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Abstract: Indoor pedestrian localization has been the subject of a great deal of recent research.
Various studies have employed pedestrian dead reckoning, which determines pedestrian positions
by transforming data collected through sensors into pedestrian gait information. Although several
studies have recently applied deep learning to moving object distance estimations using naturally
collected everyday life data, this data collection approach requires a long time, resulting in a lack
of data for specific labels or a significant data imbalance problem for specific labels. In this study,
to compensate for the problems of the existing PDR, a method based on transfer learning and data
augmentation is proposed for estimating moving object distances for pedestrians. Consistent high-
performance moving object distance estimation is achieved using only a small training dataset, and
the problem of the concentration of training data only on labels within a certain range is solved using
window warping and scaling methods. The training dataset consists of the three-axes values of the
accelerometer sensor and the pedestrian’s movement speed calculated based on GPS coordinates. All
data and GPS coordinates are collected through the smartphone. A performance evaluation of the
proposed moving pedestrian distance estimation system shows a high distance error performance
of 3.59 m with only approximately 17% training data compared to other moving object distance
estimation techniques.

Keywords: indoor localization; pedestrian dead reckoning; transfer learning; data augmentation

1. Introduction

With the widespread use of smartphones, location-based services (LBS) have become
widely available to the public [1]. A location-based service provides various information
based on the location of a moving object, such as vehicle navigation using the Global
Positioning System (GPS) and emergency route guidance applications for pedestrians.
However, LBS can provide appropriate information only when the exact locations of
pedestrians are identified. Therefore, localization technology is a core component of these
services. Localization technology has been applied to various industries. Owing to the
COVID-19 infectious disease that began in 2020, the localization of human positions has
become increasingly crucial [2]. An indoor localization system typically uses GPS-based
location recognition. GPS-based localization is a method that involves the use of a satellite
signal for calculating the location of an object. As most smartphones have a built-in GPS
capability, this approach has the advantage of ease of use without any additional cost.
However, if a pedestrian is indoors or in a densely populated area, satellite signals may
not reach the space inside the building but instead be reflected [3]. GPS cannot, therefore,
be used indoors. Accordingly, there is an urgent need for research into accurate indoor
pedestrian localization.

Indoor localization technologies may be divided into three categories. The first is an
indoor localization technology based on wireless signals. Representative wireless commu-
nication technologies that employ wireless signals for indoor localization include Wi-Fi,
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Bluetooth, and Zigbee, which analyze transmitted signals and use received signal strength
indicators (RSSI) through the trilateration, triangulation, and fingerprinting methods. When
the mathematical formula or infrastructure used in a technique is well established, a high
performance and a distance estimation error of less than 1 m are provided. Recently, re-
search on indoor positioning using ultra-wide band (UWB) technology has been actively
conducted to improve the performance of the time of arrival (TOA)-based approach in
NLOS environments. This approach utilizes the time difference of arrival (TDOA) measure-
ment between the UWB transmitters (anchors) and receivers (tags) to estimate the positions
of tags. Multiple anchors and tags are used to measure the time differences between all
devices, and the position of the tag is estimated based on this information. Alarifi [4]
proposed a UWB-based indoor positioning technology considering an industrial context.
Two solutions based on UWB radio (Pozyx) and ultrasound (GoT) installed in an industrial
manufacturing laboratory were compared and analyzed. The experiments were conducted
in static and dynamic environments, and Pozyx showed a distance error performance
within 40 cm, while GoT showed a performance within 20 cm. Yang [5] introduced deep
learning technology to address the problem of the degraded performance of UWB-based
indoor positioning systems in NLOS environments. The input to the deep learning model
is composed of 10 consecutive wireless signals’ RSSI and distance information measured
from a single UWB anchor, which are used as a single sample for the model. The model
was evaluated in various environments and showed a higher performance than the existing
methods. However, various problems are related to the use of wireless signals. Owing to
the characteristics of radio waves, wireless signals undergo irregular attenuation within
their dynamic surroundings. Maintaining a high and consistent performance when using
such attenuated wireless signals for positioning can be difficult.

The second method is image-based localization technology. In this approach, images
are collected using a smartphone camera, a localization model is generated through deep
learning, and images entering the input are analyzed to return the closest position coor-
dinates. These techniques show a high localization performance in cases in which the
learning data and infrastructure are well established, although performance degradation
can occur depending on the environment [2].

