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Abstract: Global, long-term, gap-free, high quality soil moisture products are extremely important
for hydrological monitoring and climate change research. However, soil moisture products produced
from satellite observations have data gaps due to the limited capabilities of satellite orbit/swath
and retrieval algorithms, which limit the regional and global applications of soil moisture data
in hydrology and agriculture studies. To solve this problem, we proposed a gap-filling method to
reconstruct a global gap-free surface soil moisture product by applying the machine learning (Random
Forest) algorithm on a pixel-by-pixel basis, taking into account the nonlinear relationship between
surface soil moisture and the related surface environmental variables. The gap-filling method was
applied to the NN-SM surface soil moisture product, which has a fraction of data gaps of around 50%
globally on a multi-year average. A global daily gap-free surface soil moisture dataset from 2002 to
2020 was then generated. The reconstructed values of several sub-regions after manually eliminating
the original values were cross-verified with the original data, and this clearly demonstrated the
reliability of the reconstruction method with the correlation coefficient (R) ranging between 0.770 and
0.918, the Root Mean Square Error (RMSE) between 0.057 and 0.082 m3/m3, the unbiased Root
Mean Square Error (ubRMSE) between 0.053 and 0.081 m3/m3, and Bias between −0.012 and
0.008 m3/m3. The accuracy of the reconstructed surface soil moisture dataset was evaluated using in
situ observations of surface soil moisture at 12 sites from the International Soil Moisture Network
(ISMN) and the Long-Term Agroecosystem Research (LTAR) network, and the results showed good
accuracy in terms of R (0.610), RMSE (0.067 m3/m3), ubRMSE (0.045 m3/m3) and Bias (0.031 m3/m3).
Overall, the reconstructed surface soil moisture dataset retained the characteristics of the NN-SM
product, such as high accuracy and good spatiotemporal pattern. However, with the advantage of
continuous spatiotemporal coverage, it is more suitable for further applications in the analysis of
global surface soil moisture trends, land surface hydrological processes, and land-atmosphere energy
and water exchanges, etc.

Keywords: surface soil moisture; machine learning; data reconstruction; pixel-by-pixel model;
long-term products

1. Introduction

Soil moisture (SM) is considered as one of the most important factors in hydrology,
ecology, meteorology, and soil science [1,2]. A variety of applications have been developed
which incorporate soil moisture, including vegetation growth simulation, soil freezing and
thawing processes identification, drought and flood monitoring and forecasting, agricul-
tural water productivity assessment, and environmental change studies [3–8]. Long-term
soil moisture products with spatiotemporal continuity can help understand meteorological
and hydrological processes.
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Soil moisture data are mainly obtained by three methods: in situ observations, land
surface model simulations, and satellite remote sensing observations [9–11]. In general,
sparsely distributed in situ soil moisture observations are reliable at specific point locations,
but have limited spatial coverage. Hydrological or land surface model simulation can
provide soil moisture values both at the land surface and at various depths in the soil [12].
Although model simulation methods have adequate spatial coverage, the uncertainties due
to external forcing, model structure, and model parameterization significantly affect the
accuracy of soil moisture estimates [13]. In recent years, with the continuous development
of space technology, satellite remote sensing observation has become one of the most
important means to obtain SM products for use at regional and global scales [14,15]. Much
progress has been made in retrieving soil moisture using spaceborne observations of
active/passive microwave scattering/radiation energy, resulting in numerous global soil
moisture products [16–23]. The remote sensing-based SM is usually referred to as the
volumetric soil water content in the surface layer (generally with depth less than 5cm),
hereafter referred to as surface soil moisture (SSM) in this study. Previous studies have
shown that the surface soil moisture product from Soil Moisture Active Passive (SMAP)
is currently the most accurate with ubRMSE close to 0.04 m3/m3 [24,25]. However, it has
relatively short temporal coverage, i.e., from 2015 to present. Efforts have been made to
improve the accuracy and the temporal coverage of remote sensing surface soil moisture
by fusing different satellite data. For example, Xie et al. [26] fused different satellite-
based surface soil moisture products using the Triple Collocation Analysis and Linear
Weight Fusion methods and generated a Global Daily-scale Soil Moisture Fusion Dataset
(GDSMFD) for the years 2011–2018 with 25 km spatial resolution. Yao et al. [27] used the
deep learning algorithm to transfer the advantages of the SMAP product to the Advanced
Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and its successor
AMSR-2 observations, and developed a global daily surface soil moisture dataset (hereafter
referred to as NN-SM). The NN-SM dataset can reproduce the spatiotemporal distribution
of surface soil moisture with the same reliability as the SMAP surface soil moisture product,
and with a longer time series than the SMAP [28]. However, due to the impacts of the
satellite orbit, radio frequency interference, vegetation interference, presence of ice, and
snow or frozen ground, the acquired surface soil moisture products always have gaps
in many areas. For example, the fractional number of valid observations in GDSMFD
is 67.2%, and the fractional number of valid observations was low in high-altitude and
high-latitude regions. This phenomenon makes it difficult to achieve spatial continuity in
these surface soil moisture datasets and greatly hinders subsequent applications [29,30].
Furthermore, the data gaps vary with time and locations, making it difficult to analyze
surface soil moisture characteristics in specific regions and time periods. Therefore, an
effective strategy to reconstruct the missing data in the surface soil moisture product is
required to improve the spatiotemporal integrity of the SM products.

