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Abstract: This paper proposes a semi-automatic green tide extraction method based on the NDVI
to extract Yellow Sea green tides from 2008 to 2022 using remote sensing (RS) images from multiple
satellites: GF-1, Landsat 5 TM, Landsat 8 OLI_TIRS, HJ-1A/B, HY-1C, and MODIS. The results of
the accuracy assessment based on three indicators: Precision, Recall, and F1-score, showed that our
extraction method can be applied to the images of most satellites and different environments. We
traced the source of the Yellow Sea green tide to Jiangsu Subei shoal and the southeastern Yellow
Sea and earliest advanced the tracing time to early April. The Gompertz and Logistic growth curve
models were selected to predict and monitor the extent and duration of the Yellow Sea green tide, and
uncertainty for the predicted growth curve was estimated. The prediction for 2022 was that its start
and dissipation dates were expected to be June 1 and August 15, respectively, and the accumulative
cover area was expected to be approximately 1190.90–1191.21 km2.

Keywords: Yellow Sea green tide; NDVI; multi-source RS; source tracing; growth curve; prediction

1. Introduction

Green tide, an ecological anomaly formed by the explosive growth and aggregation
of macroalgae in the ocean, is common in coastal countries around the world [1,2]. The
green tide in the Yellow Sea is one of the largest green tide events in the world; it has been
occurring annually for 15 years, lasts for a long time every year, affects a wide area of the
sea, and is difficult to clean up [3–7]. It has a significant negative impact on the local marine
ecosystem and coastal economy, and it is relatively tolerant to high temperatures and light
intensity [8], so it is highly persistent with explosive growth and has gradually become a
regular marine ecological hazard. Therefore, there is an urgent need for effective dynamic
monitoring of the green tide to guide prevention and control measures.

Compared with field surveys, satellite remote sensing (RS) has the advantages of a
wide monitoring area, fast information acquisition, a short update period, timeliness, and
strong economic benefits and is thus an effective means of real-time monitoring and control
of green tide events [9,10]. The green tide index threshold method based on RS, which
follows the principle that green algae have unique spectral characteristics in the visible and
infrared bands, has been widely used to extract green tide information and is no longer
limited by the type of satellite sensor. For example, various green tide index threshold
methods based on band calculation, such as the normalized vegetation index [11], the
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enhanced vegetation index (EVI, a MOD13 satellite-derived index), and the normalized
difference algal index [12]. Moreover, there are other methods based on baseline subtraction
that are less sensitive to changes in environmental and observation conditions, and can
extract green tide information through thin clouds [9,13], such as baseline-based floating
algae index [14], virtual-baseline drifting algae indices [15], and the RGB floating algae
index [16]. All of these indices are widely used as they can clarify the differences between
seawater and green tide features. Although the index calculation method and principle
for green tide have been improved, optimization of the threshold selection method is still
far from adequate; continuous refinement and improvement from a manual empirical
judgment to a more automatic threshold selection are needed to improve the efficiency
of green tide extraction and the dynamic monitoring capability of RS. Thus, one of the
purposes of this study is to propose an effective, universal, and more automatic method for
extracting green tide from RS images.

Since 2007, major green tide events have occurred in the Yellow Sea from March
to August of each year. Since the first outbreak of this green tide, early prevention and
control have been key concerns, and the tracing of the source of the Yellow Sea green
tide is of utmost importance. RS satellite monitoring is the most common and effective
means to trace the green tide. According to previous studies, the Subei shoal along the
Jiangsu coast is considered to be the direct origin of the Yellow Sea green tide outbreak,
as local geographical, aquaculture, and biological factors provide sufficient nutrients and
a suitable growth environment for the green algae [1,3,4,13]. Further, morphological and
phylogenetic analyses have shown that this green tide is homologous to the algal species
in the purslane culture area of Jiangsu [17]. Consistently, RS satellite monitoring and field
surveys have demonstrated that most of the initial discovery sites of the Yellow Sea green
tide were also near the laver farms in the Subei shoal along the Jiangsu coast [1,3,4,13].
Therefore, evidence from various sources in previous studies has indicated that the Subei
shoal along the Jiangsu coast is the source of the Yellow Sea green tide. At the same time,
the current traceability of the Yellow Sea green tide source, whether by RS monitoring
or field investigation, is limited to the Subei shoal. Since tracing and investigation of the
source of the green tide remains an important first step toward its early prevention and
control of green tide, so another purpose of this study is to use multi-source RS data to
expand the monitoring range of the Yellow Sea green tide source, such as the southeastern
Yellow Sea.

In terms of green tide prevention and control, in addition to tracing and early control of
green tide sources, it is important to predict and assess subsequent green tide growth trends.
The development of a green tide is dynamic, so an annual outbreak is not appropriate
to define or assess only by some static indicators like the accumulative or the maximum
cover area, which may lead to the wrong prediction and evaluation of the bloom scale of
green tide [18]. Therefore, many numerical models have been introduced to predict the
growth trends of green tides. For example, the physical–ecological model based on the
FVCOM model is used to simulate the distribution and growth of green tides [19]. The
LTRANS model, coupled with an ecological module, is constructed to predict the drift path,
growth, and dissipation processes of green tide [20]. The pixel unmixing method was used
to further estimate the coverage area of U. prolifera, so as to obtain a more accurate scale of
the green tide [21]. Due to the limitations of the marine environment and resources, the
growth curve of algal development is generally S-shaped [21,22]. Therefore, the growth
curve of the green tide is also widely used to model and predict algal growth trends. To
predict the growth scale and duration of the Yellow Sea green tide based on Gompertz and
Logistic growth curve is also one of the main objectives of this study.

This work is organized as follows: Section 1—Introduction; Section 2—Description
of the dataset; Section 3—Method, the methodology of the study is explained in detail;
Section 4—Results, the results for different RS datasets are presented, the accuracy assessed,
the green tide’s growth curves calculated, forecast curve for 2022 estimated, tide’s bloom
times and accumulative/maximum cover area simulated; Section 5—Discussion, statistics
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of source sites of the green tides in period from 2008 to 2022 is analyzed, and Section 6—
Conclusions.

2. Description of the Dataset
2.1. Study Area

The Yellow Sea green tide has been breaking out for 15 years and has become a
regular marine ecological hazard along the Chinese coast. The study area was the Yellow
Sea (119◦–126◦E, 31◦–38◦N), as shown in Figure 1 (bathymetry data in Figure 1 are from
ETOPO1). To validate the accuracy under different environments, we partitioned the
Yellow Sea according to its water depth, as shown in Figure 1a according to the water
depth of the Yellow Sea. Such partitioning mainly referred to Li et al., who argue that the
normalized difference vegetation index (NDVI) will be more or less affected by muddy
water, and shallow areas (seawater depth of <−35 m) would affect NDVI to some extent,
and that environmental factors would cause uncertainty in the extraction results on satellite
images [23]. As seen in Figure 1b, we chose the accuracy assessment areas A1–A3, B1–B3,
and C1–C3 corresponding to the three partitions of A, B, and C.