Another sensor-based localization technology is known as pedestrian dead reckoning
(PDR). PDR involves the estimation of the next position of an object from the prior position
based on data from the sensor. The PDR method may be divided into inertial navigation
systems (INS) and step and heading systems (SHS). An INS is a system that estimates the
entire 3D trajectory of a sensor at a specific moment and tracks its location. SHS is a system
that estimates location by accumulating vectors that represent steps or stride lengths [6].
INS is used to track objects, such as airplanes and missiles, and SHS is used to estimate
pedestrian locations [7]. The PDR employed in this study uses SHS.

SHS involves three steps: the number of steps detected, stride length estimation, and
heading direction estimation. First, sensor data can be used to estimate the moving object’s
distance by multiplying the number of steps and stride length, and the relative position
of the pedestrian can be estimated by combining the estimated moving object distance
and heading direction [8]. The use of SHS with PDR has the advantage of being easily
distributed, because it does not rely on infrastructure, and there are already sensors built
into smartphones. A PDR-based indoor localization system that uses sensors built into
smartphones offers the advantage of being very practical from the pedestrian’s perspective,
as it does not require additional infrastructure or cost, unlike the conventional methods
that use wireless signals or video data. Therefore, the PDR method is free from the effects of
NLOS environments, walls, and obstacles, as it does not use wireless signals. This approach
also works well under dark conditions, because it does not use visual data (i.e., camera or
video data) when positioning [9]. However, it is difficult to reflect the speed of moving
pedestrians in real time, and various errors can occur depending on the posture of the
pedestrian using a smartphone. To address these shortcomings, speed estimation using
a deep learning method instead of a formula has been proposed. Deep learning reflects
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a pedestrian’s state in real time, because it can estimate both the posture of the pedestrian
using a smartphone and the moving object distance. However, because there are restrictions,
such as having to walk at a certain stride length when collecting data, a new method of
estimating the final moving object distance using GPS speed estimation instead of the stride
has emerged. This method alleviates the constraints of the existing deep learning techniques
by using data collected while walking freely outdoors. However, a data collection time of at
least 1 h and 20 min is required, which is impractical from a pedestrian perspective. Therefore,
this study proposes a GPS-based PDR with a similar performance and a significantly lower
data collection time, which focuses on practical moving pedestrian distance estimation. The
contributions to the field of this study are as follows.

1. Improving practicality: transfer learning techniques are applied to achieve consistent
high estimation performances, even in cases in which the moving object distance
estimation model receives small amounts of data for new pedestrians (i.e., system
users). The data collection time is significantly reduced to increase practicality.

2. Data imbalance: a new data augmentation method is applied to address the fact that
most of the training data used for indoor localization with deep learning are concentrated
on labels within a certain range. Moving object distance errors are reduced.

The remainder of this paper is organized as follows. Section 2 introduces other studies
related to indoor pedestrian localization technology. Section 3 describes the problems
addressed in this study. Section 4 introduces the system proposed in this study, and
Section 5 describes the performance of the proposed system. Finally, a discussion of the
results and their significance is presented in Section 6.

2. Related Works
2.1. Conventional PDR Method

The PDR approach primarily uses inertial measurement unit (IMU) sensors. An IMU
is a sensor that comprises one measuring device, such as an accelerometer, gyroscope, or
magnetometer, and is mainly used to measure the inertia of an object. An accelerometer
measures the acceleration of an object, and a gyroscope measures its angular velocity
and the extent to which it rotates over the x-, y-, and z-axes. A magnetometer measures
the intensity of a magnetic field and the extent to which an object rotates relative to the
magnetic pole. Conventional PDR is a method of pedestrian localization that involves
mounting an IMU sensor on the body, such as the waist or ankle of the pedestrian, and
converting the sensor data collected at each step into gait information. The number
of steps and stride length of a pedestrian are calculated using an accelerometer, and
the directional information is calculated using either or both magnetometer sensors and
gyroscopes. Jimenez [10] compared the PDR algorithms with other algorithms using low-
cost microelectromechanical systems (MEMS) and IMU sensors. The number of steps,
stride length, and step direction were calculated using sensor data measured by attaching
an IMU sensor to the foot. When measuring the number of steps, the formula eliminated
gravitational acceleration, which affects the sensor values. The steps were then extracted by
applying two thresholds. Weinberg [11] and ZUPT [12] algorithms were used for the stride
length estimation. Finally, three localization algorithms were implemented to determine the
final location. As a result of the experiment, a distance error of less than 5% was achieved.
Beauregard [13] proposed a PDR using a special sensor module attached to a helmet. The
experiment showed a distance error of 2% when walking 4 km. Kang [14] proposed a
smartphone-based PDR that tracks pedestrians using a conventional PDR method with
data from IMUs embedded in smartphones.