The process of reconstructing missing values in surface soil moisture datasets is a
critical step in generating comprehensive and accurate environmental data. To achieve this,
several reconstruction or gap-filling methods have been developed and tested to obtain
surface soil moisture time series with spatiotemporal integrity. These methods are based on
either traditional statistical interpolation or machine learning methods. Statistical methods
(such as multiple linear and nonlinear regression) are mainly based on the relationships
between surface soil moisture and relevant determinant features. Due to the close and
complex coupling between surface soil moisture and its determinants, the traditional
statistical and interpolation methods are difficult to use effectively to perform high-quality
regression in large study areas (e.g., global scale) and over long time periods; moreover,
they often have large errors and offsets, even outliers [31–34]. Machine learning methods
have excellent simulation capability for multivariate and nonlinear complex relationships
and are widely used in the Earth system science and remote sensing community. Recently,
different machine learning methods have been tested and compared to mimic the complex
interactions between surface soil moisture, climate and biophysical variables in different
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regions, and then applied to regional surface soil moisture retrieval and gap-filling [35–37].
Research has been conducted to demonstrate the capability of the Random Forest (RF)
to fit the non-linear relationship between SM and relevant features [36]. Based on these
machine learning methods, some gap-free surface soil moisture datasets at different scales
have been generated accordingly; e.g., Zhang et al. [37] developed a spatiotemporal partial
convolutional neural network (CNN) framework to implement gap-filling for the AMSR-2
soil moisture product for the years 2013–2019. These studies have generally focused on
algorithm evaluation or application in specific regions or periods, and few have been
conducted to develop long-term gap-free datasets at the global scale.

Considering the critical role of spatio-temporally continuous surface soil moisture data
and the capability of the machine learning method, this study attempts to generate a long-
term surface soil moisture dataset at the global scale with spatiotemporal continuity. This
is achieved by developing a machine learning model to fill the gaps in the NN-SM product,
in order to provide surface soil moisture estimates for the period of 2002–2020 at daily reso-
lution with high accuracy and global spatial extent. The main objectives are: (1) to develop
a surface soil moisture reconstruction model using the Random Forest algorithm based on
the correlation between surface soil moisture and various influencing factors of multiple
surface environmental variables; (2) to generate a global spatiotemporal continuous daily
gap-free surface soil moisture dataset from 2002 to 2020 by reconstructing the missing soil
moisture data in the NN-SM product; (3) to demonstrate the reliability of the reconstructed
gap-free surface soil moisture product by comparison with in situ observations.

2. Methods
2.1. Gap-Filling Method Based on Random Forest Algorithm

The workflow of our study method is shown in Figure 1. The overall structure of
this study is divided into three parts: (1) selection of feature variables that are strongly
associated with surface soil moisture and can serve as independent variables for the surface
soil moisture gap-filling model; (2) model training and application to establish the surface
soil moisture gap-filling model by training a machine learning algorithm to identify the
relationship between surface soil moisture and other independent environmental features
on a pixel-by-pixel basis to generate the gap-free SM dataset at the global scale (special
pixels were excluded, e.g., water, snow, ice, frozen soils or others); and (3) validation of
the results by comparison with the in situ observations to illustrate the reliability of the
reconstructed surface soil moisture dataset. In contrast to the traditional training model
method, which inputs all samples from the whole study area into the model to obtain
a training model to reconstruct the missing regions, this study uses the pixel-matching
method and builds pixel-wise models for surface soil moisture gap-filling, which can
improve the gap-filling accuracy and avoid the spatial discontinuity between the gap-filled
values and the reference NN-SM data.