Remote Sens. 2023, 15, x FOR PEER REVIEW 3 of 25 
 

 

bloom times and accumulative/maximum cover area simulated; Section 5—Discussion, 
statistics of source sites of the green tides in period from 2008 to 2022 is analyzed, and 
Section 6—Conclusions. 

2. Description of the Dataset 
2.1. Study Area 

The Yellow Sea green tide has been breaking out for 15 years and has become a reg-
ular marine ecological hazard along the Chinese coast. The study area was the Yellow Sea 
(119°–126°E, 31°–38°N), as shown in Figure 1 (bathymetry data in Figure 1 are from 
ETOPO1). To validate the accuracy under different environments, we partitioned the Yel-
low Sea according to its water depth, as shown in Figure 1a according to the water depth 
of the Yellow Sea. Such partitioning mainly referred to Li et al., who argue that the nor-
malized difference vegetation index (NDVI) will be more or less affected by muddy water, 
and shallow areas (seawater depth of < −35 m) would affect NDVI to some extent, and 
that environmental factors would cause uncertainty in the extraction results on satellite 
images [23]. As seen in Figure 1b, we chose the accuracy assessment areas A1–A3, B1–B3, 
and C1–C3 corresponding to the three partitions of A, B, and C. 

 
Figure 1. Study area and Location diagram of extraction regions in different environments for accu-
racy assessment ((a) Partition diagram, where the red line is the −35 m isobath and the area within 
the green line represents Zone C, which is the muddy water area. (b) Accuracy assessment areas 
A1–A3, B1–B3, and C1–C3 corresponding to the three partitions of A, B, and C). 

2.2. RS Dataset 
The main satellites from which RS data were obtained for this study were Gaofen-1 

(GF-1), Landsat 5 Thematic Mapper (TM), Landsat 8 operational land imager_thermal in-
frared sensor (OLI_TIRS), Huanjing-1A/B (HJ-1A/B), HaiYang-1C (HY-1C), and moderate-
resolution imaging spectroradiometer (MODIS). 

As the first satellite in the space-based system of the major special project of China’s 
high-resolution earth observation system, the GF-1 satellite goes beyond optical RS by 
combining high-temporal-resolution, multi-spectral, and wide coverage and is a leader 
among international civil optical RS satellites in terms of the comprehensive indices of 
resolution and width. We used the GF-1 Wide Field-of-View (WFV) satellite data product 
(http://36.112.130.153:7777/, accessed on 20 July 2022), which was launched in 2013. The 
spatial resolution of all bands is 16 m, with a temporal resolution of 4 days. We used RS 
image band 4 (Red) and band 3 (Near-Infrared, NIR). 

Further, we used the Landsat 5 TM Level 1 (L1) and Landsat8 OLI_TIRS L1 products 
(https://earthexplorer.usgs.gov/, accessed on 20 July 2022). The Landsat 5 TM satellite has 
seven bands. The spatial resolution of bands 1–5 and 7 is 30 m, and that of band 6 is 120 

Figure 1. Study area and Location diagram of extraction regions in different environments for
accuracy assessment ((a) Partition diagram, where the red line is the −35 m isobath and the area
within the green line represents Zone C, which is the muddy water area. (b) Accuracy assessment
areas A1–A3, B1–B3, and C1–C3 corresponding to the three partitions of A, B, and C).

2.2. RS Dataset

The main satellites from which RS data were obtained for this study were Gaofen-1
(GF-1), Landsat 5 Thematic Mapper (TM), Landsat 8 operational land imager_thermal in-
frared sensor (OLI_TIRS), Huanjing-1A/B (HJ-1A/B), HaiYang-1C (HY-1C), and moderate-
resolution imaging spectroradiometer (MODIS).

As the first satellite in the space-based system of the major special project of China’s
high-resolution earth observation system, the GF-1 satellite goes beyond optical RS by
combining high-temporal-resolution, multi-spectral, and wide coverage and is a leader
among international civil optical RS satellites in terms of the comprehensive indices of
resolution and width. We used the GF-1 Wide Field-of-View (WFV) satellite data product
(http://36.112.130.153:7777/, accessed on 20 July 2022), which was launched in 2013. The
spatial resolution of all bands is 16 m, with a temporal resolution of 4 days. We used RS
image band 4 (Red) and band 3 (Near-Infrared, NIR).

Further, we used the Landsat 5 TM Level 1 (L1) and Landsat8 OLI_TIRS L1 products
(https://earthexplorer.usgs.gov/, accessed on 20 July 2022). The Landsat 5 TM satellite has
seven bands. The spatial resolution of bands 1–5 and 7 is 30 m, and that of band 6 is 120 m.
The Landsat8 OLI_TIRS satellite has 11 bands. The spatial resolution of bands 1–7 and 9–11
is 30 m, and band 8 is a panchromatic band with a resolution of 15 m. These two satellites

http://36.112.130.153:7777/
https://earthexplorer.usgs.gov/
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provide global coverage every 16 days. We used RS image band 3 (Red) and band 4 (NIR)
from Landsat 5 TM, and band 4 (Red) and band 5 (NIR) from Landsat 8 OLI_TIRS. We also
used Landsat 8 OLI_TIRS L2 C2 products; this dataset is the atmospherically corrected
surface reflectance from the Landsat 8 OLI/TIRS sensor for the identification of U. prolifera
and Sargassum by the spectral shape.

The environmental and disaster monitoring and prediction small satellite constellation
A/B (HJ-1A/B) was launched in September 2008. The HJ-1A satellite is equipped with a
CCD camera and a hyperspectral imager, while the HJ-1B satellite is equipped with a CCD
camera and an infrared camera (IRS). We used the HJ-1A/B satellite CCD products of band
3 (Red) and band 4 (NIR) (http://36.112.130.153:7777/, accessed on 20 July 2022), which
have a spatial resolution of 30 m and a temporal resolution of 4 days.

The HY-1C satellite project provides a series of observations in the morning and
afternoon, which improves the global coverage ability, enlarges the coverage width of the
coastal zone imager, and improves spatial resolution to meet practical needs. We used the
L1C product of the HY-1C satellite coastal zone imaging instrument (CZI), which has a
spatial resolution of <50 m and a temporal resolution of 3 days (https://osdds.nsoas.org.
cn/, accessed on 20 July 2022). Specifically, we used RS image band 1 (Red) and band 2 (NIR).
We also used HY-1C L2A products; this dataset is the rayleigh corrected reflectance from
the HY-1C sensor for the identification of U. prolifera and Sargassum by the spectral shape.

The MODIS sensor was launched as part of the NASA Earth Observation System
series of satellites (https://ladsweb.modaps.eosdis.nasa.gov/, accessed on 20 July 2022).
We used the MYD02 QKM and MOD02 QKM products, including the RS images in bands 1
(Red) and 2 (NIR), which are corrected earth observation data by calibrated and geolocated
and with a spatial resolution of 250 m. The temporal resolution of it is nearly 1 day.

