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Abstract: Accurate precipitation measurements are essential for understanding hydrological pro-
cesses in high-altitude regions. Conventional gauge measurements often yield large underestimations
of actual precipitation, prompting the development of statistical methods to correct the measurement
bias. However, the complex conditions at high altitudes pose additional challenges to the statistical
methods. To improve the correction of precipitation measurements in high-altitude areas, we selected
the Yakou station, situated at an altitude of 4147 m on the Tibetan plateau, as the study site. In
this study, we employed the machine learning method XGBoost regression to correct precipitation
measurements using meteorological variables and remote sensing data, including Global Satellite
Mapping of Precipitation (GSMaP), Integrated Multi-satellitE Retrievals for GPM (IMERG) and Cli-
mate Hazards Group InfraRed Precipitation with Station data (CHIRPS). Additionally, we examined
the transferability of this method between different stations in our study site, Norway, and the United
States. Our results show that the Yakou station experiences a large underestimation of precipitation,
with a magnitude of 51.4%. This is significantly higher than similar measurements taken in the
Arctic or lower altitudes. Furthermore, the remote sensing precipitation datasets underestimated
precipitation when compared to the Double Fence Intercomparison Reference (DFIR) precipitation
observation. Our findings suggest that the machine learning method outperformed the traditional
statistical method in accuracy metrics and frequency distribution. Introducing remote sensing data,
especially the GSMaP precipitation, could potentially replace the role of in situ wind speed in pre-
cipitation correction, highlighting the potential of remote sensing data for correcting precipitation
rather than in situ meteorological observation. Moreover, our results indicate that the machine
learning method with remote sensing data demonstrated better transferability than the traditional
statistical method when we cross-validated the method with sites located in different countries.
This study offers a promising strategy for obtaining more accurate precipitation measurements in
high-altitude regions.

Keywords: bias correction of precipitation measurement; remotely sensed precipitation; machine
learning; XGBoost; Tibetan plateau

1. Introduction

Accurate in situ precipitation measurements are important for assessing the hydro-
logical impacts of climate change, determining water resource availability, estimating and
forecasting flood risk, and understanding the Earth’s energy balance. Accurate measure-
ments of precipitation at high altitudes become even more necessary. These areas, such as
the Tibetan Plateau, supplying water resources for a wide range of downstream regions,
have high spatiotemporal precipitation variability but with few precipitation gauges [1].
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These gauges have obvious measurement bias, limiting their capacity to validate the spa-
tially distributed precipitation datasets.

Solid evidence shows that true precipitation has been underestimated in high wind
speed conditions, especially in high mountain areas [2,3]. For instance, Sugiura et al. [4]
indicated that the catch ratios of the gauges in Canada, Russia, and the United States range
from 53.9 to 67.6%. Jia et al. [5] found that solid precipitation was underestimated by
13% on a glacier at a high altitude. The primary reason for this underestimation is that
gauge instruments cannot accurately capture precipitation at high altitudes. When high
wind conditions occur in the vicinity of a gauge, the gauge collects less precipitation than
what actually fell. Additionally, the precipitation that falls into the gauge may evaporate
before it can be measured. Precipitation gauges can also collect less precipitation than
what actually fell due to factors such as gauge design, clogging, or icing. The Double
Fence Intercomparison Reference (DFIR) was designed to minimize the under-catch of
precipitation [6] and was typically used as the actual value of precipitation in correcting
other instruments.

Various correction methods have been developed to address the underestimation of
precipitation measurements. Correcting precipitation measurements requires consideration
of several factors, such as the type of instruments used, the meteorological conditions of
the measurement site, and the period for which the data were collected. Statistical correc-
tion methods have been developed by the World Meteorological Organization (WMO) to
account for wind effects, evaporation loss, and gauge under-catch since the last century [7].
These methods have been improved over time to apply in Siberian regions [8], Arctic
regions [9,10], and western Canada [11]. With the advancement of new precipitation instru-
ments such as the Geono T200B, WMO conducted a Solid Precipitation Intercomparison
Experiment (WMO-SPICE) to cover automatic gauges but not the traditional manual instru-
ments in the earlier comparison [12]. Based on the measurements, Wolff et al. [13] presented
a continuous adjustment function for correcting wind-induced loss of solid precipitation
based on data from a Norwegian field study. Kochendorfer et al. [14] simplified the transfer
function to an exponential formula using wind speed and air temperature as inputs. This
transfer function method (TFM) was examined [15] and applied to other regions. For exam-
ple, Smith et al. [16] used the transfer function to adjust the wind-induced under-catch of
solid precipitation in the Climate Change Canada Automated Surface Observation Network
(CCCASON) and provides access to an hourly adjusted data set. Using the TFM method
recalibrated with a local dataset, Zhao et al. [17] corrected the precipitation observation in
the Qilian Mountains in Northwest China.

These studies have shown that the statistical TFM method can be used for correcting
precipitation measurements in high wind conditions. However, the appropriate methods
may differ depending on the type of precipitation gauge and the measurement location. For
instance, Sugiura et al. [4] have argued that the WMO correction equations are unsuitable
for high wind speeds in high-latitude regions. Similarly, Smith et al. [18] found that
the performance of transfer functions varies greatly by site, suggesting caution in their
application. Zhao et al. [17] suggested that the transfer functions should be fitted to
the local dataset. Additionally, we also noticed that current precipitation measurement
correction only includes a few meteorological variables, such as air temperature and
wind speed, while others, such as radiation and ground moisture, are not considered. It
remains unclear whether these meteorological variables can contribute to precipitation
measurement correction.