2.1.1. Principle of Random Forest

Random Forest is a highly flexible, accurate, and widely-used ensemble machine learn-
ing algorithm [38,39] that benefits from its ability to handle massive and high-dimensional
datasets and to model the complex relationships between the dependent and independent
variables [40]. Several specific steps are involved in the RF model. First, known values of
the dependent and independent variables are input into the model as training samples.
Then, a decision ‘forest’ is built by selecting different subsets of the samples to build mul-
tiple trees, and each decision tree in the forest provides a predicted value. Finally, the
algorithm produces the overall average prediction value of each tree in a regression task.
When splitting the tree nodes, the algorithm randomly selects a subset of features, and the
optimal solution is obtained from these random combinations. As a result, the RF algorithm
is not prone to overfitting and has a high tolerance for outliers and noise.
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2.1.2. Selection of Feature Variables

In our study, we extracted the values of surface soil moisture data as well as the feature
variables at the corresponding position pixel by pixel, and then calculated the correlation
coefficient at each pixel. In addition to the dynamic variables, including Normalized
Difference Vegetation Index (NDVI), land surface temperature difference between daytime
and nighttime (∆LST), and precipitation, some steady-state variables (land cover type,
geographic locations) were also adopted as the independent variables for the RF-based soil
moisture gap-filling model. It was confirmed that there are strong correlations between soil
moisture and all the dynamic variables. These variables were selected because the surface
soil moisture content is sensitive to land surface characteristics. Thus, vegetation affects
surface soil moisture in different layers through the depth and extent of root distribution.
Land surface temperature (LST) is mainly related to the evaporation of surface soil moisture,
while precipitation can infiltrate into the soil pore space to replenish the water content of
soil layers, affecting the surface soil moisture content. The validity of the selection of these
feature variables has also been demonstrated by previous research results [36].

The RF algorithm can also show the relative contribution of each independent variable
to the predicted variable. This contribution value is usually calculated after performing a
random permutation on each feature of the data. The decrease in prediction quality can
represent the importance score of the feature.

2.1.3. RF Model Establishment for SM Gap-Filling

The relationship between the SM and the selected feature variables can be expressed by:

SM(row, col) = f
(

NDVI(row, col), ∆LST(row, col), P(row, col), LC(row, col)

)
(1)

where SM is the surface soil moisture (m3/m3), NDVI is daily NDVI value, P is daily
total precipitation (mm), ∆LST is the daily value of daytime-nighttime LST difference (K),
LC is the land cover type at yearly step, and row and col are the row-column numbers
corresponding to the latitude and longitude of each pixel.
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In this study, we aim to build the pixel-wise RF model by fitting the surface soil
moisture to the feature variables at each individual pixel. However, the accuracy of the
model is limited by the insufficient number of data available from a single pixel due to gaps
in the time series of NN-SM data. Assuming that the target pixel has similarity with the
neighboring pixels in surface soil moisture and independent variables, the time series data
in the 3 × 3 window of the target pixel neighborhood were taken as input to the model to
increase the number of training samples.

For each pixel, all the valid data in the NN-SM time series and the corresponding
independent variables are taken as the input and randomly divided into training and
testing sets in a ratio of 7:3, and then the trained RF model is used to predict the absence
in the time series of NN-SM. Unlike the sequential methods to separate the training and
test samples, the random sample split method can randomly distribute the data between
training and testing, thus ensuring the generalization ability of the model to unseen data.
Each set of data contains a set of dependent variables and explanatory variables (NDVI,
∆LST, P, LC). The training sets are used to build each training model, and the test sets are
used to evaluate the quality of the training model. To avoid the confusion between the
terms of ‘testing’ and ‘validation’, in this paper we use ‘testing’ to show the capability of the
machine learning model when applied to the remaining untrained subset of the full dataset
during the model development phase. We define ‘validation’ as the comparison with the in
situ observations to show the accuracy of the final product, which will be described in the
following sections. According to our results, the global mean of Bias was 0.0001 m3/m3

during training and 0.0003 m3/m3 during testing, which indicates that the trained model is
not overfitted and is applicable to independent datasets. Finally, we reconstruct the soil
moisture values in the gaps using the regression relationship constructed by the model and
the feature variables.