PDR exhibits the advantage of incurring little additional infrastructure cost, because
it either uses inexpensive IMUs or IMUs that are built into smartphones. In addition,
the localization error rate is significantly reduced by estimating the location using the
information for each pedestrian. However, PDRs that employ sensors exhibit several
limitations. First, when estimating the number of steps and stride lengths, it is difficult
to reflect changes in pedestrian speed in real time, because this is estimated using a
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mathematical formula. Therefore, if a pedestrian sometimes changes speed, this speed will
differ from the initially estimated value, accumulating errors over time and resulting in
increased errors in the final moving distance and estimated distance. Second, the performance
varies depending on the pedestrian walking pattern. In the case of smartphones, pedestrians
can place smartphones anywhere on their bodies. Therefore, for sensor data collection in
various situations, the position with respect to the three axes of the sensor would differ even
if pedestrians walked at the same speed, leading to significant differences in the measured
values. To solve these problems, a method for estimating the stride length and direction using
deep learning has emerged.

2.2. The PDR Method Using Deep Learning

The main problem with conventional PDR is that it does not perfectly reflect anoma-
lous speed changes of pedestrians in real time, because a formula is used to estimate
the moving object distance, and errors increase according to pedestrian walking patterns.
Machine learning has been introduced as a solution to this problem. PDR with deep
learning may be employed to estimate pedestrian stride or posture instead of using a
mathematical formula that converts sensor data into gait information. As an example, one
study estimated the moving object distance by estimating pedestrians’ smartphone usage
posture and stride length through deep learning and indoor localization [15,16]. Deep
learning methods have therefore addressed the problems of pedestrian speed changes and
smartphone posture. However, most PDR studies using deep learning only guarantee a
high performance within constrained environments. For example, Gu et al. [15] collected
sensor data in a study in which pedestrians were required to count and record their steps.
In addition, Klein et al. [16] required pedestrians to walk only in a fixed posture while
collecting sensor data. In the study by L. Huang et al. [17], pedestrians only walked within
specially constructed test fields and with constant strides while collecting data within those
fields. As a result of the experiments using this method, a distance error of 2.53% based
on a distance of 61 m was achieved, showing a better performance than conventional PDR
techniques. PDR using deep learning shows a significantly improved performance compared
to PDR using conventional mathematical formulas, although certain rules and constraints are
enforced when collecting the data required for the deep learning models. In the study by Kang
et al. [18], the accelerometer value and GPS coordinates collected outdoors are constructed as
training datasets for learning hybrid multiscale convolutional and recurrent neural network
models. As a result of experimenting with data collected by walking a straight path 60 m
indoors, the performance of the hybrid multiscale CRNN model, which learned outdoor data
after about 53 h, showed a distance error of about 1.65 m.

3. Research Problem to Be Addressed

Conventional PDR methods that employ deep learning have achieved high moving
object distance estimation performances. However, various constraints that may be consid-
ered impractical from a pedestrian perspective were applied, depending on the purpose
of each study. This has led to the emergence of GPS-based PDR methods, which mitigate
the constraints arising when collecting the data required for deep learning. For example,
J. Kang et al. [18] proposed a new technique for learning pedestrian walking patterns and
estimating speeds indoors using the GPS coordinates and sensor data collected outdoors
by smartphones. The walking speed of pedestrians calculated by GPS coordinates collected
in real time was automatically set as a label for the deep learning model, and acceleration
sensor data were used as the input data. This study addresses the problem of walking
at a fixed speed when data collection is performed by estimating the moving object dis-
tance using the average speed of pedestrians. In this study, the performance of 60-m-long
movement data is evaluated when data are collected over 14 h, and the results show high
accuracy, with an error of approximately 1 m. However, the system user (pedestrian) must
collect more than 14 h of data to achieve the above performance. Furthermore, to show a
valid distance estimation error of approximately 3.4 m, the data must be collected for at
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least 1 h and 20 min. From a pedestrian perspective, an indoor localization system that
requires such lengths of time for data collection is extremely impractical. In this study, we
aim to reduce the data collection time while retaining a similar performance.

