more than 20 years of observations
with great temporal and spatial coverage. Zieger et al. [25] described that altimeter satel-
lites (especially Ku-band) are capable of measuring Hs and U10 with accuracy similar
to metocean buoys. Additionally, compared to moored buoys, altimeters allow much
larger datasets with global domains instead of single-point positions, being important for
large-scale studies and the assessment and optimization of wave models.

Due to the polar orbit, satellites revisit a site once every 10 to 35 days with tracks
separated by 100 to 200 km [26], so whenever altimeter measurements are compared against
buoy data or model data at fixed grid points and regular time-steps, position and time
must be carefully analyzed. For instance, every location along the Jason-3 ground-track is
measured approximately every 9.9 days [27]. In this context, a maximum distance, both in
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time and space, centered at the buoy (or model grid point) position has to be considered for the
altimeter collocation process—defining criteria for spatial and temporal separation between
such observations. Next, two options are possible: (1) the single closest altimeter record to
the fixed buoy’s position is selected or (2) the average is calculated for along-track altimeter
records attending a space–time criteria. Zieger et al. [25] argues that the spatial average
provides a more statistically stable comparison than a single-point observation—which is the
approach chosen by most of the studies in the area, e.g., [4,7,13,19,20,23,25,28–36].

The aforementioned papers were based on the widely used criteria of altimeter tracks
within 50 km of the buoy and the overpass within 30 min of the buoy recording data.
Such values are well established and have been derived from the fundamental studies
of Monaldo [28] and Dobson et al. [20], who deeply analyzed time and space sampling
differences and the impact of the temporal and spatial proximity of altimeter tracks to buoy
observations. In 1988, Monaldo [28] found that 30 min time separation leads to expected
uncertainty of 0.3 m for Hs and 0.5 m/s for U10. Using the 50 km/30 min criteria, he found
that the accuracy of GEOSAT data compared against buoys was within 0.5 m for Hs and
between 1.8 and 2.0 m/s for U10.

Considering the very high accuracy of recent satellite data [23] as well as new hindcast
and forecast products recently released, it is important to reassess such criteria, including
buoys with longer durations and more satellite missions which are now available. This is
an important task to ensure the temporal and spatial variabilities associated with altimeter
collocation do not exceed the expected error of high-performance modeling products and
new satellite missions. Therefore, based on the recent demand described above, the present
paper uses long-term observations from buoys and altimeters to investigate time and space
sampling differences and to evaluate different criteria for altimeter collocation. The main
goal is to analyze the impact of several spatial and temporal criteria on the comparison of
altimeters with buoys while looking at the resulting number of matchups generated in the
process. The averaging method is also investigated, and a practical discussion is conducted
to support future studies involving altimeter collocation to fixed-point positions.

2. Materials and Methods

An important aspect of this type of study is to select reliable observations with long
durations and very few gaps to obtain robust and meaningful statistics. The temporal
analyses were based on buoy data, while satellite data were used for the spatial analyses,
followed by a final spatio-temporal discussion. This work is restricted to deep-water
observations far from the coast. The primary goal is to investigate Hs, but U10 is also
included due to its high correlation and direct impact on Hs. All the web links to access the
data used in this work are included at the end of this manuscript.

2.1. Buoy Data

Buoy data from the National Data Buoy Center [37] were selected because of the
center’s consistent data processing and quality control over the stations and due to the
large number of buoys with long durations. Following Ribal and Young [23], only buoys
more than 50 km offshore were used. It is impressive how some stations have been
measuring continuously since the 1970s and 1980s with minor gaps. A thorough inspection
of the buoy datasets with the longest duration, the smallest discontinuities, and stable
positions led to the selection of 11 NDBC buoys, shown in Figure 1. The proper continuity
of observations throughout the years without many periods of absent data is important for
the autocorrelation function and spectral analysis. The 11 buoys were distributed over four
clusters, illustrated with different colors in Figure 1. Table 1 presents the information on
each buoy. These stations gather a valuable dataset with more than 200 thousand records
(hourly data) per buoy, covering more than 30 years’ worth of observations.
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Figure 1. Position of the 11 NDBC metocean buoys selected. Different colors help to separate 
different clusters with different wave climates. The same color patterns will be used throughout 
this paper to identify the buoys’ locations. 

Table 1. Information on each NDBC buoy selected for the analyses. The distance to the nearest 
coast (Dcoast) and watch circle radius (WCR) are included. 
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41010 28.90 281.54 890 901 182 1.20 11/1988 242,828 
41002 31.76 285.16 3975 3993 353 3.66 11/1975 247,865 
42001 25.90 270.33 3194 3211 335 2.88 01/1976 301,003 
42003 26.01 274.35 3265 3279 315 3.05 07/1977 299,134 
46001 56.30 212.08 4054 4093 290 3.94 12/1974 300,617 
46002 42.61 229.51 3413 3442 486 3.30 09/1975 255,324 
46005 45.96 229.00 2852 2742 509 2.74 09/1976 253,326 
46006 40.78 222.60 4378 4370 1088 4.06 04/1977 212,907 
51001 24.42 197.90 4895 4912 152 4.63 02/1981 242,062 
51002 17.04 202.30 4948 5023 295 4.66 09/1984 238,635 
51004 17.60 207.61 4998 5077 330 4.93 11/1984 248,525 