The precipitation correction methods described above are mainly intended for ground-
based measurement instruments. While these methods can provide more accurate precipita-
tion estimates for a few stations, they cannot account for larger areas with limited coverage,
such as high-altitude regions. In recent years, remotely sensed (RS) precipitation products
have been developed rapidly and have been validated and applied in many areas. Satellite
precipitation uses near-infrared, passive microwave, and multi-sensor joint algorithms
to invert precipitation, providing precipitation information that covers a wide range of
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terrain, including high altitudes. The current mainstream satellite precipitation products
include Tropical Rainfall Measuring Mission (TRMM) [19], CPC MORPHing technique
(CMORPH) [20], Global Satellite Mapping of Precipitation (GSMaP) [21], and Integrated
Multi-satellitE Retrievals for GPM (IMERG) [22], among others. However, evaluating
remotely sensed precipitation products remains challenging due to the lack of accurate
ground-based precipitation measurement equipment at high altitudes, such as the DFIR.
On the other hand, remotely sensed precipitation products provide data information dif-
ferent from ground-based observations. Can this remotely sensed information be used to
make precipitation corrections that differ from traditional methods? This is a promising
direction for precipitation measurement correction under the rapid development of remote
sensing technology.

As mentioned above, combining in situ meteorological variables with remotely sensed
precipitation datasets may improve the accuracy of in situ precipitation measurements.
Machine learning methods have emerged as a promising approach to accomplish this task.
These methods have strong data generalization capabilities and have successfully fused pre-
cipitation data and corrected remotely sensed precipitation. For instance, Gagne et al. [23]
applied multiple machine learning algorithms to correct precipitation forecasts from the
Storm Scale Ensemble Forecast system, which resulted in improved reliability and skill of
the forecasts compared to the original ensemble. Similarly, Wang et al. [24] suggested that
customized deep learning methods can effectively correct precipitation with fine spatial and
temporal resolutions. These results suggested that machine learning can remove negative
biases and placement mistakes in precipitation forecasts, thereby improving flood and
hydrological process predictions. However, it is important to note that these machine-
learning methods only correct spatially distributed precipitation products and do not target
in situ measurements.

In summary, while efforts have been made to correct wind-induced precipitation,
challenges remain when correcting precipitation measurements at high altitudes. Currently,
precipitation measurement corrections are limited to a few stations with so-called “true
value” observations, such as the DFIR. There is a lack of extension of these corrections to
more sites equipped with only common precipitation measurement instruments, such as
the T200B. In high-altitude areas, it is even more crucial to utilize additional meteorological
variables and remote sensing data to ensure the stability and accuracy of precipitation
correction due to the extreme scarcity of meteorological stations. To improve the correction
of precipitation measurements in high-altitude areas, we employed machine learning to
correct precipitation measurements using additional meteorological variables and remote
sensing data. Furthermore, we assessed the transferability of this machine learning method
among different stations in our study site and in Norway and the United States.

2. Data and Methods
2.1. Study Site and Data

The Yakou station, a high-altitude site in the northwestern Tibetan plateau (4147 m,
100.243E, 38.014N), was chosen as the study area (Figure 1). The system is located on a
mountain peak with a seasonal snowpack. The underlying is a sparse alpine meadow of less
than 10 cm, mixed with a cold desert. The maximum wind speed would exceed 10 m/s. The
average air temperature is −4.8 ◦C, the average relative humidity is 59.9%, and the average
atmospheric pressure is 612.7 hPa. Snowfall frequently occurs, but the accumulated snowpack
is usually less than 30 cm [25].

We constructed a Double Fence Intercomparison Reference (DFIR) precipitation ob-
servation system according to WMO standards. The system includes double fences to
prevent under-measurement of precipitation, and a T200B instrument with three sensors
was installed at the center of the fences. This study used the DFIR observation as the true
precipitation measurements, as suggested in numerous previous studies [14,17].

For comparison, a Geonor T200B Precipitation instrument was installed near the DFIR,
about 20 m away. This T200B also has three weighing sensors and is the same model used
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in the DFIR. The DFIR and T200B data were preprocessed using a low-pass filtering method
to exclude coarse differences, and the cumulative precipitation weight was converted to
precipitation per unit time step, following the method of Pan et al. [11]. The detailed
introduction for other observations can be found in the previous paper [26].

The selected data period was from 21 September 2016 to 31 August 2020. We prepro-
cessed the DFIR and T200B data into time intervals of 1 h, 6 h, and one day to compare the
performance of the machine learning method on different time intervals. For each case of
different time intervals, we divided the study period into two halves. The first half was for
training the model, and the second half was for prediction or validation.

Snow depth, soil temperature, and moisture data were filtered to remove excessive
noise. The details of the meteorological observations used in the machine learning method
are listed in Table 1.

For validating the transfer capacity of the machine learning method, we also used the
precipitation data from a Norway station and a United States station, which was published
in the paper [14].

Figure 1. The Yakou station map. The figure shows the location of the Yakou station at the Tibetan
plateau (the red dot), the relative positions, and close-up photos of the precipitation instruments (the
T200B and DFIR).

Remote Sensing Precipitation

We used remotely sensed precipitation datasets from IMERG, GSMaP, and Climate
Hazards Group InfraRed Precipitation with Station data (CHIRPS). The information of the
three remote sensing datasets is listed in Table 1. IMERG is a Level 3 product that is part
of the Global Precipitation Measurement (GPM) program, which is the next-generation
global satellite observation initiative of the National Aeronautics and Space Administration
(NASA) and the Japan Aerospace Exploration Agency (JAXA) [22]. The GPM carries the
GPM Microwave Imager (GMI), the Visible and Infrared Scanner (VIRS), and the Dual-
frequency Precipitation Radar (DPR), with the latter being able to detect internal cloud
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structures better and improve precipitation information acquisition. IMERG includes the
IMERG-E, IMERG-L, and IMERG-F products, with lag times of 4 h, 12 h, and 4 months,
respectively. IMERG-F, one of the precipitation products used in this study, was corrected
using the Global Precipitation Climatology Centre (GPCC) monthly rainfall observation.

GSMaP is a high spatiotemporal resolution precipitation product developed by the
Japan Science Technology Agency (JST) and JAXA, which integrated observation informa-
tion from multiple microwave sensors such as GMI, TMI, AMSU-A, AMSR2, and infrared
observation information [21]. The product includes the microwave-IR combined product
(GSMaP-MVK), the near-real-time product (GSMaP-NRT), and the gauge-calibrated rainfall
product (GSMaP-Gauge). GSMaP-Gauge was used in this study by combining the daily
observed precipitation of the Climate Prediction Center (CPC) based on GSMaP-MVK.