The size and quality of the training data affect the performance of the deep learning
model, because it extracts features or patterns from the training dataset and learns to predict
the outcome desired by pedestrians. Therefore, it is important to secure high-quality and
appropriate data so that the deep learning model can extract the desired features or patterns
from the input training data. Figure 1 shows the x-axis values of the acceleration sensor data
collected in this study while walking outdoors for approximately 5 min as a distribution of
the walking speed. At the time of data collection, the pedestrians in this study only walked
at an average speed. Therefore, data collected for speeds between 1.2 and 1.6 m/s were the
most common. The problem of imbalance during the data collection makes it difficult to
provide a consistent performance, as, in this case, pedestrians cannot accurately estimate
their speed if they walk too slowly or quickly, significantly impacting speed estimation
systems using deep learning models. The second purpose of this study is to resolve this
data imbalance.
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4. Materials and Methods
4.1. Overview

Figure 2 shows an overview of the proposed pedestrian moving object distance estima-
tion system. The part inside the red dotted line in Figure 2 represents the data preprocessing
process that is explained in detail in Section 4.2. The proposed method consists of offline
and online phases. First, data are collected for use in pretrained models. The data are the
values for pedestrian speed obtained using the acceleration sensor and GPS coordinates
collected outdoors. The collected data are used as a training dataset, employed when
learning a pretrained model. After collecting the sensor data to estimate the speed in the
same way, a data preprocessing stage consisting of data augmentation techniques and over-
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sampling techniques is performed. Finally, weights are obtained from the pretrained model
and applied to the transfer learning model, and the training data that have undergone
preprocessing are then learned. When the learned transfer learning model receives minimal
data from a new pedestrian, it is possible to learn and estimate the moving object distance.
These methods are described in detail in the following sections.
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4.2. Data Preprocessing

The data used in the proposed pedestrian moving object distance estimation system
consist of acceleration sensor data and the speeds of pedestrians obtained by calculating
their GPS coordinates. In this case, the acceleration data are collected at a sampling rate of
100 Hz, and the speed is collected at a sampling rate of 1 Hz. In this study, GPS was used
to gain the objects’ moving speed, which is used as a label for the deep learning model.
The reason for calculating the moving speed through GPS coordinates, not mathematical
formulas or models that convert acceleration values to speed, is that it is relatively easy
and accurate to obtain [19]. In particular, there is no significant difference between walking
outdoors and walking indoors, so we collect data outdoors where we can receive the
GPS signals and construct a training dataset. Pedestrians collect data freely, without
any restriction on their speed, and Kalman filters are applied to sensor data to reduce
cumulative sensor errors. The orientation and position of a smartphone affect the collected
sensor data values. Therefore, a preprocessing step is required to ensure that the same
values are collected, regardless of the orientation and location of the smartphone. To collect
sensor data at a constant value, regardless of the placement state of the smartphone, the
device-oriented coordinate system is converted into an Earth-oriented coordinate system
by multiplying the accelerometer value by the rotation matrix. As the Earth-oriented
coordinate system has the same value regardless of the orientation of the screen, it is
possible to collect constant data regardless of the direction of the smartphone [20].

The moving speeds of pedestrians obtained using GPS coordinates vary widely. If the
deep learning model is labeled with the speed of movement calculated by GPS coordinates,
the number of labels will be very high, and accordingly, there will be more data to be
learned per label. Therefore, in this study, we label a speed class within a certain range as
pretrained and transfer learning models. To determine the appropriate number of speed
classes (i.e., the number of labels), repeated experiments are conducted. Table 1 lists the
results of the experiment to determine the optimal number of classes. Experiments show
the results of the moving distance estimation for indoor 60-m-long paths after training a
set of approximately 58 h of training data collected outdoors on a CNN model, which is a
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pretrained model. The greater the number of classes, the lower the accuracy of the CNN
pretrained model speed estimation, although the distance error gradually decreases. Since the
proposed moving distance estimation system is required to estimate the pedestrian moving
object distance, this study focuses on errors in the estimated moving object distances obtained
using a deep learning model. Based on the experimental results, the optimal number of classes
is set to 16.

Table 1. Results for the pretrained model using the proposed speed estimation approach.