In addition to the data cleaning and quality control implemented by NDBC, an ad-
ditional quality control was further applied, based on [37–39], to ensure the final 
time-series had reliable information on Hs and U10. All buoys selected were at least 150 
km from the nearest coast, with water depths above 800 m. The wind profile power law 
was applied to convert U10 from the anemometer height (usually between 3 to 5 m) to the 
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reference height 𝑧 . The constant 𝛼 is the friction coefficient, which is a function of the 
topography at a specific site—commonly assumed to be equal to 1/7. Instead of 0.14, Hsu 
et al. [41] suggest 0.10 is more appropriate for lakes and oceans, and Jung et al. [42] and 
DNV-RP-C205 [40] recommend 0.12 for open sea with waves—which has been applied in 
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from heave–pitch–roll wave buoys depend on the type of accelerometer, buoy size and 
hull, the mooring system, and the metocean conditions. Liu et al. [44] found average er-
rors from different types of buoys between 3.47% and 3.79% for Hs. Using Wavescan, 

Figure 1. Position of the 11 NDBC metocean buoys selected. Different colors help to separate different
clusters with different wave climates. The same color patterns will be used throughout this paper to
identify the buoys’ locations.

Table 1. Information on each NDBC buoy selected for the analyses. The distance to the nearest coast
(Dcoast) and watch circle radius (WCR) are included.

BuoyID Latitude Longitude DepthNDBC (m) DepthETOPO (m) Dcoast (Km) WCR (Km) Start Date N Records

41010 28.90 281.54 890 901 182 1.20 11/1988 242,828
41002 31.76 285.16 3975 3993 353 3.66 11/1975 247,865
42001 25.90 270.33 3194 3211 335 2.88 01/1976 301,003
42003 26.01 274.35 3265 3279 315 3.05 07/1977 299,134
46001 56.30 212.08 4054 4093 290 3.94 12/1974 300,617
46002 42.61 229.51 3413 3442 486 3.30 09/1975 255,324
46005 45.96 229.00 2852 2742 509 2.74 09/1976 253,326
46006 40.78 222.60 4378 4370 1088 4.06 04/1977 212,907
51001 24.42 197.90 4895 4912 152 4.63 02/1981 242,062
51002 17.04 202.30 4948 5023 295 4.66 09/1984 238,635
51004 17.60 207.61 4998 5077 330 4.93 11/1984 248,525

In addition to the data cleaning and quality control implemented by NDBC, an addi-
tional quality control was further applied, based on [37–39], to ensure the final time-series
had reliable information on Hs and U10. All buoys selected were at least 150 km from the
nearest coast, with water depths above 800 m. The wind profile power law was applied
to convert U10 from the anemometer height (usually between 3 to 5 m) to the 10 m level,
following Equation (1) [40].

u
ur

=

(
z
zr

)α

(1)

where u is the wind speed (m/s) at height z (m), and ur is the known wind speed at
reference height zr. The constant α is the friction coefficient, which is a function of the
topography at a specific site—commonly assumed to be equal to 1/7. Instead of 0.14, Hsu
et al. [41] suggest 0.10 is more appropriate for lakes and oceans, and Jung et al. [42] and
DNV-RP-C205 [40] recommend 0.12 for open sea with waves—which has been applied in
the present study.

The uncertainties and errors associated with buoy data of Hs and U10 have been
discussed by several authors (e.g., [43–49]). Bowler [43] describes that observation errors
from heave–pitch–roll wave buoys depend on the type of accelerometer, buoy size and hull,
the mooring system, and the metocean conditions. Liu et al. [44] found average errors from
different types of buoys between 3.47% and 3.79% for Hs. Using Wavescan, SeaWatch Mini
II, Directional Waverider, and TRIAXYS buoys, Lawrence et al. [45] pointed to accuracies
better than 2% and errors of less than 5 cm—confirming the very high accuracy of wave
buoys. This performance may be occasionally compromised under certain conditions
depending on the drag forces on the buoy, such as strong currents and breaking waves [46],
and when the buoy is heeled over for long periods of time [47]. Uncertainties in the
spectral analysis and computation of zero-order moment, which directly impacts Hs, are
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discussed by Donelan and Pierson [48]. Regarding the NDBC buoys and dataset selected,
the NDBC [38] provides the accuracies achieved during field comparisons, associated with
0.55 m/s for wind speed and 0.2 m for wave height.

2.2. Altimeter Data

The number of altimeter satellites have significantly increased in the last 30 years, as
shown by Zieger et al. [25] and Ribal and Young [23], allowing very important studies and
practical applications in different areas beyond pure remote sensing. Feng et al. [50], for
example, using TOPEX and WAVEWATCH III model results, found that higher spatial
resolution in the wind fields does not necessarily lead to improved agreement for the
higher-order wave statistics—which is a very common misconception widely spread within
the community. Young and Vinoth [51] used altimeter data to investigate the spatial
distribution of significant wave height within tropical cyclones.

Together with the data expansion, new technologies emerged with highly accurate
measurements combined with several assessment studies. Some of them, including the
intercomparison of multiple satellite missions and cross-calibration, are [21,23,25,52–57].
Sepulveda et al. [58] and Queffeulou and Croizé-Fillon [59] found that altimeter estimates
of Hs are in close agreement with buoys, with standard deviations of the order of 0.3 m.
Ribal and Young [23] provide a complete analysis of 13 altimeters covering 33 years of data,
evaluated against buoy data. Regarding Hs and U10, they found small differences, limited
to 0.5 m/s and 0.10 m, respectively.