The RF algorithm was implemented using the Regressor scikit-Learn package in
Python. When splitting a node, the size of the random subset (max_features) and the
number of trees (n estimators) are two key parameters that need to be determined as they
affect the performance of the RF model. As recommended in the literature, after testing
the model parameters [41,42], we set the parameter n_estimators as 100 and the value of
max_features to none, which indicates that all features are always considered instead of a
random subset.

Our computation is conducted on the big earth data cloud service platform provided
by the Chinese Academy of Sciences. The adopted cloud hosting configuration includes
56 cores CPU and 160G memory, and the operating system is CentOS Linux. It takes about
5 h to complete the gap-filling for a single year at the global scale.

2.2. Evalution Metrics

First, we validated our method by creating artificial gaps in the original NN-SM
dataset. We applied the trained RF model to predict SM values in these gaps, and then
compared the simulated SM values with the original values that were manually removed.
In addition, the reconstructed soil moisture values were quantitatively evaluated using in
situ data.

Four error metrics, i.e., Bias (Bias, m3/m3), correlation coefficient (R), root mean
square error (RMSE, m3/m3), and unbiased root mean square error (ubRMSE, m3/m3),
were used to evaluate the results:

RMSE =

√
∑N

t=1(SME − SMo)
2

N
(2)

R =
Cov( SME − SMo)

σSME ∗ σSMo

(3)
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ubRMSE =

√
∑N

i=1[(SME − E (SME)) − (SMo − E (SMo))]
2

N
(4)

Bias = ∑N
t=1( SME − SMo)

N
(5)

where SME (m3/m3) indicates the predicted surface soil moisture, SMo (m3/m3) indicates
the reference or ground-truth of surface soil moisture (e.g., the in situ surface soil moisture
observations), N indicates the number of samples, σSME (m3/m3)2 and σSMo (m3/m3)2

indicate the variance of SME and SMo, and Cov( SME − SMo) (m3/m3) is the covariance
between the predicted and the reference surface soil moisture values.

3. Data
3.1. Surface Soil Moisture Product

The surface soil moisture dataset used in this study is called NN-SM, which is a long-
term global daily dataset based mainly on AMSR-E/2 and SMAP (2002–2020) (https://doi.
org/10.11888/Soil.tpdc.270960 (accessed on 1 January 2022)). The dataset was obtained
from the National Tibetan Plateau/Third Pole Environment Data Center (https://data.tpdc.
ac.cn, accessed on 1 January 2022). The resolution of this dataset is daily 36 km. This dataset
is generated by Yao et al. [27] based on the neural network algorithm, which transfers the
accuracy advantages of SMAP to AMSR-E/2. The SMAP standard surface soil moisture
product, which has the advantage of good accuracy, is used as the training target, and the
brightness temperatures of 6.9 GHz, 10.65 Hz, 18.7 Hz, 23.8 Hz, and 36.5 Hz of AMSR-E/2
are used as the input data to output long-term time series of surface soil moisture data.
These bands are selected to generate the NN-SM product mainly because the 10.65 Hz to
23.8 GHz bands are very sensitive to surface soil moisture, while their relationship could
be affected by land surface vegetation condition and emissivity, which can be reflected
by the brightness temperatures in 6.9 GHz, 18.7 GHz, and 36.0 GHz bands. We used this
dataset because it can reproduce the spatial and temporal distribution of SMAP SM and
has a longer temporal coverage, and the accuracy is comparable to the SMAP surface soil
moisture product [28].

3.2. Feature Variables Data

Table 1 shows the list of the remote sensing data used in our study. The products of
the feature variables (i.e., NDVI, LST, and precipitation) at different spatial resolutions
were resampled to the same projection and 36 km spatial resolution as the NN-SM dataset
using a bilinear interpolation method. The land cover data were resampled to 36 km spatial
resolution using the Majority algorithm.

Table 1. The remote sensing data used in this study.