3. Method
3.1. RS Data Preprocessing

The ENVI software was used to perform geometric correction was for MODIS, Landsat
8, HY-1C, and HJ-1 images. GF-1 comes with a Rational Ploynomial Coefficient (RPC) file,
so we used ENVI for RPC orthographic correction.

3.2. Semi-Automatic Green Tide Extraction Method
3.2.1. Green Tide Extraction Index

The optimized semi-automated method for green tide extraction proposed in this
paper was based on the NDVI, which in turn is based on the principle that vegetation is
more reflective in the NIR band: the higher the vegetation cover, the lower the reflection in
the Red band and the higher the reflection in the NIR band [7,24,25]. The NDVI reinforces
the difference in vegetation reflectance between the Red and NIR bands and is defined as in
Equation (1), where Red and NIR are the digital number values of the Red and NIR bands,
respectively. In addition, before calculating NDVI, we performed geometric correction.

NDVI =
NIR− Red
NIR + Red

(1)

As the green tide tends to cover water bodies with high aggregation, the water bodies
covered by green tide also show high reflectance in the NIR band, so the NDVI can also be
used to monitor the scale and distribution of the green tide. The Red and NIR bands, which
are mainly used in the NDVI, are common to most visible RS satellites, so the use of the
NDVI can improve the universality of the method.

3.2.2. Land Mask

As the spectral characteristics of a green tide and vegetation are similar [15], in this
study, land masking was performed on RS images to prevent terrestrial vegetation from
interfering with threshold selection.

http://36.112.130.153:7777/
https://osdds.nsoas.org.cn/
https://osdds.nsoas.org.cn/
https://ladsweb.modaps.eosdis.nasa.gov/
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We used shoreline information and the land vertices of RS images (i.e., the vertex of
the pentacle in Figure 2) for flexible masking based on the principle of the region of interest
(ROI) extraction; i.e., we selected polygon vertices. Finally, a landmask was generated with
a buffer of 20 grids extending from the shoreline to the outer sea. For low-resolution RS
images, i.e., those from MODIS, the shoreline information of each image was obtained by
using prior known shoreline information in the geographic information system and the
latitude and longitude coordinates of RS images for point-to-point distance calculation and
matching the point with the shortest distance between prior known shoreline information
and RS images. For high-resolution RS images (i.e., those from GF-1, Landsat 5 TM,
Landsat 8 OLI_TIRS, HJ-1A/B, and HY-1C), which are larger, the shoreline matching
method is more computationally intensive, and the masking efficiency is lower; therefore,
to improve the masking efficiency, the shoreline was first extracted directly using our
proposed semi-automatic shoreline extraction algorithm [26], and then the next step of
masking was performed.
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3.2.3. Threshold Selection

After removing the influence of terrestrial vegetation, selecting a suitable threshold
range to binarize the RS images to separate seawater from the green tide is necessary. The
NDVI values of RS images were counted using a frequency distribution histogram [27,28],
and the statistical principle was to divide the interval of NDVI values into k disjoint intervals
([x1, x2), [x2, x3), . . . , [xk−1, xk]), divide the sample observations into each interval one by
one, and calculate the frequency ni of the samples falling in each interval: the frequency
f = ni/n, where n is the total number of samples, and the frequency/interval length is
given as [f i (k) = f (k)/(xk, −xk−1)]. In this study, we chose k = 100 to obtain the frequency
histogram of NDVI values (Figure 3). Then, using the statistical results [x1, fi(1)], [x2, fi(2)],
. . . , [xk, fi(k)] from Equation (2), the parameters a1, a2, b1, b2, c1, and c2 of the second-order
Gaussian fit function were calculated to obtain the final second-order Gaussian fit curve, as
shown in Figure 3.

H(x) = a1 · e
−(x−b1)

2

c2
1 + a2 · e

−(x−b2)
2

c2
2 (2)

For vegetation, −1 ≤ NDVI ≤ 1 [29]. Negative values indicate ground coverage by
features such as clouds, water, and snow; 0 indicates the presence of features such as
rocks and bare soil, whose NIR and Red are approximately equal; and positive values
indicate green tide coverage and increase with increasing coverage [30]. When the green
tide coverage of the water body is incomplete, an area with a small amount of green tide
distribution may also show negative values [23]; therefore, we chose the first inflection point
after the maximum distribution point of the NDVI value as the lower limit of the threshold
(i.e., the green dot in Figure 3) and 1 as the upper limit of the threshold (elimination of
anomalous values) for the discrimination of green tide; i.e., the NDVI value less than the
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lower limit of the threshold was judged as seawater (blue part in Figure 3), and a value
greater than the lower limit of the threshold but less than 1 was indicative of the green tide
(green part in Figure 3).
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3.3. Semi-Automated Green Tide Extraction

After selecting a suitable threshold range, the RS image was binarized by threshold
segmentation, as seen in Figure 4a, where the white value was 1, representing the green
tide, and the black value represented the seawater and the land part that has been masked,
separating the seawater and the green tide. As there may also be interfering information,
such as ships and thick clouds that cannot be separated by thresholding, and manual ROI
is always used to select training samples or feature regions [31,32], so the green tide region
was artificially boxed out using an ROI (as seen in Figure 4a, the red polygon boxed area
(ROI region)) which was combined with the RS image for further judgment, and finally,
the green tide information was obtained with the white value represented by 1 in the ROI
region in Figure 4a, and the extraction result of the green tide was shown in Figure 4b.
ROI could be used not only to pick out the green tide information but also to remove
confounding factors.
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circular marks were green tide data points extracted by our method. The green circle rep-
resented TP, the pixels that were green in the image and determined by our method to be 
green tide pixels. The red circle represented FP that was not green in the image but also 
determined by our method to be green tide pixels. The orange pentagram was green in 
the image, but it was determined as a background pixel by our method, i.e., FN. TN were 
the pixels that were not marked, which means these were correctly classified as back-
ground pixels. 

Table 1. Schedule of precision evaluation formulas. 

 Predicted Value = 1 Predicted Value = 0 
True value = 1 TP FN 
True value = 0 FP TN 

Figure 4. Threshold segmentation separating the seawater and green tide binarized images, (a) is the
binarized green tide information and (b) is the extraction result of green tide, the outer boundary red
line is indicated to the distribution of green tide. The data were extracted from Landsat 8 (Date: 23
June 2021; Worldwide Reference System: path 119 and row 35).
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3.4. Accuracy Assessment Method

Green tide extraction based on RS is a pixel classification problem in image semantic
segmentation, where the green tide elements are defined as positive samples (true value)
and the background information as negative samples. The true value was the pixel that
we manually interpreted as the green tide based on RS false-color images. For GF-1, we
chose band 3 (Red), band 2 (Green), and band 1 (Blue), which correspond to R, G, and
B, respectively. For Landsat, we chose band 4 (Red), band 5 (NIR), and band 4 (Green),
respectively. For HJ-1 and HY-1C, we both chose band 3 (Red), band 4 (NIR), and band
2 (Green), respectively. For MODIS, we chose band 1 (Red), band 2 (NIR), and band 1,
respectively. Moreover, the green tide true value pixels were shown as green ones in
the image.