The rapid increase in the number and quality of altimeter satellites creates great
opportunities for new studies, but it comes with the cost of managing several satellite
missions with different errors and calibration functions, plus dealing with large datasets
stored in different servers and formats. Fortunately, some initiatives have organized,
processed, and quality controlled different satellites, which has significantly helped the
community to take advantage of multiple missions and large datasets. GlobWave [22,60]
provided a great contribution on this subject. More recently, the Australian Ocean Data
Network of the Integrated Marine Observing System (AODN/IMOS) has produced a
unique satellite data portal, representing the first long-duration multimission altimeter
and scatterometer dataset consistently validated, quality controlled, and calibrated [23]. It
includes 13 satellites, namely: GEOSAT, ERS-1, TOPEX, ERS-2, GFO, JASON-1, ENVISAT,
JASON-2, CRYOSAT-2, HY-2A, SARAL, JASON-3, and SENTINEL-3A, and it was down-
loaded for this study. Data from the Ku-band and Ka-band (SARAL) were selected, ex-
cluding information from the C-band as its main function is to enable the correction of
ionospheric delays.

A description of AODN altimeter data, including the uncertainties, estimated errors,
and calibration, can be found in the work of Ribal and Young [23]. The entire dataset
consists of 114 Gb organized in netcdf format with the records binned into 1◦ by 1◦ files,
making it very convenient to process and combine with wave buoys. Information on
original Hs and U10 and calibrated Hs and U10 [23] are included, as well as the standard
deviations, number of altimetry backscatter coefficient measurements, and quality flags.
These additional parameters were used for a second layer of quality control. The AODN
database has been widely used, including in [7,8,11,14,35,61], among others.

2.3. Data Processing and Altimeter–Buoy Collocation

The data processing in this paper was partially inspired by the study of Monaldo [28].
The methodology was simple and designed to support future decisions on practical appli-
cations involving altimeter collocation. Firstly, the temporal analysis was based solely on
buoy data and was performed using autocorrelation functions, scatter plots of the original
time-series versus the lagged time-series, and statistical metrics to evaluate the increasing
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differences as a function of the temporal displacement. Four metrics were calculated for
the analysis:

Bias =
1
n

n

∑
i=1

(yi − xi) (2)

RMSE =

√
1
n

n

∑
i=1

(yi − xi)
2 (3)

SI = ∑n
i=1[(yi − y)− (xi − x)]2

∑n
i=1 xi

2 (4)

CC =
∑n

i=1(yi − y)(xi − x)√
∑n

i=1(yi − y)2 ∑n
i=1(xi − x)2

where the overbar represents the arithmetic mean, the scatter component is contained in
the SI (Equation (4)), and the systematic component of the error is isolated in the bias
(Equation (2)). The scatter index can be interpreted as a percentage difference (or error)
when multiplied by 100. Further explanations of these metrics can be found in [62–66].

The spatial analysis was conducted using AODN satellite data. Initially, the positions
of the buoys and satellite tracks were examined to select the altimeter records that were
within 200 km of the 11 buoys. Next, the indices of the satellite records that passed very
close to the buoys (less than 10 km) were saved, along with all corresponding records within
30 min of the hourly measurements defined by the buoy data with qualified Hs values.
Two types of comparisons were then calculated: (1) differences between each altimeter
measurement and the associated buoy measurement, and (2) differences between each
altimeter record and the closest altimeter record to the buoy’s position. In these two cases,
the RMS differences were computed as a function of the distance.

Later, using the same indexes that were previously selected, the spatial averaging
was tested using five different radii: 10, 25, 50, 100, and 200 km. The number of altimeter
records for each distance was saved, and the averages for distances between 25 and 200 km
were compared to the first average at 10 km and to the buoy measurements. The limit
of 10 km was selected as a reference based on Monaldo [28] and Hwang et al. [67], who
found that when spatial lags are less than 10 km, the RMS difference of Hs is very small,
approximately 0.1 m. The spatial averages considered a maximum time difference of
up to 30 min to the hourly data from the qualified Hs values. The computation was
performed using the Python package pyresample.kd_tree [68], which also allowed me to
investigate and compare three different methods of averaging: the arithmetic mean, the
inverse distance weighting (IDW) linear method, and the distance weighting calculated
with a Gaussian function.

3. Results
3.1. Temporal Analysis Using Buoy Data

The autocorrelation function is an excellent means of analyzing the impact of time
lags on correlation coefficients. Figure 2 displays the autocorrelation curves for each buoy,
examining time displacements up to 12 h. The rapid decay in correlation, particularly for
U10, suggests that the temporal criteria should be more stringent for U10 than for Hs. This
also indicates that metocean prediction is typically more challenging for U10 than for Hs,
as there is more short-term variation in wind speed than in wave height. Regarding Hs,
correlation values above 0.95 are observed within the first 3 h, whereas for U10, the same
value of 0.95 is reached within 1 h, confirming the widely used time resolution of output
files from numerical prediction systems, which is typically 1 h for wind speed and 3 h for
wave heights. In other words, providing hourly information for forecast users is crucial
when dealing with U10, while 3 h would suffice for Hs. Furthermore, correlations for Hs
drop below 0.90 only after 6 h, providing valuable information for the validation of wave
forecasts; i.e., if the 6 h forecast has a correlation coefficient lower than 0.90, then using the
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current wave observation as a 6 h forecast would provide better information (in terms of
correlation coefficient only).
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Figure 2. Autocorrelation as a function of time lags for U10 (A) and Hs (B). The 11 buoys are
presented, and the gray shading shows the average of all the buoy results.

In Figure 2, it is interesting to note the differences between the buoys. After a 3 h time
lag, the buoys in the Tropical Pacific Ocean (Hawaii) exhibit higher correlations compared
to the other stations, while the buoys in the Extra-tropical Pacific Ocean (northwestern
coasts of the USA), at higher latitudes, display lower values, particularly for U10. Moreover,
Figure 2 illustrates that the differences among buoys are larger for U10 than for Hs. At
a 12 h time lag, the average autocorrelation for U10 drops to 0.60, while for Hs, it is 0.82,
demonstrating how wave fields function as low-pass filters of the surface wind fields.