CHIRPS is a precipitation product developed by the United States Geological Survey
and the Climate Hazards Group, which combines infrared cold cloud duration measure-
ments, satellite imagery, and observations from multiple sources to provide a long-time
series and high-resolution precipitation product for climate change analysis and drought
monitoring research [27]. The CHIRPS v2.0 precipitation product was used in this study.

The remotely sensed data presented here have time scales of 0.5 H and 1 H. Therefore,
to unify the time scales of remote sensing and ground observation data, we resampled
them to daily data when performing cross-comparisons of remotely sensed precipitation in
this study.

Table 1. The meteorological variables and remote sensing data used in this study. The temporary and
spatial resolutions are listed for the remote sensing data. The temporary resolutions are listed for the
data on the Yakou site.

Type Variables Sensors/Sources Resolution

Meteorological variables
Precipitation (DFIR) (mm) T200B-M3 with Double fences 1 H; 6 H; Daily
Precipitation (mm) Geonor: T200B-M3 1 H; 6 H; Daily
Wind speed (m/s) Campbell: WXT520 1 H; 6 H; Daily
Wind direction (◦) Campbell: WXT520 1 H; 6 H; Daily
Air temperature (◦C) Vaisala: HMP45C 1 H; 6 H; Daily
Relative humidity (%) Vaisala: HMP45C 1 H; 6 H; Daily
Soil surface wetness (%) CSI: CS616 1 H; 6 H; Daily
Soil surface temperature (◦C) CSI: 109 1 H; 6 H; Daily
Upwelling Longwave radiation (W/m2) Kipp-Zonen: CNR4 1 H; 6 H; Daily
Downward Longwave radiation (W/m2) Kipp-Zonen: CNR4 1 H; 6 H; Daily
Upwelling shortwave radiation (W/m2) Kipp-Zonen: CNR4 1 H; 6 H; Daily
Downward shortwave radiation (W/m2) Kipp-Zonen: CNR4 1 H; 6 H; Daily
Surface infrared temperature (◦C) Avalon: IRTC3 1 H; 6 H; Daily
Snow depth (m) CSI:SR50A 1 H; 6 H; Daily
Atmospheric pressure (hpa) Setra: CS100 1 H; 6 H; Daily

Remote sensing precipitation
GSMaP Microwave, Infrared, gauge 1 H; 0.1◦

IMERG Microwave, Infrared, gauge 0.5 H; 0.1◦

CHIRPS Reanalysis data, Infrared, gauge Daily; 0.05◦

2.2. Method

We aim to correct the T200B precipitation measurements using a machine learning
method, in which relevant meteorological variables are selected (Figure 2). After selecting
the key features (meteorological variables), the hyper-parameters were calibrated, and the
machine learning method was trained to validate the performance of the precipitation
correction. Remotely sensed precipitation was also incorporated into the machine learning
method to explore whether the RS data can improve precipitation correction. Finally,
after building and examining the machine-learning model at the Yakou station, we also
examined the transferability of the machine-learning method to other sites worldwide,
such as the United States and Norway.

Our study chose the XGBoost (Extreme Gradient Boosting) method as the machine
learning method. XGBoost is a scalable tree-boosting system that uses a sparsity-aware
algorithm and weighted quantile sketch for approximate tree learning [28]. It is an efficient
algorithm for Gradient Boosting that iteratively generates multiple weak learners and
adds their prediction results to obtain a final prediction with better performance. It is a
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tree-based model that uses the sum of the predictions of each tree for a given sample as the
final prediction. The algorithm keeps adding trees and splitting features to grow a tree, and
each time a tree is added, it learns a new function to fit the residuals of the last prediction.
The predicted value of a sample is the sum of the corresponding scores of each tree. Based
on the above advantages, we think the XGBoost regression (XGB) method is suitable for
correcting precipitation measurements.

We also chose the traditional transfer function model (TFM) [14], as the comparison
refers to the XGB method. For a fair comparison, the XGB and TFM methods were trained
or fitted with the same training data, then validated with the same validation data.

Before training the XGBoost regression model, we used the RandomizedSearchCV
function in scikit-learn [29] to tune the hyperparameters used. These hyperparameters
include the number of estimators, the learning rate, the minimum loss reduction, the
maximum depth of a tree, the minimum sum of instance weight needed in a child, the
maximum delta step, the subsample ratio of the training instances, the subsample ratio,
and the regularization terms on weights.

Figure 2. The methodology of the XGBoost regression-based precipitation correction. The features
include the T200 precipitation, remote sensing precipitation, and other meteorological variables. The
target is the DFIR precipitation. After feature selection and hyperparameter optimization, the trained
XGB model was used in correcting precipitations. The photo of the satellite is from the NASA GPM
website (https://gpm.nasa.gov/missions/GPM, accessed on 2 March 2023).

Selecting Features and Explaining the Contribution of the Features

To increase the robustness of the XGBoost regression, we employed feature selection
algorithms to identify the most relevant variables from the total of 14 meteorological vari-
ables. Specifically, we utilized the SelectFromModel transformer in the scikit-learn package,
which selects variables based on their weighted relevances in the XGBoost regression model,
and the SequentialFeatureSelector transformer, which adds or removes variables based on
the cross-validation score.

https://gpm.nasa.gov/missions/GPM


Remote Sens. 2023, 15, 2180 7 of 21

For a given number m of variables to be selected from the total of n = 14, we used
the aforementioned synthesis method to identify the variable combination, resulting in
14 variable combinations. We then compared their accuracies, assessed their reliability, and
made our final choice.

Given that XGBoost regression is a tree-based machine learning model, we employed
SHAP (SHapley Additive exPlanations) [30], which includes a specific package for explain-
ing the output of tree-based machine learning models. The SHAP value method is based
on cooperative game theory and is used to increase the transparency and interpretability of
machine learning models. We utilized this package to illustrate the impact of each variable
on the model output.

Our approach allowed us to select the most relevant variables and avoid overfitting,
thereby increasing the robustness of our regression model.