Number of Classes

5 7 9 11 13 15

Accuracy (%) 95.09 93.84 92.42 91.92 91.21 90.89
Distance Error (m) 4.81 4.2 4.01 3.77 3.69 3.59

Figure 1 shows the data collected outdoors. Almost all the data are distributed between
approximately 1.2 and 1.6 m/s. The phenomenon of uneven data collection also occurs
when subjects walk for a short time. If such unbalanced data are used for learning in this
type of deep learning model, maintaining a consistent performance is difficult. In other
words, deep learning models show a high estimation performance for data collected by
pedestrians walking at average speeds; however, they cannot estimate accurate speeds
for data collected by subjects walking quickly or slowly. This data imbalance affects the
model performance; therefore, it is necessary to apply data augmentation methods to obtain
sufficient data at all speeds.

Methods for augmenting time-series data include window warping [21] and scaling [22].
Window warping is a method for changing the x-axis of the data by increasing or decreasing
the interval based on the time axis. Scaling is a method that involves changing the scale of the
y-axis by multiplying it by an arbitrary scalar. In this study, two data augmentation methods
were fused to create new data augmentation techniques. Figure 3 shows the processing of
1.2 m/s acceleration data for approximately 4 s to provide 2.4 m/s acceleration data. Figure 3a
shows acceleration data actually collected at speeds of 1.2 and 2.4 m/s. Figure 3b shows the
results obtained from processing the original 1.2 m/s data using a window warping technique.
Figure 3c shows the results obtained by multiplying the y-axis of the warped data in Figure 3b
by an arbitrary scalar value. Figure 3d shows a graph comparing the final augmented data
with the data collected at the actual speed of 2.4 m/s.

The sensor data used to estimate the actual moving object distances are collected
similarly, as these are employed in the data collection method described in Section 4.2. The
amount of data is increased by applying the data augmentation technique proposed in this
study. SMOTE [23] is subsequently used among the oversampling techniques to match the
numbers of all classes equally and apply these as learning data. Figure 4 shows the results
of augmenting the 15-min-long outdoor data mentioned in Section 4 using the proposed
preprocessing method.

4.3. Pretraining

Deep learning is extremely effective for classifying image data, because machines can
automatically extract and learn features from data. However, this approach has recently
been proven effective not only for image data but also for time-series data classification [24].
Representative CNN models that perform well in classification include AlexNet, GoogleNet,
ResNet, and DenseNet. Among these, AlexNet [25] has performed well in various fields
since it won the 2012 ImageNet competition. This study employs AlexNet, an effective deep
learning model for the current time-series data classification problem [26]. The structure of
AlexNet is not unchanged in this study but instead modified to fit the data. Since there is a
small set of input data, the padding for the consistent sizing of each data segment is set
to the same value, and the filter size to extract features from the input data is changed. In
addition, to prevent overfitting, some fully connected layers are removed, thereby reducing
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the number of parameters learned and using dropout. Batch normalization allows for
experimentally fast and stable learning, although this is eliminated in this study, because it
degrades the performance.
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4.4. Transfer Learning

Deep learning has been applied to various fields and learns by extracting features
from large amounts of data. However, there are two problems related to selecting the
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data used for deep learning. The first issue is that of data dependency. A large amount of
data is required to accurately extract the desired features from the training data, therefore
creating a high level of dependence on the size of the dataset. Second, data collection
is time-consuming and expensive, making it very difficult to build large, high-quality
datasets, depending on the data characteristics [27]. Transfer learning has recently been
proposed to solve these problems. The transfer learning method is based on the idea that
applying previously learned knowledge can solve new but similar problems faster or with
better solutions [28]. For example, to address the problem of a lack of unstructured data,
such as text, in the policy field, one study [29] improved the accuracy by approximately
10% while reducing the learning time through transfer learning. In another study [30], the
problem of a lack of learning data resulting from difficulties related to data collection and
labeling was addressed by transition learning, using pretrained models in medical image
classification. The transfer learning method is generally useful for small training data and
fast to learn with a pretrained model. As mentioned above, a pretrained model is required
to perform transfer learning. A pretrained model refers to a model similar to the data of the
problem to be solved that has already learned from a sufficient quantity of data. Pretrained
models that are widely used in the image domain include AlexNet, ResNet, GoogleNet,
and VGGNet. However, for time-series data, the user must create their own pretrained
model. As such, transfer learning is a useful technique in terms of the generalization of
deep learning models. With only a sufficiently learned pretrained model, system users can
guarantee a high performance with relatively little training data.