The increase in normalized root mean square differences as a function of the time lag
is depicted in Figure 3, which extends to 24 h. As a normalized metric, it can be interpreted
as a percentage measure of RMSD when multiplied by 100. Consistent with Figure 2, the
normalized RMSD shows a more rapid increase for U10 than for Hs, particularly in the
first 12 h. When comparing the buoys, the RMSD is lower for the Tropical Pacific Ocean
buoys, which aligns with the higher autocorrelations in Figure 2. On the other hand, for
Hs, the RMSD is higher in the Gulf of Mexico than the other clusters. In terms of values,
the two plots of Figure 3 illustrate a fast increase in RMS differences when displacing a few
hours, reaching an average of 20% of differences in 3 h for U10 and 7 h for Hs. For 1 h only,
it starts with 12% for U10 and 8% for Hs.

Figure 3. Normalized root mean square difference as a function of the time lags for U10 (A) and Hs (B).
The 11 buoys are presented, and the gray shading shows the average of all the buoy results.

Table 2 summarizes the discussion so far, presenting the RMSD, SI, and CC for time
lags ranging from 1 to 12 h. For the first hour (1 h time lag), the RMSD of Hs is already very
close to the accuracy of the wave buoy, which is equal to 0.2 m according to the NDBC [38],
and it is very similar to the RMSE of calibrated forecast products using WAVEWATCH III,
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which ranges from 0.2 to 0.5 m according to [36,69,70]. This is also valid for U10, where the
1 h time lag is even higher than the NDBC accuracy of 0.55 m/s.

Table 2. Root mean square difference (RMSD), scatter index (SI), and correlation coefficient (CC) as a
function of buoy time lag, ranging from 1 to 12 h. The bold center value represents the average result
for the 11 buoys, while the two numbers in parentheses indicate the minimum and maximum values
observed among the 11 buoys.

tlag (h) RMSD (m) SI 1 CC

Hs

1 0.18 (0.11,0.25) 0.077 (0.065,0.083) 0.982 (0.964,0.989)
2 0.22 (0.14,0.32) 0.097 (0.071,0.113) 0.974 (0.958,0.979)
3 0.27 (0.18,0.41) 0.118 (0.078,0.144) 0.963 (0.950,0.970)
6 0.40 (0.24,0.62) 0.175 (0.099,0.225) 0.920 (0.903,0.934)

12 0.59 (0.33,0.93) 0.261 (0.136,0.343) 0.825 (0.784,0.858)

tlag (h) RMSD (m/s) SI 1 CC

U10

1 1.02 (0.82,1.10) 0.138 (0.102,0.163) 0.938 (0.908,0.955)
2 1.29 (0.96,1.44) 0.175 (0.120,0.207) 0.902 (0.876,0.922)
3 1.51 (1.07,1.79) 0.204 (0.132,0.243) 0.868 (0.851,0.889)
6 2.02 (1.30,2.57) 0.271 (0.161,0.320) 0.769 (0.737,0.836)

12 2.63 (1.54,3.49) 0.353 (0.190,0.423) 0.613 (0.516,0.771)
1 Since bias is close to zero, the scatter index (SI) and the normalized RMSD converge to the same value.

The effect of time lag on the scatter error is also notable in Table 2, with values
exceeding 10% in 3 h for Hs and only 1 h for U10. The results of Figures 1 and 2 and
Table 2 are in agreement with Monaldo [28], who used one month of buoy observations
in November 1985. He found the RMSD reached 0.5 m with an approximate time lag of
4 h, while Table 2 shows a lag of 6 h on average—the variation among buoys must be
considered. The decay of CC values is 0.96 for a 3 h time lag for Hs and 0.87 for U10. This
significant impact of time displacement on the statistics indicates rapid changes in wind
and wave conditions in a short period of time.

In order to briefly explore the variations in Hs and U10 with time, Figures 4 and 5
were generated, including the variance spectrum [71] and time-series plots, to illustrate
some events. Figure 4 suggests that the main changes in the wind and wave conditions
do not necessarily occur in a few hours but beyond 24 h of time, responding to large-
scale meteorological systems. The daily cycle is more evident in U10 than Hs, and the
most significant modifications in the metocean conditions occur at 48 h and beyond. This
finding may contradict the discussion above (Figures 2 and 3 and Table 2); however, despite
the great influence of synoptic systems, there is still a secondary high-frequency effect
embedded in the variance that can be visualized in Figure 5. Although the events illustrated
last two days or more, the evolution of Hs time shows short rises and falls that can reach
more than one meter in one hour, including occasional periods with approximately 15%
of hourly variations embedded in the low-frequency component. Since this type of short
fluctuation is occasional, apparently random, varies in amplitude, and lacks a constant
pattern, it is not highlighted in the variance spectrum.

It is important to note that Figures 2–4 provide bulk metrics or average patterns.
However, specific conditions and events may cause significant variations in autocorrelation
and RMSD, which should be considered when establishing criteria. Scatter plots are a
better way to visualize the time lag in this case, and this approach has been extensively
explored by many authors in this type of study (e.g., [53]). Figures 6 and 7 show scatter
plots of U10 and Hs with time lags ranging from 1 h to 24 h. They clearly demonstrate a
much larger spread of U10 compared to Hs. The hot colors in the plots indicate the highest
density, but it is also important to analyze the overall distribution of points and the largest
differences observed.
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Figure 4. Variance spectra of U10 (A) and Hs (B) for each buoy.
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Figure 5. Examples of interesting events measured by the wave buoys. Four clusters and four
different events are illustrated, related to hourly time-series of Hs (meters). (A) Hurricane Sandy
measured in the Atlantic Ocean. (B) Hurricane Ida in the Gulf of Mexico. (C) Extra-tropical cyclone
in the Pacific Ocean. (D) High-energy swell in the Tropical Pacific Ocean (Hawaii).