Variable
Name Data Name Temporal

Resolution
Spatial

Resolution Reference

Surface soil
moisture NN-SM Daily 36 km [28]

NDVI MOD13C1 16 days 0.05◦ [43]

LST
Global daily 0.05◦

spatiotemporal continuous land
surface temperature dataset

Daily 0.05◦ [44]

Precipitation ERA5 Hourly 0.25◦ [45]

Land Cover
Type MCD12C1 Yearly 0.05◦ [46]

https://doi.org/10.11888/Soil.tpdc.270960
https://doi.org/10.11888/Soil.tpdc.270960
https://data.tpdc.ac.cn
https://data.tpdc.ac.cn
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(a) Normalized Difference Vegetation Index

The NDVI data used in our study is from the Moderate-resolution Imaging Spectrora-
diometer (MODIS) MOD13C1 product (http://reverb.echo.nasa.gov/reverb/, accessed on
1 January 2022). The spatial and the temporal resolution of the MOD13C1 NDVI data are
0.05◦ and 16 days, respectively. The Harmonic Analysis of Time Series (HANTS) method is
used to construct the daily NDVI time series based on the 16-day MOD13C1 NDVI data
following the reference [47]. The HANTS method is a time series reconstruction method
based on harmonic analysis, and widely used to process satellite observed time series
(e.g., NDVI) which may be contaminated by unfavorable atmospheric conditions or other
factors [48]. HANTS has the advantages of decoupling the periodic vegetation phenology
into harmonic components, preserving the slower phenological signals while eliminating
high frequency noise induced by adverse atmospheric conditions or by instrument noise
with low-pass filtering [49–51].

(b) Land surface temperature

The LST dataset was downloaded from https://doi.org/10.11888/Meteoro.tpdc.2716
63 (accessed on 1 January 2022), which was produced by fusing the MODIS LST products
and the ERA5-Land reanalysis LST based on the empirical orthogonal function interpolation
method and cumulative distribution function matching method [44]. This LST dataset was
used in this study because of its global spatiotemporal continuous coverage. The temporal
resolution of this LST dataset is 4 times a day, with two observations in the daytime and
two in the nighttime (Terra/Aqua satellites observe LSTDay/LSTNight, respectively); the
spatial resolution is 0.05◦ and the temporal span is 2002–2020. We used data from Aqua
satellite observations because it has a similar overpassing time (around 1:30 p.m.) with
AMSR-E. ∆LST (K) is obtained by the following equation:

∆LST =
∣∣∣LSTDay

Aqua − LSTNight
Aqua

∣∣∣ (6)

(c) ERA 5 Precipitation

The precipitation data are from the European Centre for Medium-Range Weather
Forecasts reanalysis v5 product (ERA5) and are provided by the Copernicus Climate
Change Service (C3S) Climate Date Store (https://cds.climate.copernicus.eu/, accessed on
1 January 2022). The ERA5 precipitation data have an original spatial resolution of 0.25◦

and a temporal resolution of 1 h, with accumulation to daily totals.

(d) Land Cover Type

The land cover type data are from the MODIS global land cover product MCD12C1
(https://lpdaac.usgs.gov/products/mcd12c1v006, accessed on 1 July 2022), with a spatial
resolution of 0.05◦ and a temporal resolution of 1 year [45]. This study used the International
Geosphere Biosphere Programme (IGBP) global vegetation classification scheme from
MCD12C1, which contains 17 major land cover types.

3.3. In Situ Observations Data

We used in situ soil moisture observations as reference to verify the gap-filled SM
results. The in situ surface soil moisture data from 12 measurement sites (Figure 2,
Table 2) are provided by the ISMN website (https://ismn.earth/en/, accessed on 1 July
2022) [52–54] and the Long-Term Agroecosystem Research (LTAR) network (https://ltar.
ars.usda.gov/, accessed on 1 July 2022).

http://reverb.echo.nasa.gov/reverb/
https://doi.org/10.11888/Meteoro.tpdc.271663
https://doi.org/10.11888/Meteoro.tpdc.271663
https://cds.climate.copernicus.eu/
https://lpdaac.usgs.gov/products/mcd12c1v006
https://ismn.earth/en/
https://ltar.ars.usda.gov/
https://ltar.ars.usda.gov/
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Figure 2. Locations of validation sites (the background map is the land use and land cover map based
on MCD12C1 data in 2019).

Table 2. List of validation sites.