There are two types of transfer learning methods: fixed feature extractors and fine-
tuning. CNNs are largely composed of convolutional layers and classifiers, and techniques
are divided into those that relearn classifiers or relearn parts of the convolutional layers.
Fixed feature extraction removes only the last layer of the classifier from the pretrained
model, freezing the weights of the remaining layers, and then relearns and performs
classification by adding a classifier for the new dataset to be solved. This technique is used
when a new dataset is highly similar to the data written on the pretrained model and where
there are few data [31]. Fine-tuning is a technique in which the weights of the desired
layers are frozen in the pretrained model layer and the remaining layers are relearned with
the newly added layers. This technique is often used for large amounts of data or where
there is little similarity to the data written in the pretrained model and there is a risk of
overfitting if the layer to be retrained is incorrectly set. In this case, therefore, the freezing
range should be appropriately adjusted.

CNN models accumulate weight as they learn. Weight is a parameter that controls
the importance of the effect of each input datum on the output. CNN models learn in a
direction that classifies pedestrian speed well while continuing to pass weight to the next
layer. The learned model can be stored, recalled, and relearned. In this study, a pretrained
model pre-learns an approximately 58-h-long training dataset. For transfer learning, the
weights of the pretrained model are loaded. At this time, the transfer learning model
does not relearn all layers, instead relearning only a part of them. Transfer learning is
divided according to the similarity between the data used in the pretrained model and
the pedestrian data used for transfer learning and the amount of pedestrian data. This
study determined that the data used in the pretrained model and the pedestrian data are
highly similar. This is because these are acceleration sensor data that contain pedestrian gait
information. However, owing to the very small quantity of pedestrian data, the proposed
method involves relearning only up to the second convolutional layer through experiments.

4.5. Moving Distance Estimation

After transfer learning, the pedestrian acceleration data are input, and the pedestrian
speed is estimated. Since the proposed model uses the SoftMax function as a classifier,
the estimated speed is a probability value for each class, not the actual value. However,
because the actual speed value is required, a process for changing the probability value
is necessary. Before estimating the moving distance, this is changed to the average value
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of the speed range for each class. Finally, the pedestrian speed estimated by the model is
obtained as the moving object distance of the pedestrian using Equation (1).

S(t) = ∑t
i=1 Vi (1)

where S(t) is the total moving distance of the pedestrian, and Vi is the estimated speed of
the pedestrian with respect to time, t.

4.6. Scenario

The purpose of the moving object distance estimation system proposed in this study is
practicality. Pedestrians can construct a personal moving distance estimation system in a very
short time exclusively for themselves simply by walking outdoors while using a smartphone.
The virtual scenarios for constructing pedestrian-individual systems are as follows.

Accelerometers and GPS data will be collected when pedestrians go outdoors, because
GPS signals can be received only outdoors. The accelerometer data collected is converted
into an Earth-oriented coordinate system, so pedestrians can place their smartphones any-
where on their bodies. Afterward, when pedestrians enter the indoors from the outdoors
and cannot receive GPS signals, data collection is temporarily stopped, but the data col-
lected until then are stored in their smartphones. The collected data goes through data
preprocessing so that it can represent the characteristics (i.e., classes) of other moving
speeds, except those calculated by GPS coordinates, before being stored on a smartphone.
Through this process, construct a balanced training dataset and repeat the data collection
for a time of about 15 min. After completing the data collection and preprocessing and
completing the construction of a 15-min training dataset, the transfer learning model is
trained by inputting the training dataset. At this time, the weight of the pretrained model,
which has a sufficient moving speed estimation performance by learning 58 h of training
data in the offline phase, is applied to the transfer learning model. After the learning is
complete, the pedestrian then collects only accelerometer data to estimate his or her moving
distance. The collected accelerometer data is input to the transfer learning model in which
the learning is completed and used to calculate the moving distance.