The scatter plots of Hs (Figure 7) show very small differences between time-series
with time lags of up to three hours, although the larger waves for the 3 h time lag display
some concerning discrepancies. Regarding U10 (Figure 6), the first plot with a 1 h time lag
already exhibits significant scattering. Therefore, a temporal criterion above one hour is
not recommended.

In summary, the analyses suggest that temporal criteria of 1 or 2 h would be appro-
priate for Hs, while 1 h or less would be recommended for U10, although this may vary
depending on the location (four locations addressed) and conditions (points of scatter
plots). Since it is challenging to define different temporal collocation criteria for Hs and
U10 that vary with time and location, a conservative compromise can be achieved by using
a maximum of 1 h for the temporal distance between records to be averaged. In practical
terms, a limit of 1800 s (plus and minus) centered at the hourly buoy time defines a suit-
able temporal criterion for altimeter collocation, which is consistent with the fundamental
studies of Monaldo [28] and Ribal and Young [23].
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Figure 6. Scatter plot of time-displaced time-series compared to the original time-series for different
time lags ranging from 1 h to 24 h. Data of U10 (m/s) for buoy 41010. The plots use hot colors to
highlight areas of higher point density. Panels (A–F) show the increasing time lag.
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Figure 7. Scatter plot of time-displaced time-series compared to the original time-series for different
time lags ranging from 1 h to 24 h. Data of Hs (m) for buoy 41010. The plots use hot colors to highlight
areas of higher point density. Panels (A–F) show the increasing time lag.

3.2. Spatial Analysis Using Altimeter Data

The spatial analysis started by applying temporal criteria, which involved selecting
altimeter records where the overpass occurred within 30 min of the hourly buoy data.
This was followed by the methodology steps outlined in Section 2.3, where track sections
passing very close to the buoys positions were selected. The next figures are based on Hs
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and U10 AODN altimeter data without any calibration. Later, in Section 3.3, the calibration
proposed by Ribal and Young [23] is evaluated.

Figure 8 provides a vast amount of information regarding altimeter–altimeter and
altimeter–buoy comparisons. Figure 8A,D show scatter plots of altimeter measurements
compared to the single closest altimeter record to the buoy’s position for each satellite track
passage—presented as the “expected difference” in the plots, a term used by Monaldo [28].
The scatter plots show a growing spread as the distance increases, especially beyond 100 km.
The density at lower expected difference values is higher at distances between 5 to 50 km.
Conversely, small distances also present some points with large differences, while large
distances also contain pairs with small differences. However, the general pattern indicates
the best agreement within the first 50 km. This can be confirmed by counting the number
of points with differences above 1 m in Figure 8A. Therefore, the scatter plots provide a
first indication of suitable spatial criteria that should be restricted to the first 50 km.
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Figure 8. Expected differences as a function of distance (km) for U10 (m/s) and Hs (m). The left
panels (A,D) present scatter plots with altimeter measurements (JASON3) compared to the closest
altimeter record to the buoys’ positions for each altimeter track section. The plots use hot colors to
highlight areas of higher point density. The center panels (B,E) show the median (black) of such
differences (altimeter–altimeter) accompanied by the shaded area designed between the first and
third quartiles, while the dashed red line represents the median difference between altimeter and
buoy. The use of the median for this type of analysis was suggested by Quartly and Kurekin [72].
The right panels (C,F) display the arithmetic mean of differences (altimeter–altimeter), highlighted
for the first 50 km.

Figure 8B confirms the large discrepancies for altimeter records more than 100 km
apart. The plot also provides the first indication of good agreement between altimeter and
buoy data in terms of Hs, with the black solid curve being very close to the dashed red curve.
This result is not replicated in Figure 8E for U10, where the differences between altimeter
and buoy data are much larger than for Hs, highlighting the importance of altimeter wind
calibration described in Ribal and Young [23]. The spread of expected differences for U10
(Figure 8D,E) is also very high, but it is reduced within the first 25 km, which can be
observed by counting the number of points above 5 m/s in Figure 8D.

A clearer representation of the average increase in mean differences within the first
50 km is presented in Figure 8C,F. The curve for Hs crosses the 0.20 m value (a level associ-
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ated with buoy accuracy according to the NDBC and linked to high-quality simulations
using WAVEWATCH III) at approximately 37 km. It reaches a mean difference of 0.21 m
at the 50 km distance, which is small in terms of mean difference, but at 20 km, it is only
0.17 m. The latter represents a sampling variability with low RMS difference that has the
potential to benefit the validation and analysis of highly accurate products. The same
curve for U10 (Figure 8F) shows much lower values for mean differences associated with
spatial displacement, despite the large spread and occasional large differences encountered
in Figure 8D. This means that the arithmetic mean can successfully filter out those less
frequent large discrepancies, once again demonstrating the benefits of space–time averages
for altimeter collocation instead of selecting the single closest altimeter record.