The extraction results of all pixels can be classified into four categories (Table 1): true
positive (TP) represents the number of correctly classified green tide pixels, true negative
(TN) represents the number of correctly classified background pixels, false positive (FP)
represents the number of background pixels misclassified as green tide pixels, and false
negative (FN) represents the number of green tide pixels misclassified as background pixels.
The true value was the pixel that we manually interpreted as the green tide; classification
results for TP, FP, FN, and TN were shown in Figure 5 to descript the selection definition
of true values. Green tide pixels are usually green in RS false-color images. The circular
marks were green tide data points extracted by our method. The green circle represented
TP, the pixels that were green in the image and determined by our method to be green tide
pixels. The red circle represented FP that was not green in the image but also determined
by our method to be green tide pixels. The orange pentagram was green in the image, but
it was determined as a background pixel by our method, i.e., FN. TN were the pixels that
were not marked, which means these were correctly classified as background pixels.

Table 1. Schedule of precision evaluation formulas.

Predicted Value = 1 Predicted Value = 0

True value = 1 TP FN
True value = 0 FP TN
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Figure 5. Classification results for TP, FP, FN, and TN, ((a) is classification results for TP and FP, where
the green solid circle represents TP, and the red solid circle represents FP. (b) is classification results
for TP and FN, where the green solid circle represents TP, and the orange pentagram represents FN).
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To evaluate the accuracy of our method in extracting green tides from different RS
data sources, three commonly used judgment indicators were selected: Precision, Recall,
and F1-score. Precision was defined as the percentage of extracted green tide elements
(all elements with a predicted value of 1) that were accurate, i.e., Precision = TP/(TP + FP).
That was, Precision focused on the ability of green tide pixels to be correctly classified,
which was biased to evaluate the percentage of the number of background pixels mis-
classified as green tide pixels (FP). Recall was defined as the percentage of green tide
elements (all elements with a true value of 1) correctly extracted from the RS images, i.e.,
Recall = TP/(TP + FN). That was, Recall focused on the ability of green tide pixels not to
be missed, which was biased to evaluate the percentage of the number of green tide pixels
misclassified as background pixels (FN). F1-score was defined as the summed average
of Precision and Recall, which was the balance point between the two, i.e., F1-score = 2
(Precision × Recall)/(Precision + Recall). F1-score can comprehensively evaluate the ability
of each data to find positive pixels (green tide pixels). Therefore, F1-score was taken as
the final indicator to measure the accuracy; the higher the value of F1-score, the better the
accuracy of the extraction effect.

The annual average coefficient of determination, R2, as shown in Equation (3), was
calculated to verify the fitting effect of the Gompertz model and the Logistic model.

R2 = 1− ∑ ( fi − yi)
2

∑ ( fi − y)2 (3)

where f is the fitted value of the growth curve, y is the accumulative cover area (ACA) of
the green tide for the corresponding date we input and the y is the mean of the input data.

3.5. Area Consistency Validation Method

The combination of multi-source RS images has been widely used for real-time moni-
toring of the Yellow Sea green tides, but the classification results of different images in the
same period and area are usually different. In order to use multi-source RS data uniformly
for green tide extraction and study its growth curve prediction, it is necessary to evaluate
the consistency from extraction results of different remote sensing data sources. How-
ever, due to the fast drift speed of green tide, which can reach roughly 1–5 km/day [33],
multi-source RS data will have at least a few hours’ intervals, which is enough to produce
differences in green tide drift and deformation. Therefore, it is difficult to conduct pixel-
level consistency validation, such as Kappa. So, we chose to validate the consistency by
comparing the area of the results, as shown in Equation (4).

Acc =

(
1−

∣∣∣∣∣Si − Sj

Sj

∣∣∣∣∣
)
× 100% (4)

where Acc is the area consistency coefficient of green tide extraction results among each RS
satellite data. Si and Sj are the reference data and the sample data, respectively.

3.6. Approximate Nonlinear Method

The approximate nonlinear method (see Table 2) was used to fit the Gompertz and
Logistic curve models separately.
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Table 2. Approximate nonlinear method fitting formula.

Curve Model Gompertz Logistic

Formula y = ae−be−cx y = a
1+be−cx

Straightening of the curves

ln(ln y
a ) = − ln b + cx

y′ = ln(ln y
a ), bb = ln b

y′ = bb + cx

ln( a−y
y ) = ln b− cx

y′ = ln a−y
y , bb = ln b

y′ = bb− cx

The constant term a
substitute (x1, y1), (x2, y2), (x3, y3) into

ln a =
ln y1 ln y2−ln y3

2

ln y1+ln y2−2 ln y3

substitute (x1, y1), (x2, y2), (x3, y3) into

a =
2y1y2y3−y3

2y1−y3
2y2

y1y2−y3
2

3.7. Uncertainty Estimate Method

The fitting process is only a statistical correlation, not a deterministic functional
relationship, and only the regression value f of the growth curve can be obtained. While
the actual value y will be affected by other random factors and must fluctuate around the
regression value, and the uncertainty of such fluctuations can be measured by the residual
standard deviation S, the formula was as follows:

S =

√√√√√ n
∑

i=1
(yi − fi)

2

n− 2
(5)

where f was the fitting regression value of the growth curve, and y was the accumulative
coverage area of the actually extracted green tide.

Usually, the fluctuation of the actual value from the regression value f follows a
normal distribution. So, for a fixed x value, the y value is distributed symmetrically around
the regression value f . The probability of a y value occurring is related to the S. The smaller
the S, the more centralized the data, the higher the accuracy of the estimate of y. Therefore,
in the process of the approximate nonlinear method, the S was taken as the precision mark
of fitting, and two parallel lines are drawn near the regression line y′ = cx + bb, as shown
in Equation (6). {

y′1 = cx + bb− 2s
y′2 = cx + bb + 2s

(6)

Then, the corresponding curve formula can be obtained according to the approximate
nonlinear method. In all possible y values, about 95% of data points will fall in these two
curves.

3.8. Growth Curve Area Proportion Calculation Method

As shown in Figure 6, the area and the percentage points corresponding to the start
and dissipation times of the green tide, i.e., the statistic P related to the proportion of
integral area at the corresponding time (d), was calculated according to the definite integral
of the Gaussian fitting result of the first derivative, as shown in Equation (7):

P(xα) =
sα

sall
=

∫ xα

x1
y′dx∫ x2

x1
y′dx

0 ≤ P ≤ 1 (7)

where xα is the start and dissipation time of the green tide bulletin; x1, x2 are day 1 and
day 365, respectively; and Sα, Sall are the integral areas corresponding to day xα and
the whole year, respectively. When xα is the start time of the green tide, P(x α) is the
starting percentile, defined as Pstart; when xα is the end time of the green tide, P(x α) is the
dissipation percentile, defined as Pdissipation.
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3.9. Kurtosis Coefficient

The kurtosis coefficient was calculated as in Equation (8):

g2 =

√
n
24

 1
n

n

∑
i=1

(
y′ i − y′

ss

)4

− 3

 (8)

ss =

√
1
n

n

∑
i=1

(y′ i − y′)
2

(9)

where y′ i is the value of the first derivative of the input data; y is the mean value of y′ i; and
ss is the standard deviation (see Equation (6)). g2 is dimensionless.