Networks Sites Names Stations Climate
Regime

IGBP
Land Cover

Measured
Depth Reference

Tibetan Plateau
(Asia)

Pali 24 Arid Barren/sparse
5 cm [55]Naqu 57 Polar Grasslands

OZNET
(Australia)

Yanco 12 Semi-arid Croplands/Grasslands
5–8 cm [56]Kyeamba 8 Temperate Croplands

REMEDHUS
(Europe) REMEDHUS 23 Temperate Croplands 5 cm [57]

AMMA
(Africa)

Benin 4 Arid Savannas
5 cm [58–61]Niger 3 Arid Grasslands

USDA
(North

America)

Little River 33 Temperate Croplands

5 cm [62–66]
Little Washita 20 Temperate Grasslands

Walnut Gulch 19 Arid Shrub open
rangeland

Fort Cobb 15 Temperate Croplands
Reynolds Creek 20 Arid Grasslands

4. Results
4.1. RF Training Results
4.1.1. Importance of Feature Variables in RF Model Construction

Figure 3 shows the spatial distribution of the most important feature variables in
the RF construction at each pixel. Daily values of NDVI, ∆LST and precipitation are
important factors in most parts of the world, which was confirmed by the sensitivity and
correlation between soil moisture and input variables [67]. In general, daily precipitation
and surface soil moisture were positively correlated, and high surface soil moisture values
were accompanied by high precipitation. In tropical rainforest areas (such as the Amazon
basin and the Congo basin) with higher vegetation density, NDVI contributes the most
to the predicted surface soil moisture in the RF gap-filling model, similar to the results
found the previous study [68]. In the dry land regions (usually with long sunshine hours
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and large diurnal temperature ranges) such as the Sahara Desert, Central Asia and West
Asia, the day-night land surface temperature difference is related to the soil moisture
status, partly because wet (dry) soil generally results in high (low) evapotranspiration and
further causes the decrease (increase) of daytime land surface temperature. Meanwhile,
the response of NDVI to surface soil moisture change has a relatively long time lag, which
may also reduce the importance of NDVI in explaining the soil moisture change in the
dry land areas. Furthermore, the uncertainty of the precipitation data (generally very low
amount of precipitation in these regions) may be related to the relative low importance of
the precipitation. These factors lead to ∆LST being an important feature of the model to
explain the dynamic variations of soil moisture in these dry land regions.
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Figure 3. The spatial distribution of the most contributing feature variable in the RF model for SM
gap-filling at each pixel.

4.1.2. Evaluation of Model Performance

Figure 4 shows the global distribution of R and RMSE between the RF model predicted
surface soil moisture and the reference (NN-SM) values for the test samples. The surface
soil moisture values predicted by the RF model showed a strong correlation with the
NN-SM values for most of the test samples around the world. The global average value of
R is 0.68, indicating a moderate-to-strong correlation between the predicted and reference
values of surface soil moisture on a global scale. Notably, higher correlation coefficients
were obtained for several regions, including southern Asia, southern and central Africa,
and northern North America. Additionally, particularly high correlation coefficients were
observed in Australia, where vegetation cover was low to moderate. Regions with high
vegetation cover, such as the Amazon and Congo rainforests, were found to have lower
R than other regions. This result was expected, because dense vegetation cover and
persistently high levels of surface soil moisture can make accurate predictions of surface
soil moisture difficult. The overall RMSE at the global scale is 0.044 m3/m3 (Figure 4b). Our
analysis revealed those areas with sparse vegetation or bare soil, such as arid, semi-arid,
and desert regions, had low values of RMSE, as expected, since low soil moisture values
and a narrow range are predominant in these regions. For example, locations such as
Australia, the Sahara, and southern North America had low RMSE values. The areas with
medium to high vegetation or covered by alpine flora, such as southern Asia, India, and
southeastern Australia, were found to have higher RMSE values. One possible reason is
that the C-and X-bands are sensitive to the presence of vegetation, and the amount and
density of vegetation cover can significantly affect the accuracy of surface soil moisture
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obtained by AMSR-E/2. This suggests that the model based on AMSR-E/2 observations
may be less effective in accurately predicting surface soil moisture levels in these types of
environments, particularly in areas near the Earth’s equator. The L-band sensor on board
SMAP is less affected by vegetation and therefore may have better accuracy in the densely
vegetated regions. The R values of the test samples are mostly medium to high, indicating
a significant correlation between the predicted and observed surface soil moisture values.
In addition, the RMSE values are moderate but within a range that is acceptable and
reasonable. The results presented above demonstrate that the trained random forest models
performed well and could be used to reconstruct the missing values of the NN-SM.
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4.2. Reconstruction Results and Cross-Comparison