The current results show lower differences as a function of distance than those reported
by [28]. Monaldo [28] found differences of 0.5 m at 100 km and 0.2 m at 20 km, while
Figure 8 shows the 0.2 m level being crossed at 37 km. It should be noted that Monaldo’s [28]
observations were based on GEOSAT altimeter data, while Figure 8 was calculated using
3133 records from JASON3. Hwang et al. [67] found that when spatial lags are less than
10 km, the differences in Hs are approximately 0.1 m, which is more similar to what has
been reported so far, around 0.15 m. It is worth remembering that these differences are
among individual satellite records or direct comparisons against buoy data and do not
necessarily represent the result found after collocation, which involves computing the
average of all altimeter records inside a circle to yield a single value (mean) per transect. In
other words, the spatial separation criterion defines a circle of diameter in which satellite
data are selected, so an altimeter transect that passes directly over the buoy will have a
transect length of 100 km when the traditional 50 km criterion is utilized. More distant
passes will define shorter chords of the circle. Each transect within the circle will only
define one collocated value of Hs and U10, reducing the data size.

As described earlier, the analysis in this section only considers altimeter transects
in which at least one record is very close to the buoy, within 10 km. Figure 9 shows the
number of JASON3 altimeter records selected for different spatial criteria, ranging from
10 to 200 km. Considering that the distance of consecutive JASON3 measurements is
5.87 km, it is expected that a 10 km radius (20 km diameter) will select only two or three
altimeter records. Moving to a 25 km radius increases the average number of records to
eight, which is above the minimum number of five points discussed in Ribal and Young [23],
and eight is the default number of neighbors used in python pyresample kd_tree. The
commonly used 50 km criterion selects around 15 records, while 100 km and 200 km criteria
select, on average, 30 and 60 records, respectively. Therefore, the large RMS differences
at larger distances must be balanced with the number of points to be averaged in order
to avoid using an overly restrictive criterion, such as 10 km, which would provide an
insufficient number of records for a proper final estimate.
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Figure 9. Number of altimeter points in the satellite transects defined by different spatial criteria.

A new comparison and assessment must be re-run at this point, using transect averag-
ing results for different criteria as a sensitivity analysis of the spatial criterion. Figure 10
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presents the scatter plots comparing the effect of different spatial criterion on the collocated
satellite data. It is interesting to note the lower scattering, with points falling close to the
main diagonal, when compared to Figures 6 and 7, associated with non-averaged measures.
This once again emphasizes the benefits of the averaging process. The results for 10 km,
25 km, and 50 km are very similar, with an increasing spread associated with 100 km and
200 km radii. The upper points representing the most severe intensities start to diverge to
the main diagonal only in the 100 km and 200 km plots. Therefore, Figure 10 proves the
stability and robustness of the collocation using the spatial mean, especially for radii of
25 and 50 km. The problem of extremely large scattering of U10 (Figure 6) has been solved
by using spatial averaging, making the methodology even more relevant when wind speeds
are included. In this section, the estimates calculated using the spatial criterion of 10 km
were used as a reference. The next section will select the buoy data for that purpose.

Figure 10. Scatter plots of altimeter data for different spatial criteria (radius, km) using JASON3
dataset collocated at the 11 buoy positions (Figure 1). The plots were made using the smallest radius
of 10 km as a reference. A total of 189 collocated values were used. (A–D) (top) refer to wind speed
(U10) while (E–H) (bottom) refer to significant wave height (Hs).

Statistical metrics (Equations (2)–(5)) were calculated to further investigate the influ-
ence of the spatial criteria on the final estimates of Hs and U10. Figure 11 presents the
scatter and systematic differences together. It is possible to see a very close agreement be-
tween results using the spatial criteria of 10 to 50 km, followed by a progressive divergence
for 100 km, and magnified discrepancies for 200 km—in both error metrics. Within 50 km,
the scatter differences remain below 10% and the systematic differences below 1% for both
U10 and Hs.

Table 3 provides statistical results for four metrics (Equations (2)–(5)) that further
complement Figure 11. The bias is very low for both Hs and U10, even at greater radii.
Thus, the main impact of increasing the spatial averaging radius r is on the increase in
scatter errors (with a consequent increase in the RMSD) and decrease in the correlation
coefficient. The scatter differences are above 10% for r equal to and above 50 km for Hs
and 200 km for U10. Figures 10 and 11 and Table 3 show the significant effect of spatial
averaging on the collocation of Hs and U10 when compared to Figure 8, which contains
the original altimeter records. Using the altimeter tracks as shown in Figure 8 may lead
to occasional very discrepant values and strong deterioration when considering further
distances. However, when the spatial mean is applied, it smooths out the discrepant values,
providing more stable estimates with low scatter differences and better results at larger
radii. Even so, the results from Figures 10 and 11 and Table 3 still indicate that the upper
limit of 50 km is a suitable spatial criterion for altimeter collocation. However, the results
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so far are related to altimeter–altimeter comparison and not direct validation against buoy
measurements, which is essential to consider and is performed in the next section.
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speed (U10). (B) Significant wave height (Hs).

Table 3. Results of statistical metrics (from Equations (2)–(5)) for four spatial collocation criteria
compared to the 10 km reference criterion. The analysis used satellite data from JASON3.