3.10. Identification of U. prolifera and Sargassum by RS

We usually use the spectral properties of macroalgae, which have a distinct reflection
peak (700–800 nm) in the near-infrared band, to separate them from seawater. Although
this reflection peak separates U. prolifera and Sargassum from seawater, the presence of
U. prolifera can be demonstrated by the other reflection peak appears near the green band
(550–570 nm), a spectral feature absents from Sargassum [7,34,35]. The RS images usually
contain the spectral information of the above bands (Landsat 5 has spectral bands 1–6: 485,
569, 660, 840, 1676, 2223 nm; GF-1 has spectral bands 1–4: 485, 555, 676, 774 nm; HY-1C has
spectral bands 1–4: 460, 560, 650, 825 nm). Therefore, the spectral characteristics of different
bands of RS images can distinguish U. prolifera and Sargassum, taking GF-1 as an example.

As shown in Figure 7, the black points were the remote sensing reflectance of GF-1
RS data in different bands, and the solid black line connects all these points. The black
dotted line connects the mean reflectance of band 1 (Red band) and band 3 (Blue band), and
the formula of the line was fitted by y = ax + b. The green line segment represents the
difference between y2 and y1 (d = y2− y1), where y2 is the mean reflectance of band 2
(Green band) of each RS datum and y1 is the y coordinate of the same x value (band 2) on
the black dotted line (y = ax + b). If d > 0, it meant that there was a reflection peak near
the green band, which means this pixel was U. prolifera; otherwise, if d <= 0, there was no
reflection peak which means this pixel may be Sargassum.
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4. Results
4.1. Semi-Automated Green Tide Extraction
4.1.1. Characteristics of Different RS Data

To compare the extraction results of different satellite data sources, we matched
the contemporaneous satellite images of each data source and selected the same area
for comparison to ensure that the objective conditions, such as cloud volume, weather
conditions, imaging effect, and green tide coverage, of the satellite images, were as similar
as possible. Due to the different revisit periods of the satellites, it was difficult to match the
data exactly to the same day, so we tried to select a set of data with relatively close dates,
and the results of the comparison are shown in Table 3. Even though the selected data for
GF-1 and HJ-1 did not match the RS image on the same day as the other data, both of them
are the main sources of data for the Yellow Sea Green Tide traceability, so we still added
them to the comparison. The region selection schematic diagram and extraction effect of
each dataset are shown in Figure 8.

Table 3. Selection regions of the same area size from different data sources.

Satellite Time of
Guardian Film Resolution (m) Number of

Grids
Corresponding

Area (km2)

GF-1 20 June 2021 16 562 × 562 80.86
Landsat 23 June 2021 30 300 × 300 81.00

HJ-1 22 June 2021 30 300 × 300 81.00
HY-1C 23 June 2021 50 180 × 180 81.00
MODIS 23 June 2021 250 36 × 36 81.00

In terms of the ability of the RS image to display the green tide information, the
high-resolution RS images (Figure 8b,d,f,h) presented the green tide information more
completely, regardless of whether the green tide was large or sporadically distributed,
whereas the low-resolution RS images (Figure 8j) cannot present the sporadic green tide
information. In terms of the effect of the extraction method, the green tide information
presented by each data source was extracted successfully, although the extraction results
were, as expected, significantly better for the high-resolution RS images (Figure 8c,e,g,i)
than for the low-resolution images (Figure 8k), especially when the early green tide bloom
was sporadically distributed [36]. To sum up, thanks to the advantage of the presentation of
sporadically distributed green tides, the high-resolution RS images had absolute advantages
over low-resolution images for the traceability of early green tide sources.
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Figure 8. Schematic diagram of the location of the satellite extraction area. (a) is the selected
approximate area; (b,d,f,h,j) are false-color images of GF-1, Landsat, HJ-1, HY-1C, and MODIS,
respectively (band combination: GF-1: band 3-2-1; Landsat: band 4-5-3; HJ-1 and HY-1C: 3-4-2;
MODIS:1-2-1); and (c,e,g,i,k) are the images’ respective green tide extraction effects (the red point
represents FP, the white point represents FN, and the green point represents TP).
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4.1.2. Accuracy Assessment
Accuracy Assessment for Different RS Data

We assessed the accuracy of the different RS data in Table 3. As shown in Table 4, the
Precision values of different satellites (GF-1, Landsat, HJ-1, HY-1C, and MODIS) were all
up to 98.0%, the Recall values of different satellites were all higher than 96.0%, and all of
the F1-score values can reach 97.0%. The average Precision, Recall, and F1-score values of
all datasets were 99.6%, 98.3%, and 99.0%, respectively. Regardless of the other indicators
(Precision and Recall), or the aggregative indicator F1-score used to evaluate the extraction
ability of green tide, all of them were up to 97.0%. In conclusion, our method worked well
for both high- and low-resolution RS images for green tide extraction, indicating that our
extraction method can be applied to the images of most satellites.

Table 4. Accuracy evaluation of the extraction effect.

Satellite
Precision Recall F1-Score

TP
TP+FP

TP
TP+FN 2× Precision×Recall

Precision+Recal

GF-1 99.8% 99.3% 99.6%
Landsat 99.9% 99.0% 99.5%

HJ-1 99.9% 98.5% 99.2%
HY-1C 99.9% 98.3% 99.1%
MODIS 98.6% 96.6% 97.6%
Mean 99.6% 98.3% 99.0%

Accuracy Assessment for Different Environments

We uniformly selected Landsat RS images with high spatial resolution, a large amount
of data, and comprehensive coverage of the study area as datasets for accuracy assessment
in different environments. Detailed information is shown in Table 5. In addition to the
comparison of extraction accuracy in different water depth environments, we also included
a group covered by thin clouds (C3).

Table 5. Detailed information on RS images for accuracy assessment in different environments.

Zone Serial Number Corresponding RS
Image

Location of the
Images

A
(Depth of <−35 m)

A1 Landsat 8 (4 June 2020) 121.17◦–121.27◦E,
35.65◦–35.73◦N

A2 Landsat 9 (25 June 2022) 120.53◦–120.63◦E,
35.67◦–35.75◦N

A3 Landsat 8 (23 June 2021) 121.25◦–121.35◦E,
35.98◦–36.06◦N

B
(Depth of ≥−35 m)

B1 Landsat 8 (23 June 2021) 121.68◦–121.77◦E,
34.95◦–35.03◦N

B2 Landsat 8 (23 June 2021) 121.93◦–122.03◦E,
34.51◦–34.59◦N

B3 Landsat 8 (2 June 2019) 121.67◦–121.77◦E,
34.58◦–34.66◦N

C
(Muddy water area)

C1 Landsat 8 (22 May 2021) 120.85◦–120.94◦E,
33.73◦–33.81◦N

C2 Landsat 8 (23 June 2021) 121.30◦–121.39◦E,
33.98◦–34.06◦N

C3
(Think cloud) Landsat 8 (24 May 2016) 120.56◦–120.66◦E,

33.87◦–33.95◦N

As shown in Figure 9, the minimum number of pixels needed for the accuracy assess-
ment was around 104, and the optimal number of pixels was around 105~106. So the total
number of pixels in Table 5 was nearly on the order of 105.
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The accuracy assessment results of the extraction effect in different environments are 
shown in Table 6. The Precision was not much different across different environments and 
was as high as 99.0%. This was because the NDVI value of the main background pixel 
(seawater pixel) was mostly negative, and the threshold value we automatically selected 
was generally positive. Therefore, it was rare to misclassify the background pixel as a 
green tide pixel (FP). The Recall varied little under different water depths, but it was sig-
nificantly higher than that in muddy water areas (Zone C) and under thin cloud cover 
(C3). 