5. Results
5.1. Evaluation Environments

This experiment was conducted by collecting data from twenty-six participants to
confirm the effectiveness of the proposed transfer learning technology and data augmen-
tation method. Each participant had no physical disabilities and was identified as being
able to live a normal daily life. The data used in the pretrained model were collected
outdoors using smartphone sensors. The participants’ moving speed and a three-axes
acceleration values were obtained by calculating the GPS coordinates, and an Android
application was developed and employed, which was automatically stored in the internal
memory. Approximately 70% of all data were collected from the two playgrounds shown
in Figure 5, although the rest data were collected while walking in real life, and both data
were collected with a sampling rate of 100 Hz. The data also included vibrations caused by
text messages, and data from 60 h were collected. Approximately 58 h of data from a total
of 60 h were used to train the pretrained model, and the remaining 2.5 h of data were used
to train the transfer learning model.

A TensorFlow 2.0 and an Nvidia GeForce RTX 2080 GPU were used for learning. The
parameters used in the model are listed in Table 2. The parameter values for the pretrained
and transfer learning models were the same. Since the epoch was determined using the
early stopping technique, the number of learning iterations varied for each dataset. Early
termination of learning is a method for terminating when loss continues to increase or
decrease, thereby preventing overfitting and setting the optimal parameters. Through
empirical experiments, the learning rates were set to the best performance value between
the values of 0.1 and 0.0001.
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Table 2. Deep learning model hyperparameters used in the experiments in this study.

Batch Size Activation Optimizer Learning Rate Default Epochs Loss Function

32 ReLu Adam 0.0001 60 Categorical
Cross entropy

5.2. Transfer Learning Evaluations

Figure 6 shows the speed estimation results for the deep learning model as a confusion
matrix. Figure 6a shows the classification results for the pretrained model, and Figure 6b
shows the classification results for the transfer learning model. The pretrained model
learned a training dataset with a timespan of approximately 58 h, and the transfer learning
model learned a training dataset of 15 min. Note that the two training datasets were not
augmented. The test dataset used to derive the pedestrian speed estimation performance
results contains data collected by pedestrians walking 60-m-long straight paths at average
walking speeds. This was used both in the pretrained and transfer learning models. The
performance evaluation results show that both deep learning models provide better results
for the average walking speed (1.2 to 1.6 m/s) than for slow or fast walking speeds. Notably,
the pretrained model was learned using approximately 58 h of training data, resulting in
an average pedestrian speed estimation performance of 93%.

However, the transfer learning model, which used the weight from the corresponding
pretrained model, achieved a pedestrian speed estimation performance of 83% by learning
with training data of only a 15-min timespan. This implies that, in using a transfer learning
model that derives its weight from a sufficiently learned pretrained model, a high perfor-
mance may be provided using only a few training data. From the perspective of indoor
localization, new system users (pedestrians) can obtain high-quality positioning services
with only 15 min of small sensor data, even if they do not collect large amounts of walking
data to receive indoor positioning services.

5.3. Data Augmentation Evaluations

To verify the data augmentation performance, two different training datasets were
compared using the proposed transfer learning model. The first training dataset has a
distribution similar to that shown in Figure 1, with most of the data heavily distributed at
average walking speeds, i.e., 1.2 to 1.6 m/s. The second training dataset contains data with
an even distribution for all walking speeds, using the data preprocessing process proposed
in this study, and has a similar distribution to the dashed line bar graph in Figure 4. The
size of each training dataset was 15 min. To evaluate the performance of the two transfer
learning models that learned with each training dataset, ten test datasets were collected
by ten different participants walking a straight path of approximately 60 m in length. The
ten participants, including both females and males, were healthy people with different
weights and heights and no disadvantage to their normal lives. When walking to collect
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data, approximately 10 m of a total of 60 m were walked at an average speed, and the
remaining 50 m were collected by walking very slowly, very fast, or running.
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Figure 7 shows the results for the pedestrian speed estimations derived by inputting
the test dataset into a model that trained two different training datasets. Black and dashed
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line bar graphs represent the performance evaluation results for the 60-m-long paths
using the transfer learning model that learned the first training dataset and the second
training dataset, respectively. First, the transfer learning model, which learned a data-rich
training dataset for the average pedestrian walking speed, had a classification accuracy of
approximately 25%. This indicates that the training dataset used in the training process
was not balanced for all moving speeds, and thus, the transfer learning model could not
accurately estimate data for high or low speeds, whereas the transfer learning model, which
learned a training dataset that had an even distribution for all moving speeds, exhibited
a classification accuracy of approximately 81.33%. It seems to be the data augmentation
technique proposed in this paper that allowed for a well-balanced construction of the
training dataset for all moving speeds.
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The x-axis represents the anonymous identification of the subjects who participated in the experiment.