Figure 5 shows the spatial distributions of the fractional valid observations (valid
surface soil moisture values recorded in the dataset) of the original NN-SM (SM-Ori) and
gap-free dataset after reconstruction (SM-Gapfree). As expected, fewer observations are
available in the high-altitude areas, such as the Tibetan Plateau, and in high-latitude regions
in the northern hemisphere in the original NN-SM. The global average coverage of the
NN-SM product is 53.2% (excluding Antarctica and Greenland), while the global coverage
ratio of our gap-free SSM dataset has increased significantly (up to 85%). The global
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coverage ratio of our gap-free SSM dataset can even reach 100% for areas without snow/ice,
frozen soil or water coverage. For the high-altitude areas and high-latitude regions, the
reconstruction method is influenced by the special pixels, e.g., water, snow/ice, frozen soils
pixels.
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Figure 5. Fraction of valid observations in the NN-SM product (a) and reconstructed gap-free product
(c) in 2002–2020 (with daily step), and latitudinal plots of valid observations percentage of the NN-SM
product (b) and reconstructed gap-free product (d). Reconstructed gap-free product, in black line;
reconstructed gap-free product if the special pixels (i.e., permanent snow/ice, frozen soil and water)
are not accounted, in magenta line. Note: water and snow/ice covered areas are masked out and
displayed in white color.

The coverage ratio also shows a temporal variation. Figure 6 shows the global averaged
land coverage ratio of the original NN-SM data and our gap-free SM data at daily step in
2015. The daily fraction of valid data in the original NN-SM data ranges from 21.4% to
74.55%, with low values from December to the following February (winter in the Northern
Hemisphere) and high values from June to August (summer in the Northern Hemisphere).
The gaps could be significantly reduced and gap-free soil moisture data could be obtained
temporally by our method. This gap-free database is important for comprehensive analysis
and research.
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Figure 6. Global average of fractional valid data (with daily step) in 2015: the daily NN-SM product
(grey line), the reconstructed gap-free product (orange line), and reconstructed gap-free product if
the special pixels (i.e., permanent snow/ice, frozen soil and water) are not accounted (magenta line).

The reconstructed surface soil moisture dataset from 2002 to 2020 was produced by
applying the gap-filling algorithm developed in Section 2 to the original NN-SM product.
Figure 7 shows the results of the original and reconstructed global daily surface soil
moisture on 1 January, 1 April, 1 July, and 1 October in 2010. The left column of Figure 7
lists the original NN-SM with gaps (referred to as SM-Ori), and the right column presents
the SM after gap-filling using the proposed method (SM-Gapfree). The original NN-SM
product does not cover Antarctica and Greenland due to the persistent snow and ice cover,
so we have not included these regions in the reconstructed SM dataset. The resulting gap-
free dataset shows significant improvements in representing the continuity and variability
of surface soil moisture at a global scale and demonstrates the effectiveness of a pixel-wise
training approach in the RF algorithm.
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Figure 7. Global daily maps of the original and reconstructed gap-free SM on 1 January, 1 April,
1 July, and 1 October in 2010.

Moreover, we compared the reconstructed results obtained using our pixel-wise RF
with the results from the RF trained in a traditional global uniform (TGU) manner gap-
filling method; the TGU gap-filling method takes all samples in the model to build a training
model that uniformly fills the global missing data. The global uniform gap filling method
has been widely used in previous studies [41]. Here, we implement the global uniform
gap filling method following the procedure of Sun and Hao [41] for comparison with our
pixel-wise method. The comparisons of reconstructed surface soil moisture produced
by the traditional training model and the pixel-wise machine learning model proposed
in this study are shown in Figure 8. As shown in Figure 8(c1–c4), we can see obvious
spatial discontinuity in the reconstructed results obtained by traditional training methods.
In contrast, the pixel-wise method proposed in this study performs better in terms of
spatial continuity, and no obvious boundary could be found around the filled regions in
Figure 8(d1–d4). This indicates that the gap-filling approach in our study is superior to the
traditional method.