Dist (km) Bias RMSD SI CC

Hs

25 −0.008 0.090 0.089 0.991

50 −0.014 0.115 0.114 0.986

100 −0.022 0.149 0.147 0.976

200 −0.060 0.201 0.191 0.960

U10

25 0.004 0.133 0.024 0.998

50 0.008 0.275 0.050 0.993

100 0.052 0.447 0.081 0.981

200 0.095 0.634 0.114 0.963

3.3. Spatial Averaging Method and Altimeter Validation

In this section, the altimeter dataset is expanded from JASON3 only to JASON3,
JASON2, CRYOSAT2, JASON1, HY2, SARAL, and SENTINEL3A. These satellite missions
have high accuracies and demonstrate close agreement in the cross-validations performed
by Ribal and Young [23], providing a vast dataset of reliable information from altimeters.
Additionally, the AODN-calibrated variables of Hs and U10, namely Hsc and U10c, were
also included. The temporal criterion r = 1800 s was first applied, and two spatial criteria
of τ = 25 and 50 km were tested. The methodology was the same as the previous section,
but the comparisons were now performed against buoy data. Apart from the arithmetic
ensemble mean, two other averaging methods were included: (i) the inverse distance
weighting, using a simple linear function (named LIDW); and (ii) the same inverse distance
weighting, but a Gaussian function was applied instead of a linear decay (named GF). The
inverse distance weighting method has a very intuitive assumption that the closer a point is
to the center position being estimated, the more influence or weight it has in the averaging
process. The calculation was performed using the python package pyresample.kd_tree.

Tables 4 and 5 present the final assessment, where the poorest results are highlighted
in red, and the best results are highlighted in green. Initially, it is clear that using a single
nearest altimeter record to the buoy measurement does not provide optimal estimates
compared to using the spatio-temporal averaging of altimeter records. The worst perfor-
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mances are confirmed through high impacts on RMSE, SI, and CC. This characteristic is
more evident for Hs than U10. Next, the comparison between the three averaging methods
shows very similar results, with minor differences in the third decimal of the error metrics.
It is inconclusive at this stage. Thus, the simple arithmetic mean, which is widely used,
remains a good option, at least for the dataset and validation considered in this study.

Table 4. Validation of collocated altimeter values against buoy data using the temporal collocation
criterion r = 1800 s and two spatial collocation criteria of τ = 25 and 50 km. The single altimeter
records closest to the buoy positions (nearest) are included as a means of comparison, and the three
averaging methods are shown. The results for four metrics (Equations (2)–(5)) are provided for
Hs and the calibrated Hs (Hsc). The hot colors highlight the worst results while the best ones are
presented in green.

Dist (km) Method Bias RMSE SI CC

Hs

25

Nearest 0.036 0.259 0.110 0.977
Mean 0.038 0.226 0.096 0.983
LIDW 0.038 0.228 0.096 0.982

GF 0.038 0.228 0.097 0.982

50

Nearest 0.024 0.273 0.112 0.974
Mean 0.024 0.236 0.096 0.981
LIDW 0.024 0.236 0.096 0.981

GF 0.024 0.235 0.096 0.981

Hsc

25

Nearest 0.013 0.247 0.106 0.979
Mean 0.015 0.210 0.090 0.985
LIDW 0.015 0.212 0.091 0.984

GF 0.015 0.213 0.092 0.984

50

Nearest 0.013 0.259 0.106 0.977
Mean 0.014 0.218 0.089 0.983
LIDW 0.014 0.218 0.089 0.983

GF 0.014 0.218 0.089 0.984

Table 5. Validation of collocated altimeter values against buoy data using the temporal collocation
criterion r = 1800 s and two spatial collocation criteria of τ = 25 and 50 km. The single altimeter
records closest to the buoy positions (nearest) are included as a means of comparison, and the three
averaging methods are shown. The results for four metrics (Equations (2)–(5)) are provided for U10
and the calibrated U10 (U10c). The hot colors highlight the worst results while the best ones are
presented in green.

Dist (km) Method Bias RMSE SI CC

U10

25

Nearest −0.356 1.956 0.270 0.809
Mean −0.356 1.936 0.268 0.811
LIDW −0.356 1.940 0.268 0.811

GF −0.356 1.941 0.268 0.811

50

Nearest −0.490 2.040 0.277 0.792
Mean −0.489 2.016 0.274 0.794
LIDW −0.490 2.017 0.274 0.795

GF −0.490 2.018 0.275 0.795

U10c

25

Nearest 0.739 1.701 0.186 0.893
Mean 0.739 1.669 0.182 0.896
LIDW 0.739 1.676 0.183 0.895

GF 0.739 1.677 0.183 0.895

50

Nearest 0.760 1.721 0.184 0.888
Mean 0.761 1.681 0.179 0.892
LIDW 0.760 1.684 0.179 0.892

GF 0.760 1.685 0.180 0.892

The most notable impact, leading to a great improvement in the error metrics, is found
in the calibrated variables, Hsc and U10c. The AODN calibration [23] resulted in a reduction
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in Bias, RMSE, and SI, combined with an increase in CC. This effect is more pronounced for
wind speed, where the RMSE of U10 of 2.02 m/s (τ = 50 km, from arithmetic mean) was
reduced to 1.68 m/s for U10c. For the same comparison, the CC improved from 0.79 to 0.89.
However, the bias shifted from −0.49 m/s (underestimation of altimeter winds) to 0.76 m/s
(overestimation of altimeter winds), which warrants further investigation.

The best performance in Tables 4 and 5 is observed in Hsc, where the calibration
succeeded in improving all four metrics, and the results exhibit almost no bias (around 1 cm
only). The RMSE of Hsc is 0.21 m, the scatter errors are at 9%, and the correlation coefficient
is 0.98. Figure 12 presents the results for Hsc and confirms the excellent performance of
collocated altimeter data shown in Table 4. The Hsc quantiles closely follow the main
diagonal of QQ-plots, and the scatter plots also show the points not far from the diagonal of
perfect agreement, ranging from small values to the highest ones above the 99th percentile.
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Figure 12. QQ-plots (A,C) and scatter plots (B,D) of collocated altimeter data of Hsc from the
AODN-calibrated dataset, against NDBC buoy data in the Pacific and Atlantic Oceans (Figure 1). The
temporal collocation criterion r = 1800 s was applied, and two spatial collocation criteria of τ = 25
and 50 km are presented. The plots use hot colors to highlight areas of higher point density.