2.3. The Transfer Function Method

The transfer function model (TFM) developed in [14] was chosen as the comparison
reference, since it has been tested in previous studies using reliable data sources. The TFM
method is,

CE = e−(a×U)(1−[tan−1(b×Tair )+c]) (1)

Pcor = Pobs/CE (2)

where CE is the catch efficiency which can be obtained by Equation (2) using the DFIR
and T200B observation. Pobs[mm] is the observed precipitation to be corrected, such as the
T200B observation. Pcor [mm] is the corrected precipitation or the DFIR observation. a, b,
and c are coefficients calibrated using the observed wind speed (U[m/s]), air temperature
(Tair [

◦C]), and the observed CE. In this study, a, b, and c were recalibrated using our
observations in Table 1. If a, b, and c were calibrated, then Equation (1) can be used to
correct the T200B observation out of the training period.

2.4. Accuracy Metrics

The root-mean-square error (RMSE) and the total mass bias (BIAS) were used to
measure the performance of the precipitation correction methods.

The RMSE and BIAS could be formulated as,

RMSE =

√
∑n

i=1(Pi
cor − Pi

obs)
2

n
(3)

BIAS =
∑n

i=1 Pi
cor − ∑n

i=1 Pi
obs

∑n
i=1 Pi

obs
× 100(%) (4)

where Pi
obs and Pi

cor represent the precipitation before and after the correction at the ith day.
n is the number of precipitation events intervals.

3. Results
3.1. How Much Precipitation Was Under-Estimated?
3.1.1. In Situ Underestimation

We compared the measured precipitation by the DFIR and T200B to clarify how
much precipitation was underestimated by the T200B (Figure 3). The T200B captured
1415.6 mm of precipitation during the study period, while the DFIR captured 2855.8 mm.
The annual precipitation was estimated to be about 713.9 mm/year from the DFIR and
353.9 mm/year from the T200B, considering that the study period spanned about four
years. The precipitation from the T200B accounts for 49.6% of the DFIR. This means that
the T200B underestimated precipitation by more than one-half. The T200B is a single-
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fenced instrument, and therefore, it is likely that a significant amount of precipitation was
not captured.

We analyzed the frequency distribution of precipitation from the T200B and the DFIR
in daily intervals. The mean precipitation for the T200B was 2.4 mm/day, with a standard
deviation of 2.8 mm/day. For the DFIR, the corresponding values were 4.8 mm/day and
5.8 mm/day. The maximum precipitation captured by the T200B was 19.5 mm/day, while
the DFIR captured a maximum of 37.1 mm/day, much larger than that of the T200B.

The segmented statistics in 5 mm intervals showed that the T200B captured less
precipitation in almost all ranges. In small precipitation events (0–5 mm/day), the T200B
captured 20.9% more precipitation than the DFIR. However, the T200B captured less
precipitation in the other ranges than the DFIR. The underestimation percentage was
49.1% for 5–10 mm/day events, increasing to 68.4% for 10–15 mm/day events, 87.5% for
15–20 mm/day events, and 100% for precipitation greater than 20 mm/day. These results
indicate that the T200B has a limited capacity to capture heavy precipitation events. The
heavier the precipitation, the more the T200B missed. It should be noted that this does not
mean the T200B cannot capture heavy precipitation but rather that it underestimated heavy
precipitation events to a greater degree.

We separately analyzed the possible missing precipitation captured by the DFIR
and T200B. During the approximately four years, the DFIR was found to have missed
approximately 9.5 mm of precipitation measured by the T200B, while the T200B missed
approximately 127.8 mm of precipitation that the DFIR measured. The results suggest
that the DFIR can detect more precipitation than the T200B. We also found that neither
the T200B nor the DFIR can effectively observe small precipitation events, particularly
those less than 1 mm/day. Over the four years, both the T200B and the DFIR missed
approximately 600 small precipitation events (<1 mm/day) each.

Figure 3. Comparison between the T200B and DFIR observations of precipitation. The (left) is the
frequency distribution of the two types of observations. The (right) is the segmented statistical
precipitation for the two types of observations.

3.1.2. Misestimation of Precipitation by Remotely Sensed Precipitation

We compared the remotely sensed precipitation to clarify how much precipitation
was underestimated by the IMERG, GSMaP, and CHIRPS (Figure 4). The IMERG, GSMaP,
and CHIRPS datasets all underestimated precipitation compared to the DFIR observations.
The IMERG estimated a total of 1585.7 mm for the entire study period and had the most
underestimation at 44.5%, while the CHIRPS estimated a total of 2822.6 mm and had the
least underestimation at 1.2%. On the deviation error, the GSMaP had the least RMSE
of 4.2 mm/day, while the CHIRPS had an RMSE of 9.2 mm/day. All three datasets had
large deviations from the truth, but relatively speaking, the IMERG and GSMaP datasets
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were closer to the DFIR observations, while the CHIRPS had a very large bias, even up
to 140 mm/day.

We investigated the performance of precipitation datasets in daily precipitation ranges
from 0–5 mm/day to 20–40 mm/day. In each range, precipitation values were summed as
the total precipitation for each dataset. The 0–5 mm/day range had the smallest difference
between the remotely sensed datasets and the DFIR, except for the CHIRPS. In this range,
the DFIR had a total value of 621.0 mm, while the GSMaP and the IMERG were 647.8 mm
and 624.6 mm, respectively. The CHIRPS had a small value of 128.2 mm.

The accumulated precipitation of the GSMaP and IMERG was high in small precipita-
tion ranges, but low in large precipitation ranges. In contrast, the CHIRPS exhibited the
opposite tendency, having a substantial underestimation in smaller precipitation events,
but approaching the DFIR observations at heavy precipitation events (20–40 mm). More-
over, the GSMaP and IMERG approximated T200B in smaller precipitation event ranges.
For precipitation events above 10 mm/day, the remotely sensed precipitation values were
relatively reasonable compared to the DFIR, whereas T200B had only a few observed events,
particularly in the 20–40 mm/day range.

In short, the remotely sensed precipitation datasets underestimated precipitation
to varying extents. Even so, they performed better than the T200B observation in high
precipitation events, especially in the 20–40 mm/day range. It indicates that remotely
sensed precipitation is seldom influenced by wind, which is a major factor influencing in
situ precipitation measurements.