There were still some differences in accuracy results within the same zone with a 
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Figure 9. Accuracy assessment of extraction results with different orders of magnitude of pixel
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The accuracy assessment results of the extraction effect in different environments are
shown in Table 6. The Precision was not much different across different environments and
was as high as 99.0%. This was because the NDVI value of the main background pixel
(seawater pixel) was mostly negative, and the threshold value we automatically selected
was generally positive. Therefore, it was rare to misclassify the background pixel as a green
tide pixel (FP). The Recall varied little under different water depths, but it was significantly
higher than that in muddy water areas (Zone C) and under thin cloud cover (C3).

Table 6. Accuracy assessment results of the extraction effect in different environments.

Zone Serial
Number

Precision Recall F1-Score Coverage Rate
TP

TP+FP
TP

TP+FN 2× Precision×Recall
Precision+Recal

TP
300×300

A
(Depth of
<−35 m)

A1 99.6% 90.0% 94.6% 7.79%
A2 99.8% 96.5% 98.1% 10.4%
A3 99.9% 99.0% 99.5% 18.9%

B
(Depth of
≥−35 m)

B1 99.9% 98.3% 99.1% 13.1%
B2 99.9% 98.4% 99.1% 29.6%
B3 99.9% 94.6% 97.2% 8.59%

C
(Muddy

water area)

C1 99.9% 84.2% 91.4% 5.70%
C2 99.9% 93.4% 96.6% 12.6%
C3

(Think cloud) 99.8% 69.5% 82.0% 5.67%

There were still some differences in accuracy results within the same zone with a
similar environment, such as A1 and A2. We think this was related to the proportion and
distribution of green tide in the selected area and the amount of sporadic floating green
algae. When the amount of green tide in a one-pixel grid was small (the case of sporadic
floating green algae pixel), it could easily be misclassified as a background pixel (FN).
Therefore, we used the Coverage rate to roughly reflect the distribution of green tide in the
selected area; the larger the value, the higher the quantity and aggregation degree of green
tide in the area. As we can see in Table 6, the higher the value, the higher the accuracy.

In general, the results of the comprehensive evaluation index F1-score were all above
90%, except C3, which is covered by thin clouds.
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4.2. Area Consistency Validation Results

According to Equation (3) in Section 3.5, the area consistency coefficient (Acc) of green
tide extraction results among remote sensing satellite data in Table 3 was calculated, and
the results were shown in Table 7. The Acc between Landsat and HY-1C was the best,
reaching 96%. The Acc between MODIS, Landsat, and HY-1C was also between 85% and
90%. However, GF-1 and HJ-1 had relatively low Acc with the other three, which was
because the other data were on the same day, and the time was relatively closer, so the
drift and deformation of the green tide were relatively small, while GF-1 and HJ-1 differed
by 3 and 1 days, respectively, resulting in lower Acc of the area. The difference between
GF-1 and HJ-1 was 2 days, and the Acc between them reached 88–89%. The consistency
validation results show that the green tide extraction results from multi-source RS data
were generally consistent, and multi-source RS data could be used to monitor green tide
more accurately and comprehensively in real-time.

Table 7. Area consistency coefficient of green tide extraction results.

Satellite GF-1 Landsat HJ-1 HY-1C MODIS

GF-1 100% 67.6% 89.7% 65.4% 59.2%
Landsat 52.1% 100% 67.2% 96.7% 87.5%

HJ-1 88.6% 75.3% 100% 72.8% 65.9%
HY-1C 47.1% 96.6% 62.7% 100% 90.5%
MODIS 31.0% 85.7% 48.3% 89.5% 100%

4.3. Green Tide Growth Curve

We extracted single-day data on the Yellow Sea green tide from 2008 to 2021 based
on cloud-free/low-cloud multi-source RS images to effectively monitor the green tide in
real time and analyze its development each year in terms of the annual green tide bloom,
development duration, and impact range and route. We chose the commonly used growth
curve models—Gompertz [37] and Logistic [38]—to fit the relationship between the ACA
and the time of the green tide.

The cover area of the green tide (2008–2021) was extracted from RS images, and an
approximate nonlinear method (see Table 2) was used to fit the two curve models separately
(Figure 10). The input was the ACA extracted from remote sensing images without cloud
or with thin cloud from 2008 to 2021. The output was the formula of Gompertz and the
Logistic curve fitted by the approximate nonlinear method described in Table 2. The R2

(see Equation (3)) was calculated to verify the fitting effect and it was espectively labeled in
Figure 10. The mean R2 of Gompertz model was 0.9740 and was slightly better than that of
the Logistic model (0.9720).

The two curves fit similarly to the annual data of green tide, so the best of the two
models was chosen to fit the growth curve trends of the green tide cover area for each year.
Combined with the approximate nonlinear method, the data from more than three scenes
extracted by real-time monitoring could fit the growth curve of the current year and predict
the general bloom situation, providing a reference for the next steps toward green tide
prevention and control. The larger the amount of basic data, the higher the accuracy of the
fitted growth curve.

For any type of optical sensor, NDVI is more or less affected by atmospheric aerosol,
muddy water, and shallow water layer. Similarly, the change of environmental factors in
satellite images will lead to the uncertainty of extraction results. In addition, the ACA
depends on surface currents and the number of images. Therefore, an uncertainty for the
growth curve was estimated, as shown in Figure 10.
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Figure 10. Growth curve fitting effect with 95% confidence interval.

After determining the growth curve of the green tide cover area versus time, the
duration of development of the green tide was estimated, and the approximate start and
dissipation times of the green tide were projected. We found that the first-order derivative
of the growth curve, i.e., the rate of increase in the green tide cover area, conformed to the
normal distribution, so a Gaussian fit to the first-order derivative was performed to obtain
the curve equation y′ (see Figure 11).
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We calculated the proportion area of the first-order derivative of the growth curve
corresponding to the start and dissipation times of the green tide according to the growth
curve area proportion calculation method described in Section 3.8. The start and dissipation
times of the green tide event were determined according to the China Marine Disaster
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Bulletin and the Jiangsu Marine Disaster Bulletin, as shown in Table 8. For periods that
were not accurate to days, the 15th day was considered as the middle, the 20th day as
mid-late, and the 25th day as late.