4. Discussion

The results presented in Sections 3.1–3.3 have allowed for the narrowing down of
options for spatial and temporal criteria for altimeter collocation to fixed-point positions.
In addition to the expected differences and increasing errors due to time and distance
previously discussed, two other aspects should be considered: (i) the number of records
for each altimeter transect within a defined diameter to be averaged, which is shown in
Figure 9 and briefly discussed above, and (ii) the final number of collocated matchups
of altimeter/buoy resulting from the combination of each temporal and spatial criterion.
Table 6 provides an example of the total resulting collocated data of JASON3 altimeter data
at 11 buoy positions as a function of temporal and spatial criteria. The variation in the
number of matchups is significant, ranging from as few as 294 for r, τ equal to 10 km and
15 min, to 50.6 thousand for r, τ of 100 km and 2 h. The widely used criteria of 30 min and
50 km led to 3.7 thousand matchups of JASON3 at the 11 points.
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Table 6. Total number of collocated matchups of JASON3 altimeter data at 11 buoys presented in
Figure 1 for four temporal criteria (in minutes) and four spatial criteria (in kilometers).

Time/Dist 10 25 50 100

15 294 567 1134

30 930 1836 3672 7344

60 2226 4389 8781 17,553

120 12,714 25,323 50,583

Depending on the practical application of collocated altimeter data, there may be an
urgent need to expand the dataset by increasing the number of matchups through the
spatial and temporal criteria. For example, this may be necessary when more observations
are required for an important event and case study, or for extreme value analyses where
data length impacts the reliability of extrapolations. On the other hand, when long time
analyses are conducted and the accuracy of collocated satellite is critical, then smaller
criteria of τ and r can be considered. However, in practical terms, the options for adapting
τ and r to specific needs are limited due to the important points:

(1) Small spatial criterion r results in lower RMS differences but reduces the number of
records for the circle average, potentially selecting only one record, which is equivalent to
using the single closest altimeter measurement to the buoy’s position. Ribal and Young [23]
recommend a minimum of five altimeter records for the average, which is achievable for r
typically above 20 km, thus discarding the r = 10 km option evaluated in this paper.

(2) A temporal criterion (τ) below 1800 s results in a small number of matchups
(Table 6), which limits the practical use of altimeter data. Monaldo [28] suggests that
approximately 1000 altimeter–buoy comparison pairs are required to validate altimeter
performance and distinguish between competing wind speed algorithms.

(3) Increasing the temporal criterion τ to values above 1800 s compromises the RMSE
of the final estimates, as shown in Section 3.1. The effect of a 1 h time lag on the final error
is close to the NDBC and altimeter intrinsic errors [38] and just below the accuracies of
calibrated wave forecast products using WAVEWATCH III [36,69,70]. For U10, the temporal
criterion τ is even more critical, anchoring the ideal temporal criterion to 1800 s.

(4) The spatial analysis indicates that the density at lower expected difference values
is higher at distances between 5 and 50 km (Figure 8A,D). The curve of Hs RMSD as a
function of distance (Figure 8C) reaches a mean difference of 0.21 m at 50 km. Therefore,
Section 3.2 clearly shows that extrapolating to a spatial criterion r greater than 50 km is not
recommended.

In summary, a temporal criterion of τ = 1800 s and spatial criteria of r between 25 to 50 km
are the best options for collocating altimeter data to fixed point positions. Tables 4 and 5
confirm the success of these values. The resulting differences between collocated altimeter
data and buoy observations, using AODN-calibrated data of Hs and U10, are smaller than
those reported by [20,23,25] and in line with the findings of Ribal and Young [23].

The results presented so far have been obtained from 11 deep-water points. For those
interested in coastal areas or very extreme events (especially tropical cyclones), a separate
analysis must be conducted with more buoys, a larger dataset, and IBTrACS cyclone tracks.

5. Conclusions

This paper investigated the spatial and temporal sampling variability and the differ-
ences between altimeter and buoy data. In practical terms, an important question arises:
is the widely used criteria of 30 min and 50 km, which has been established for more than
30 years, still a good option for altimeter collocation in deep waters? The overall answer is
yes. A small margin for variation on the spatial criterion r is open between 25 and 50 km,
as shown in Tables 4 and 5 and Figure 12. The lower bound of 25 km leads to slightly better
error metrics but with the cost of fewer collocated matchups (Table 6). The 50 km criterion
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maximizes the resulting collocated data size while keeping the differences to buoy measure-
ments very low. Young et al. [34] argue that the criteria of r = 50 km and τ = 30 min produce
a sufficient number of collocations for a stable result while ensuring that both buoy and
altimeter respond to the same approximate wind and wave field.

Additionally, it is possible to conclude that using the single closest altimeter record
to the buoy position leads to worse results compared to the collocation method based
on temporal and spatial averaging (Tables 4 and 5). Regarding the averaging method,
very small differences were encountered between the simple arithmetic mean and the
inverse distance weighting. The validation of altimeter collocated data against 11 NDBC
buoys proves the quality of the AODN calibrated dataset [23] combined with the collo-
cation method and criteria analyzed here. The RMSD of 0.21 m, scatter index of 0.09,
and correlation coefficient of 0.98 for Hsc confirm the success of the methodology and
altimeter data employed, supporting future studies demanding high-quality and reliable
altimeter observations.
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