Figure 4. The comparison among remotely sensed precipitations and in situ DFIR observations.
The upper subfigures are the scatter plots between the DFIR and the remotely sensed precipitations
(CHIRPS, IMERG, and GSMaP). The lower bar graph compares precipitation datasets in different
daily precipitation ranges from 0–5 mm/day to 20–40 mm/day. The precipitation values are labeled
above each bar.
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3.2. How Can the Machine Learning Method Promote the Bias Correction of Single Fenced
Precipitation Measurements?
3.2.1. Feature Selection

Firstly, we used all variables observed at the Yakou station (Figure 5). All meteorologi-
cal variables were used as the training set, and the DFIR data were used as the true values.
The XGBoost regression algorithm was used for training. The training results showed that
the R2 and RMSE were 0.93 and 0.73 mm, respectively. The R2 and RMSE were 0.83 and
1.36 mm in the validation period, respectively.

We utilized SHAP values to evaluate the contribution or importance of each meteo-
rological variable to the model’s prediction. The SHAP values provide an indication of
how much the corrected precipitation is likely to change with the alteration of each feature.
The results present a preliminary view of the importance of each variable in achieving
the best score when all variables were employed. Figure 5 depicts the importance of all
meteorological variables. Among them, the precipitation from the T200B observations is
deemed the most influential, followed by relative humidity, soil surface wetness, wind
speed, and air temperature. In this case, the T200B values have the broadest SHAP value
ranging from −1 to about 11, signifying their significant influence on the corrected results.
The larger the T200B precipitation observation, the greater the corrected precipitation.
Notably, the variable importance would change if the composition of the variables were
altered, such as if some were removed or added.

Figure 5. The SHAP values of all meteorological variables. Each line in the graph represents a feature;
the horizontal coordinates are SHAP values. A dot represents a sample. The redder the color, the
larger the value of the feature itself. The bluer the color, the smaller the value of the feature itself.

We utilized various feature selection algorithms, including the SELECTMODEL, to
pinpoint the most significant meteorological variables for precipitation correction. By doing
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so, we avoided overfitting the machine-learning-based precipitation correction model. Our
results demonstrated that selecting too few or too many variables did not enhance the
accuracy of the precipitation correction model. Instead, a U-shaped trend in the accuracy (as
measured by the RMSE) of precipitation correction was observed as the number of variables
increased, highlighting the significance of selecting variables with stronger correlation to
enable more precise precipitation correction learning (Figure 6).

Figure 6. The change of RMSE according to different variable combinations in the XGB regression
method. There are 14 columns in which the selected variables are marked orange. The number of
selected variables increased from 1 to 14 along the X-axis. The corresponding RMSE is noted at the
top of each column.

After several selection iterations, T200B precipitation, air temperature, wind speed,
surface soil moisture, and upward longwave radiation were identified as the primary
correlations to be calibrated. The resulting SHAP values suggest that, in addition to the
T200B variable, air temperature, wind speed, soil surface wetness, and upwelling longwave
radiation have the widest range of effects on corrected results (Figure 7). Wind speed had a
positive relationship with the magnitude of the correction for precipitation, while lower
air temperature corresponded to higher corrected precipitation. Surprisingly, smaller soil
moisture led to larger corrected precipitation.
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The use of these five variables resulted in the most accurate correction. During
the training period, the R2 and RMSE were 0.91 and 0.81 mm, respectively. During the
validation period, the R2 and RMSE were 0.86 and 1.24 mm, respectively. This result was
superior to using the full set of meteorological variables for machine learning, indicating
that only a few key meteorological variables are necessary to better recover precipitation
values from T200B observations to close to the true value.

Figure 7. The SHAP value of the selected five variables. Each line in the graph represents a feature,
and the horizontal coordinates are SHAP values. A dot represents a sample. The redder the color, the
larger the value of the feature itself. The bluer the color, the smaller the value of the feature itself.

3.2.2. Corrected Precipitation Results Using In Situ Meteorological Variables

We utilized two methods, XGB and TFM, to correct the T200B precipitation observation.
The XGB employed the five features selected in Section 3.2.1 for training and prediction,
while the TFM solely used air temperature and wind speed, as required by the method.

Our results demonstrate that the XGB method outperforms the TFM method in all
cases (Figure 8). It achieved the best BIAS accuracies of −2.7%, −5.0%, and −7.0% for
1 h, 6 h, and 1 day intervals, respectively, while the TFM had corresponding accuracies
of −27.6%, −8.5%, and −13.3%. Compared to the significant underestimation of the
T200B observation (with approximately 50% underestimated), both the XGB and TFM
methods showed considerable improvement in the BIAS measure. The XGB method had
the least BIAS.

Regarding RMSE, the XGB method outperformed the T200B observation, particu-
larly in the 6 h interval case, where XGB achieved an RMSE of 1.2 mm, half that of the
T200B observation.

Both the XGB and TFM methods significantly improved the frequency distribution of
corrected precipitation. The original T200B precipitation distribution was concentrated in
the lower values on all time scales, which differs from the DFIR precipitation distribution.
After correction, the T200B precipitation in the low-value interval was suppressed, and
precipitation in the high-value interval was increased. The corrected precipitation of the
XGB and TFM methods was closer to the DFIR precipitation in the frequency distribution.

The frequency distributions of corrected precipitation of the XGB and TFM methods
differed. On the 1 h interval, the frequency distribution of precipitation obtained by the
XGB correction method was closer to the DFIR precipitation. The TFM method corrected
the original T200B precipitation, but many corrected precipitation values were still clus-
tered in the low-value range. On the 6 h interval, the frequency distribution of corrected
precipitation for both the XGB and TFM methods was closer to that of the DFIR precipita-
tion. The XGB precipitation correction agreed better with the DFIR of both low and high
values of precipitation, while the TFM precipitation tended to be underestimated in the
high-value interval. This was evident from the scatterplot, where the TFM precipitation
was largely biased below the 1:1 line in the high-value interval on the 6 h case (Figure 8). In
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the 1-day case, a similar problem existed: the TFM-corrected precipitation was prone to
underestimating the actual precipitation in the high-value interval.