Table 8. Start and dissipation times of the green tide event.

Year Start Time Starting
Percentile Dissipation Time Dissipation

Percentile

2008 May F 0.832% August F 97.64%
2009 24 March F 0.000% Late August F 90.38%
2010 20 April F 0.000% Mid-August F 100.0%
2011 27 May F 0.000% 21 August F 100.0%
2012 Late March F 0.000% 30 August F 100.0%
2013 Mid to late March F 0.000% Mid-August F 99.98%
2014 30 April
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We found that the start percentile (Pstart) and dissipation percentile
(

Pdissipation

)
were related to the flatness of the Gaussian fit curve y′ of the first-order derivative of the
growth curve; therefore, we established the relationship between the start and dissipation
percentiles and the kurtosis coefficient g2 of y′ to better infer the start and dissipation times
of the green tide. First, the kurtosis coefficient of the first derivative y′ of the growth curve
was calculated as in Equation, and the input data were the growth curve.

The relationships between the kurtosis coefficient of Gaussian fit curve y′ of the first
derivative of the growth curve and the start and dissipation percentiles were established
separately and found to be roughly exponential. According to the principle of the least
squares method, the curves of the start and dissipation percentiles and the kurtosis coeffi-
cients were fitted, as shown in Figure 12. By combining these relationships with the growth
curve fitted using the approximate nonlinear method, it was possible to predict the start
and dissipation times of the Yellow Sea green tide and the extent of the green tide bloom
based on the predicted ACA of the green tide. These predictions provide a reference basis
for future work on green tide management.
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4.4. Green Tide Trend Forecast for 2022

Data for predicting the 2022 green tide were extracted from multi-source RS images.
The available data were for four scenes, which were combined with the approximate
nonlinear method to fit the predicted growth curve of this green tide for 2022. According
to the prediction results (Figure 13), the bloom time was expected to be from 1 June to
15 August 2022, the duration was expected to be 73 days, and the ACA was expected to
be approximately 1190.90–1191.21 km2. Compared with the green tide data from recent
years, the predicted bloom duration and ACA in 2022 were respectively shorter and smaller,
suggesting that this would be a smaller green tide bloom event in the Yellow Sea than those
seen in recent years (see Figure 14).
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For the true condition of 2022, according to the Ministry of Natural Resources of
the People’s Republic of China, the 2022 pre-salvage operation of the Yellow Sea green
tide began on May 19 and finished around mid-August in coastal cities such as Yantai.
In addition, the bloom was much smaller than last year. The actual duration and bloom
condition were roughly in line with our predictions.

In fact, there have been a lot of artificial measures for the Yellow Sea green tide in
recent years, such as artificial salvage, which is bound to have an impact on prediction.
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However, we believe that these human factors may affect the accuracy of the results over
a short period but will not affect the general direction of the forecast. One was that the
main function of the prediction model was to get a rough estimate of the size of the green
tide blooms and to know its bloom duration and inflection point. The second was that
monitoring was a dynamic process; for example, we did not know whether this RS image
we selected was before or after artificial salvage. In addition, salvage and defense measures
are mainly inshore, so the impact on the center of the sea is limited.

However, the positive impact of human intervention is also one of the hot topics of
attention, and we will pay further attention to this content. In addition to human factors,
climate factors can also impact the green tide. Therefore, we also tried a predicted model
considering climate factors, but the effect of the model was not ideal, and the stability was
not good, so we did not adopt it.

5. Discussion
5.1. Green Tide Traceability

Due to the influences of temporal and spatial resolution, cloud, rain, fog, and other
weather factors, the earliest time range for green tide monitoring by RS is generally from
mid-late May to early June [25,39], and the traceable range is generally limited to the
Subei shoal along the Jiangsu coast. To obtain an earlier time range for monitoring and a
wider range of green tide traceability locations, the newly proposed green tide extraction
algorithm was used to extract data on the Yellow Sea green tide from 2008 to 2022 through
multi-source high-resolution RS images, and the source of the Yellow Sea green tide was
successfully traced. The main data of the high-resolution RS satellites used in this study
and their in-orbit operation times are shown in Table 9. HY-1C and GF-1 advanced the
source tracing time to early April (as shown in Table 9), and the overall tracing time of
the multi-source satellite images was advanced to early May. We used multi-source high-
resolution RS data to trace the source of the Yellow Sea green tide as far as possible, with
a spatial resolution between 16 m and 50 m. This resolution range can monitor part of
sporadic floating U. prolifera, as shown in Figure 8. Even if we cannot monitor the very
early process of the green tide, at least we will be able to monitor the green tide when it
starts to take shape.

Table 9. In-orbit operation times of high-resolution RS satellites.

High-Resolution RS Data Source In-Orbit Operation Time

Landsat5 March 1984–June 2013
HJ-1 September 2008–Present

Landsat8 February 2013–Present
GF-1 April 2013–Present

HY-1C September 2018–Present

After extracting the earliest distribution data of the Yellow Sea green tide in all years
(2008–2022), the central location was defined as the source location of the green tide, as
shown in Figure 15a. The source locations were mainly clustered in two regions, and
the k-means clustering algorithm was used to classify the central locations. The k-means
clustering is a method of cluster analysis that is aimed at partitioning the data into k clusters,
where each datum belongs to the cluster with the nearest mean [40]. This algorithm is
widely used in spatial clustering analysis [41]. The source locations were classified into
two categories using the k-means clustering algorithm (as shown in Figure 15b). Based on
the tracing results, a source was also found in the southeastern Yellow Sea (blue box), in
addition to the Subei shoal along the Jiangsu coast (the most commonly attributed source;
red box). The sources of the Yellow Sea green tide were further clarified, which may guide
the early prevention, control, and targeted management of the Yellow Sea green tide.



Remote Sens. 2023, 15, 2196 20 of 24

Remote Sens. 2023, 15, x FOR PEER REVIEW 20 of 25 
 

 

resolution RS data to trace the source of the Yellow Sea green tide as far as possible, with 
a spatial resolution between 16 m and 50 m. This resolution range can monitor part of 
sporadic floating U. prolifera, as shown in Figure 8. Even if we cannot monitor the very 
early process of the green tide, at least we will be able to monitor the green tide when it 
starts to take shape. 

After extracting the earliest distribution data of the Yellow Sea green tide in all years 
(2008–2022), the central location was defined as the source location of the green tide, as 
shown in Figure 15a. The source locations were mainly clustered in two regions, and the 
k-means clustering algorithm was used to classify the central locations. The k-means clus-
tering is a method of cluster analysis that is aimed at partitioning the data into k clusters, 
where each datum belongs to the cluster with the nearest mean [40]. This algorithm is 
widely used in spatial clustering analysis [41]. The source locations were classified into 
two categories using the k-means clustering algorithm (as shown in Figure 15b). Based on 
the tracing results, a source was also found in the southeastern Yellow Sea (blue box), in 
addition to the Subei shoal along the Jiangsu coast (the most commonly attributed source; 
red box). The sources of the Yellow Sea green tide were further clarified, which may guide 
the early prevention, control, and targeted management of the Yellow Sea green tide. 