Table 3 shows brief information from the subjects who participated in the experiment
conducted to demonstrate the effectiveness of data augmentation.

Table 3. Subject’s body information and smartphone model.

Subject A Subject B Subject C Subject D Subject E Subject F Subject G Subject H Subject I Subject J

Gender Male Male Male Male Female Female Female Female Male Female
Age 30 28 31 24 27 27 24 25 60 60

Weight (kg) 65 68 98 72 55 49 51 52 78 58
Height (cm) 167 174 172 181 160 159 162 163 171 155

Smartphone
Model

Galaxy
S22

Galaxy
S10

Galaxy
S20

Galaxy
S22

Galaxy
Note 10

Galaxy
Note 8

Galaxy
Note 7

Galaxy
Note 8

Xiaomi
Note 10

Pro

Xiaomi
Note 10

Pro

5.4. Moving Distance Estimation Performance Comparison

In this section, the effectiveness of the proposed pedestrian moving object distance
estimation system is compared with the results of other studies. Table 4 shows the results
for the pedestrian speed estimation derived by inputting the verification dataset collected by
walking a straight 60-m-long path at various speeds into each method. Weinberg et al. [9] used
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a method for obtaining the stride length through a mathematical formula, and accordingly,
that method provides the largest distance error because the change in pedestrian speed cannot
be reflected in real time. Next, in the case of Kang et al. [16], a high performance was derived,
with a distance error of approximately 3.55 m. However, the size of the training dataset used to
learn the corresponding deep learning model was approximately 1 h and 30 min. Furthermore,
the larger the size of the training dataset, the higher the pedestrian speed estimation accuracy
provided by the deep learning model, while the distance error is reduced. The pedestrian
distance estimation system proposed in this study showed a low error with only a training
dataset of approximately 15 min. Compared with other pedestrian dead reckoning techniques,
these results demonstrate that using only 15% of the total data can significantly enhance the
moving object distance estimation performance.

Table 4. Comparison of moving distance errors with other methods.

Weinberg [9] Kang [16] Proposed

Data collecting time 1.5 h 1.5 h 15 min
Distance error (m) 11.59 3.55 3.59

6. Conclusions

In this study, a new deep learning moving pedestrian distance estimation system
is proposed to address the problems of the existing PDR systems. PDR systems that
employ deep learning technology exhibit various advantages over other technologies
that involve converting sensor data into gait information using mathematical formulas
or models. However, a deep learning model requires a large training dataset to achieve
a high estimation accuracy and can be impractical, because pedestrians need to collect
sensor data directly. In addition, in this study, when the authors and study participants
collected data outdoors, large amounts of data were collected at average walking speeds,
and relatively limited data were collected at slow or fast moving speeds. This reflects the
fact that humans usually walk at an average moving speed most of time much more often
than slow or fast moving speeds. This problem of data imbalance makes it difficult for
deep learning models to provide consistent performances at various pedestrian walking
speeds. To solve this problem, this study proposes a transfer learning technique and a novel
data augmentation method that provides a high performance with only a small amount
of training data. The transfer learning model receives weight from a pretrained model
that learns from a training dataset of approximately 58 h. The usefulness of the transfer
learning technique is demonstrated, with a classification accuracy of approximately 83%
for a 15-min-test dataset. In addition, to reflect the various pedestrian walking speeds,
a range in which the amount of data is relatively insufficient is designated, and a data
augmentation method for the corresponding part of the data is applied. Evaluating the
data augmentation performance using a test dataset collected while pedestrians walk at
various speeds increases the transfer learning model classification accuracy from 25% to
81%. Moreover, the transfer learning model, which employs weight from a pretrained
model, shows a similar performance using a training dataset of approximately 17% of
the size required by other speed estimation techniques. The limitations of the pedestrian
moving object system proposed in this study are very clear. The size of the training dataset
used to obtain the weight of the pretrained models that needs to be transferred to achieve
a sufficient performance of the transfer learning model must be very large. It is not a
concern for pedestrians who use the system, but it is very burdensome for researchers
and developers who provide the system. The way of providing large-scale open-source
data or appropriate data augmentation methods should be studied. Future research plans
include further research into the proposed indoor localization system together with the
introduction of a new technology for estimating the heading direction of pedestrians.
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