Figure 8. The corrected precipitation results are presented in three separate columns for 1 h, 6 h,
and 1 d intervals. Each column represents the total precipitation during the respective time step.
The XGBoost-corrected results (XGB), traditional transfer function method-corrected results (TFM),
and the uncorrected T200B observation (Y-axis) are compared with the DFIR observation (X-axis).
The comparisons include scatter plots and frequency distributions. A distinct color represents each
correction method. For example, the XGBoost method is in green. The accuracy of each method is
listed in the scatter plots. Only data from the validation period are used here.

3.3. How Could Remotely Sensed Precipitation Be Used in Machine Learning to Promote
Precipitation Correction?

We integrated remotely sensed precipitation data into the XGB regression method to
improve precipitation correction (Figure 9). We compared three datasets: (1) the corrected
precipitation from the XGB method with the remotely sensed data, (2) the corrected precip-
itation from the traditional TFM method, and (3) the uncorrected T200B data. To ensure
consistency, we selected daily remotely sensed data and analyzed our results daily. We also
divided the study period into two halves, using the first half for training and the second
half for validation.

Our results demonstrate a marginal improvement in the accuracy of the XGB regres-
sion method, including the BIAS and RMSE, following the incorporation of remotely sensed
precipitation data into the machine-learning regression. Specifically, the BIAS and RMSE
of the XGB method utilizing remotely sensed data were −5.9% and 2.8 mm, respectively,
while the accuracy of the XGB method sans remotely sensed data was −7.0% and 2.9 mm,
respectively. Furthermore, the frequency distribution of precipitation data corrected by
integrating remotely sensed data was much closer to the actual precipitation of the DFIR.

We also utilized SHAP values to analyze the contribution of remotely sensed data
in the XGB regression model. Our results indicate that the T200B data remain the most
influential variable in the final corrected results. However, the GSMaP product in the
remotely sensed precipitation data ranks second in importance, playing a more significant
role than other variables, including ground-based observations and other remote sensing
products. This suggests that the GSMaP data replace part of the influence that arises from
the role of in situ wind speed on precipitation correction. The SHAP plot indicates that
the greater the precipitation measured by GSMaP, the greater its corresponding corrected
precipitation value. Moreover, the precipitation observation of GSMaP is in good agreement
with the actual precipitation, as shown in Figure 4. The other two types of remotely
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sensed precipitation products, IMERG and CHIRPS, have limited influence on precipitation
correction, and their SHAP values are restricted to a very narrow interval.

Our findings suggest that the remotely sensed GSMaP data are more valuable for
precipitation correction in this high-altitude region than the air temperature and wind
speed observations.

Figure 9. The corrected precipitation results by integrating the remotely sensed precipitation (GSMAP,
IMERG, and CHIRPS). (a) The frequency distributions of precipitation datasets using the XGB and
TFM methods of the T200B and the DFIR. (b) The importance of explanation using SHAP values. Each
line in the graph represents a feature; the horizontal coordinates are SHAP values. A dot represents a
sample. The redder the color, the larger the value of the feature itself. The bluer the color, the smaller
the value of the feature itself. (c) The comparison between the corrected precipitation and the truth
value using the DFIR observation. The accuracies (BIAS and RMSE) are listed in the upper left.

4. Discussion
4.1. Can the Machine Learning Method Be Transferred to Other Regions?

One of our biggest concerns is the transferability of the XGB correction method from
one site to another with completely different environmental conditions. To address this
issue, we compared the performance of the XGB method at the Yakou site in China (CN)
with that of stations in Norway (NOR) and the United States (US), using data from [14]
(Figure 10). We trained the XGB model on one site and then applied the trained model
to another site. For example, we trained the XGB model on the CN station, and then the
trained model was used to correct the single-fence T200B precipitation in the NOR station
only using the data from the NOR station.

In this study, we also compared the performance of the XGB method with that of
the TFM method in various scenarios. The TFM method was developed to correct wind-
induced undercatch of precipitation, particularly snowfall. The TFM method only uses
wind speed and air temperature as inputs and has demonstrated good agreement at both
the Norway (NOR) and the United States (US) stations [14].

In our comparison, we utilized five features: wind speed, air temperature, two re-
motely sensed precipitation datasets (the GSMaP and IMERG), and the uncorrected single-
alter precipitation observation (T200B). We used DFIR observations from three sites as
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the truth precipitation for XGB training or the regression of the TFM method. The wind
speed, air temperature, and single-alter precipitation observation were obtained from the
US, NOR, and CN stations, respectively. The datasets were divided into two halves of
equal length in chronological order, with the first half being the training dataset and the
second half being the evaluation dataset. Notably, for a fair comparison, we calibrated the
parameters for XGB and TFM using the same training dataset and evaluated them on the
same target dataset. The parameters of the TFM method reported in [14] were not used in
this study.

We first examined the performance of the XGB and TFM models in correcting local
precipitation in three separate sites using only local data for training and validation. Re-
sults showed that both methods effectively corrected the underestimation of single-fence
precipitation measurements in the NOR, US, and CN sites. The underestimation ranged
from 60.0 to 14.2%, but after correction, the BIAS decreased to a range between 0.4% and
6.6%. The XGB method outperformed the TFM method in the NOR site regarding RMSE
and BIAS, while the TFM method outperformed the XGB method in the US site. In the CN
site, the RMSE of the XGB method was better than the TFM, but the TFM had a better BIAS.
Overall, both methods effectively corrected local precipitation in the three sites.

Next, we examined the transferability of the XGB and TFM methods across the three
sites. This involved training a model using local data and using the trained model to
correct precipitation in another site. It means there are six cross-examinations. The results
showed that the XGB method had better transferability than the TFM method. In the
cross-examinations (Figure 10), the XGB model outperformed the TFM method in five out
of six cases, such as the ‘CN model on US case’. For example, in the ‘CN model on US
case’, the XGB model was trained using data from the CN site and then used to correct
single-fence precipitation data in the US site. This correction reduced the BIAS from −14.4%
to −5.6%, while the TFM method did not correct the underestimation. This illustrates
the superior transferability of the XGB method. These findings suggest that reasonable
precipitation corrections can be made at a site without corresponding DFIR precipitation
data using a trained machine-learning model from another location.