Table 9. In-orbit operation times of high-resolution RS satellites. 

High-Resolution RS Data Source In-Orbit Operation Time 
Landsat5 March 1984–June 2013 

HJ-1 September 2008–Present 
Landsat8 February 2013–Present 

GF-1 April 2013–Present 
HY-1C September 2018–Present 

 
Figure 15. Source site statistics 2008–2022. (a) shows the source sites of green tide blooms over the 
years, and (b) shows the results of k-means clustering, which divided the green tide source into two 
clusters: the Subei shoal (red box) and the southeastern Yellow Sea (blue box). 

5.2. Green Tide Source Identification 
In addition to U. prolifera green tide, Sargassum gold tide also occurred frequently in 

the Yellow Sea, especially in the southeastern Yellow Sea [42,43]. Therefore, it cannot be 
ruled out that the green tide source found in the Southeastern Yellow Sea is Sargassum.  
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tral reflectance of the extracted green tide pixels and calculated the mean value of each 
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Figure 15. Source site statistics 2008–2022. (a) shows the source sites of green tide blooms over the
years, and (b) shows the results of k-means clustering, which divided the green tide source into two
clusters: the Subei shoal (red box) and the southeastern Yellow Sea (blue box).

5.2. Green Tide Source Identification

In addition to U. prolifera green tide, Sargassum gold tide also occurred frequently in
the Yellow Sea, especially in the southeastern Yellow Sea [42,43]. Therefore, it cannot be
ruled out that the green tide source found in the Southeastern Yellow Sea is Sargassum.

According to the identification method described in Section 3.6, we counted the
spectral reflectance of the extracted green tide pixels and calculated the mean value of each
band. As shown in Figure 16a,c,d shows that 99% of d (the green part of the pie chart) was
positive, indicating that the majority of our extracted green tide pixels matched this spectral
property of U. prolifera with a reflection peak near the green band. The reflection peak in
Figure 16b was lower than in Figure 16b on the solid black line was not very pronounced,
so we selected the pixels that d > 0 and drew as a red solid line to demonstrate the presence
of the reflection peak near the green band, and thus prove the existence of U. prolifera. The
pixel proportion of d > 0 was about 50% (the green part of the pie chart). The reflection
peak near green band (550–570 nm) in Figure 16b is not as obvious as the other ones
(Figure 16a,c,d), which was mainly affected by Sargassum.
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Therefore, the green tide source of the southeastern Yellow Sea (blue box in Figure 15)
was sufficiently possible to exist and should be taken seriously.

As seen in Figure 14, 2015, 2019, and 2021 were the three years with the largest green
tide blooms in the Yellow Sea, and it was found that the green tide generally reached its
maximum cover area in mid-to-late June to early July, which was consistent with previous
studies [44–46]. In addition, the duration of the three years was relatively long, consistent
with Zheng et al., 2022.

6. Conclusions

For many years, the repeated green tide blooms in the Yellow Sea have not only posed
a great threat to the coastal ecology but also caused huge economic losses along the Yellow
Sea coast. Therefore, there is an urgent need to predict future blooms of the Yellow Sea
green tide to guide appropriate measures to prevent and control these events. In this paper,
we propose a semi-automated method for extracting data on the Yellow Sea green tide
based on the NDVI, which greatly improved the efficiency of green tide extraction and
enabled analysis of the events and monitoring of the green tide in real-time.

In this study, we first compared the presentation of the green tide from various RS
data sources (GF-1, Landsat 5 TM, Landsat 8 OLI_TIRS, HJ-1A/B, HY-1C, and MODIS).
High-resolution RS images were shown to present the sporadic floating green algae more
completely than low-resolution images, with the resolution being highly positively corre-
lated with the completeness of representation of the details. To evaluate the accuracy of
the newly proposed semi-automated green tide extraction method, Precision, Recall, and
the composite index F1-score were used as indicators. For different satellites, the mean
Precision, Recall, and F1-score were all over 98.0%, which indicated that the universality
of this method is good. For different environments, the Recall varied little under different
water depths, but it was significantly higher than that in muddy water areas (Zone C) and
under thin cloud cover (C3). For the results of Precision, there was not much difference
between different environments, and it was as high as 99.0%. F1-score were all above 90%,
except when the data were covered by thin clouds. Overall, our method can be well adapted
to different environments. To obtain earlier and more comprehensive green tide traceability
results and promote the early prevention, control, and targeted management of the Yellow
Sea green tide, we further advanced the tracing time to early May by using the combination
of multi-source RS images, except for HY-1C, for which the tracing time was advanced to
early April. Using k-means clustering analysis, the multi-year traceability results (i.e., the
central location of the early-stage green tide) were divided into two categories: the Subei
shoal along the Jiangsu coast and the southeastern Yellow Sea.

To analyze and predict the future development of green tides, single-day data on the
Yellow Sea green tide were extracted from 2008 to 2022, the ACA data of the green tide over
time were fitted using Gompertz and Logistic growth curves, and the relationships between
the start and dissipation percentiles and the kurtosis coefficients were obtained. Using
the approximate nonlinear method and the extraction results from at least the three Rs
images, the green tide growth curve for 2022 was fitted, and the approximate bloom extent
was successfully predicted. Such predictions can provide a reference basis for green tide
prevention and control measures. The green tide prediction results showed that compared
with recent years, the predicted bloom duration in 2022 would be shorter and have a
smaller ACA. That prediction was in line with the actual duration and bloom condition
in 2022.
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Abbreviations

Extraction result Data determined as green tide pixels from RS images
Accumulative cover area The accumulation cover area of extraction result
f The NDVI statistic sample frequency
H The equation for the second-order Gaussian fitted curve of

NDVI values
TP True positive (TP) indicates the number of correctly classified

green tide pixels
FN False negative (FN) indicates the number of green tide pixels that are

misclassified as background
FP False positive (FP) represents the number of background pixels that

are misclassified as green tide pixels
TN True negative (TN) indicates the number of correctly classified

background pixels
Precision The percentage of extracted green tide elements (all elements with a

predicted value of 1) that are accurate
Recall The percentage of green tide elements (all elements with a true value

of 1) extracted from the Defender
F1-score Summed average of Precision and Recall
Acc The area consistency coefficient
Coverage rate The roughly distribution of green tide in the selected area
y1 The y coordinates of the same x value point (band 2) on the black

dotted line (y = ax + b).
y2 The mean reflectance of band 2 (Green band) of each RS data
d The difference between y2 and y1 (d = y2− y1)
y′ Gaussian fitted curve formula for the first-order derivative of

the growth curve
R2 Fitting coefficient of determination of the growth curve
P The percentile corresponding to the time of start and dissipation, i.e.,

the statistic related to the percentage of area integrated with time (days)
Sα The integral area of the first derivative of the growth curve for day xα

Sall The integral area of the first derivative of the growth curve for the
whole year

g2 The kurtosis coefficient of y′

ss The standard deviation of y′
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