Our results also suggest that the introduction of remote sensing data greatly enhances
the migration capability of the XGB machine learning model across different sites with
varying environmental conditions. In Figure 10, the XGB model was trained using all
the training data from the three sites (named as WHOLE model) and was then used to
separately correct the single-fence precipitation in each of the three sites. In two out of
three sites, the XGB correction model outperformed other model sets, including the local
model set, such as the ‘CN model on CN case’. This implies that introducing more data
can improve the capacity of the machine-learning model. However, this is not the case for
the TFM model, where all three site tests indicated that introducing more data brings more
errors for the TFM.

We evaluated the machine learning model’s ability to transfer between the Yakou
(CN) site and the Norway and United States sites. Our results show that machine learning
methods incorporating remote sensing data have better transferability than traditional
methods. This improved transferability may be attributed to two factors. The first is the
better generalization ability of machine learning, particularly the XGBoost method [28],
which can eliminate outliers and achieve better learning results. The second factor is the
use of remotely sensed precipitation data. In this study, we introduced remotely sensed
precipitation data GSMaP [21] and IMERG [22]. Satellite data are less likely to be affected
by ground conditions than ground-based meteorological data. For example, ground-based
precipitation observations can be influenced by wind speeds [31], whereas satellite data
are not affected by wind speed. Satellite data have a significant advantage in precipitation
observations for high wind speeds, as our study shows. As more and better remote
sensing precipitation data become available, it could be expected to obtain better machine
learning-corrected precipitation results.
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Figure 10. The transferring performance of the XGB precipitation correction method between different
sites in Norway (NOR), the United States (US), and our study area in China (CN). The X-axis
represents the trained model in CN, NOR, and US, while the Y-axis represents the site cases in CN,
NOR, and US. Each subfigure displays the result of the trained model applied to a specific site. For
example, ’CN model on US case’ indicates that the trained CN model using CN data was applied to
correct the US case. The WHOLE model was trained using the training data from NOR, US, and CN.
The XGB results (in red) are the uncorrected T200B or single-alter gauge observation (in grey) and the
traditional TFM correction (in blue) are scattered. The BIAS and RMSE are listed in each subfigure. A
solid cycle located in the lower-right of each subfigure indicates if the XGB model outperforms the
TFM model, with orange meaning the XGB model outperforms the TFM model in RMSE and BIAS,
and blue meaning the opposite. Half blue and half orange indicate that the XGB model outperforms
the TFM model in one of the RMSE and BIAS metrics.

4.2. Advantages and Notices of Applying Machine Learning Method in Correcting
Precipitation Measurement

We found that increasing the number of variables did not necessarily lead to bet-
ter training results. On the contrary, removing irrelevant variables led to better results,
making the trained model more robust. Our machine-learning model was optimal with
five variables, and the RMSE for the validation period was 1.24 mm. However, after adding
variables such as downward longwave radiation, the model’s accuracy was not improved,
and it was 1.28 mm. Although the change in accuracy due to the addition of variables was
relatively small, it illustrated that adding variables of low importance or relevance did not
improve the accuracy of the learning model.

The XGBoost feature selection algorithm could automatically identify the critical
variables according to their importance, such as air temperature, wind speed, surface soil
moisture, and upward longwave radiation. In traditional calibration methods, wind speed
and air temperature were usually substituted as the main variables for calculating various
precipitation losses [4]. In addition to essential variables such as wind speed, the feature
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selection method identified upward longwave radiation, a radiation-related meteorological
element, as a critical factor in precipitation correction, which had been neglected in previous
correction methods. Our SHAP variable contribution plots showed that upward longwave
radiation and soil surface moisture contributed significantly to the precipitation correction
results (Figure 7). We believe that longwave radiation, closely associated with radiative
energy transfer, affects precipitation capture rate. Therefore, precipitation occurrence is
likely to significantly relate to surface longwave radiation. A similar study also reported
the influence of blowing snow or snowfall on long wave radiation [32], but this finding
has not been introduced into the precipitation correction. These findings suggest that the
machine learning algorithm can uncover the hidden longwave radiation as an essential
influence factor, which is a variable often ignored in previous empirical algorithms. In
this case, the feature selection method of machine learning suggests an excitingly different
approach from the traditional correction methods.

It should be noted that scale difference exists between remotely sensed precipitation
products and in-situ meteorological observations. The GSMaP and IMERG have a resolu-
tion of 0.1◦, about a 10 km resolution grid. The CHIRPS have a finer resolution of 0.05◦.
The three RS precipitation datasets have a wider cover than the point-scale precipitation
measurements, leading to a spatial scale issue. It is possible that higher resolution remotely
sensed precipitation data would better contribute to the precipitation correction. For exam-
ple, some studies have used ground radar to bridge the scale gaps between precipitation
gauge and satellite [33]. The spatial representativeness of the in situ instruments, such as
the T200B and DFIR, should also be considered in the future comparison.

4.3. Implications of Machine-Learning Method on Obtaining More Accurate Precipitation in the
High Altitude Region in the Future

We tested a machine learning method for correcting precipitation measurements that
differ from traditional statistical models. This method performed better than traditional
models at the high-altitude site. This method used more meteorological variables than
traditional methods, such as long-wave radiation and surface soil moisture. Traditional
statistical models only use air temperature and wind speed as inputs [10], mainly consid-
ering the transferability of the method: as many regions historically did not have other
observations besides air temperature and wind speed. Given that those meteorological
variables deployed in high-altitude areas are becoming increasingly abundant [26], it is
hopeful to include more meteorological variables in the future correction of precipitation
measurement, promoting machine learning and traditional statistical models.

The addition of remote sensing precipitation data can promote the transferability of
precipitation correction methods based on machine learning. Although ground observation
meteorological variables such as air temperature and precipitation are still needed, with the
improvement of remote sensing observation capabilities, machine learning is expected to use
only remote sensing precipitation to obtain ground precipitation “truth”. This depends on
three aspects: (1) Richer remote sensing data. The current trend of remote sensing precipitation
products has integrated multi-source platform precipitation [34]. More ‘big’ remote sensing
data is expected to be included with the launch of more satellite precipitation observations
(such as FengYun-4A [35]). (2) More advanced machine learning methods. For example,
some work has used different deep-learning methods to correct precipitation occurrence and
intensity separately [36]. Some of the latest developments, such as in Long Short-Term Memory
(LSTM) [37] and transformer methods [38], are expected to be applied to the correction of
precipitation measurement. (3) More comprehensive model verification. In addition to site
verification, verifying the hydrological effects of precipitation correction with watershed-scale
hydrological models can more accurately evaluate the hydrological effects of precipitation
correction [39].

Our work is based on the premise that DFIR equipment is used as the “actual” pre-
cipitation. However, the maintenance cost of establishing a DFIR device in the current
high-altitude environment would be huge. Because such equipment still requires manual
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maintenance, it is also unimaginable to widely establish such equipment in high-altitude
areas. Therefore, it is necessary to establish a small number of DFIRs in key areas. Our
observations show that the T200B precipitation at high altitudes can underestimate DFIR
precipitation by more than 50%, which far exceeds the observed precipitation in other
regions [40]. However, in the Tibetan Plateau region spanning multiple meteorological
zones [41], DFIR precipitation is rare, illustrating the necessity of deploying DFIR in high-
altitude areas. If there is no such device as DFIR to provide actual precipitation, the
widely used reanalysis precipitation data and remote sensing precipitation data can only
be validated using sparse, uncorrected precipitation data, which will inevitably bring
misunderstandings of hydrological processes.

5. Conclusions

In contrast to the traditional TFM method, we utilized a machine-learning approach
(XGBoost) to correct precipitation measurements at high altitudes. This method incor-
porated both meteorological variables and remote sensing precipitation data. We also
investigated the transferability of the XGBoost regression method across the Yakou site and
other sites in Norway and the United States.

Our findings revealed that the T200B instrument inadequately captured precipitation
at high altitudes. Specifically, the underestimation of precipitation reached 51.4% of DFIR
measurements, notably higher than similar measurements in the Arctic or lower altitudes.
Furthermore, we observed that both the T200B and DFIR methods failed to effectively
capture small precipitation events, particularly those less than 1 mm/day. Notably, remote
sensing precipitation datasets, including CHIRPS, IMERG, and GSMaP, consistently under-
estimated precipitation when compared to DFIR observations. While IMERG and GSMaP
datasets were closer to DFIR observations, the CHIRPS dataset exhibited significant bias.
Despite this, remote sensing data performed better than T200B observations during high
precipitation events, and we found that remotely sensed precipitation was rarely influenced
by wind, a major factor that influences in situ precipitation measurements.

The XGBoost method demonstrated superior performance in correcting precipitation
measurements at high altitudes. Specifically, the XGBoost method improved the bias
at the Yakou site from −61.3 to −2.7% at a 1 h interval, whereas the traditional TFM
method improved the bias from −61.3 to −27.6%. Both the XGBoost and TFM methods
exhibited considerable improvement in the BIAS measure and the frequency distribution
of corrected precipitation. However, the XGBoost precipitation correction agreed better
with the DFIR for both low and high precipitation values, while the TFM precipitation
tended to be underestimated in the high-value interval. After incorporating remotely
sensed precipitation data into the XGBoost method, the BIAS and RMSE slightly improved.
Though only a slight improvement, remote sensing data, specifically GSMaP precipitation,
ranked second in importance and replaced part of the influence of in situ wind speed on
precipitation correction. Consequently, our results suggest a potential opportunity to use
remote sensing data rather than in situ meteorological observations to correct precipitation,
indicating a more straightforward and widespread use.

Our findings suggest that the machine learning method excels at identifying crucial
prospective variables related to bias correction. In addition to air temperature and wind
speed, which are conventionally utilized for correcting precipitation, the machine learning
method automatically selected soil surface moisture, upwelling longwave radiation, and
remote sensing data (specifically GSMaP) to achieve optimal corrected outcomes.

We also investigated the transferability of the XGBoost method among the NOR,
US, and CN sites. Results indicate that the XGBoost method had superior transferability
over the TFM method. Specifically, the XGBoost model outperformed the TFM method
in five out of six cases when the trained XGBoost model was cross-validated among
different sites. This suggests that reasonable precipitation corrections can be made at a site
without corresponding DFIR precipitation data using a trained machine-learning model
from another location. Additionally, our results suggest that the introduction of remote
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sensing data enhances the migration capability of the XGBoost machine learning model
across different sites with varying environmental conditions. Its enhanced transferability
is a result of two factors: enhanced generalization capability of machine learning and
utilization of remotely sensed precipitation data. Given that satellite data have a significant
advantage in precipitation observations for high wind speeds, we anticipate that as more
and better remote sensing precipitation data become available, machine learning-corrected
precipitation outcomes will continue to be improved.

Our research highlights the potential of combining advanced machine learning tech-
niques with richer remote sensing data as a promising future strategy for achieving more
accurate precipitation predictions in high-altitude regions.
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Abbreviations
The following abbreviations are used in this manuscript:

BIAS total mass BIAS
CCCASON Climate Change Canada Automated Surface Observation Network
CHIRPS Climate Hazards Group InfraRed Precipitation with Station data
CMORPH CPC MORPHing technique
CN station Yakou station in ChiNa
DFIR Double Fence Intercomparison Reference
GSMaP Global Satellite Mapping of Precipitation
IMERG Integrated Multi-satellitE Retrievals for GPM
NOR station the used station in NORway
RMSE Root-Mean-Square Error
SHAP SHapley Additive exPlanations
TFM Transfer Function Method
TRMM Tropical Rainfall Measuring Mission
US station the used station in United States
WMO World Meteorological Organization
WMO-SPICE WMO - Solid Precipitation Intercomparison Experiment
XGBoost Extreme Gradient Boosting
XGB XGBoost regression method
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