In addition to evaluating the reconstruction results in gaps, we also evaluated the
results of the RF model by creating artificial gaps in the NN-SM dataset and then compared
the surface soil moisture values predicted by the RF model with the original values of the
NN-SM dataset that had been removed. We carried out such a cross-comparison in five
sub-regions across different continents on typical winter and summer days, 1 January 2019
and 1 July 2019, respectively, as shown in Figure 9. Overall, the simulated surface soil
moisture results have a high consistency with the original products as demonstrated in
these sub-regions (Figure 9), indicating that the RF model can reproduce the values of the
original NN-SM dataset. Differences could be found in some areas in Figure 9(c1,d1,h1,i1),
where the simulated surface soil moisture values slightly overestimated or underestimated
the corresponding original values, probably impacted by the land use and land cover type.
The overestimation occurred primarily in short vegetation areas such as croplands and
grasslands, while the underestimation occurred primarily in woody areas. Forest generally
has a higher vegetation optical depth than croplands and grasslands; this may introduce
larger uncertainty in the soil moisture retrieved from microwave brightness temperature
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observations for forest regions, which could partly explain the difference. We also observed
significant seasonal variations in surface soil moisture in croplands and grasslands. During
the peak growing season, the vegetation optical depth is higher than that during the early
and end stages of the growing seasons, and it can also affect the accuracy of the NN-SM
soil moisture and our gap-filling results.
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Figure 8. Comparison of the soil moisture gap-filling results by different methods at four selected
regions on 10 July 2011, with original global SM (a). The top panel shows the original surface
soil moisture (b1–b4), and the middle and bottom panels show the gap-filled surface soil moisture
values obtained by the traditional method (c1–c4) and the pixel-wise method developed in this study
(d1–d4).

We created scatterplots to further demonstrate quantitatively the agreement between
simulated surface soil moisture and the original NN-SM data over the five sub-regions
on 1 January and 1 July in randomly selected years of 2003, 2008, 2014 and 2019
(Figures 10 and 11). The simulated surface soil moisture showed high agreement with the
original NN-SM data, with R values ranging from 0.768 to 0.919, RMSE values from 0.053 to
0.082 m3/m3, ubRMSE values from 0.053 to 0.081 m3/m3, and bias values from −0.007 to
0.010 m3/m3, respectively.
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Figure 9. Comparison of the simulated soil moisture results with the original values in the manually
eliminating regions on 1 January 2019 and 1 July 2019, with original global SM (a,b). The original
SM (c–l), reconstructed SM (c1–l1) and land cover type (c2–l2) spatial information of ten simulated
regions, respectively. The legend of the land cover type is the same as for Figure 2.
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Figure 10. Scatterplots of the reconstructed surface soil moisture against and original values over the
sub-regions on 1 January of 2003, 2008, 2014 and 2019. Note: the color density indicates the number
of samples.
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Figure 11. Scatterplots of the reconstructed surface soil moisture against and original values over
the sub-regions on 1 July of 2003, 2008, 2014 and 2019. Note: the color density indicates the number
of samples.

Figure 12 shows the boxplots of the evaluation metrics (R, RMSE, ubRMSE and Bias),
and it clearly shows the good accuracy of our pixel-wise RF method. Figure 13 shows
the histogram distribution of the reconstructed surface soil moisture values in the typical
simulated sub-regions by different methods on 1 January and 1 July 2019, respectively.
Regardless of high or low surface soil moisture values, our method generally produced
results consistent with the distribution of the original data. The distribution of the results
by the global uniform method shows large bias in terms of peak and frequency, when
compared with the original data.

4.3. Validation Using the In Situ Observations

The reconstructed surface soil moisture values were validated using the in situ obser-
vations at the selected 12 validation sites. For a better comparison, we present the statistical
metrics between the datasets of the original SM (SM-Ori), the gap-filled SM (referred to
as SM-Recon), the result of merging the original SM and the gap-filled SM (referred to as
SM-Gapfree), respectively, with the in situ observations in Table 3 and Figure 14. For the
results of SM-Ori, SM-Recon, and SM-Gapfree, the range of R was between 0.391 and 0.853,
the ubRMSE values were between 0.023 m3/m3 and 0.074 m3/m3, and the Bias values
were between −0.049 m3/m3 and 0.104 m3/m3. Some low R values were found, mainly
due to large differences between the original SM data and the observations at the in situ
sites. The mean R, RMSE, ubRMSE, and Bias of the reconstructed gap-free SM (original)
data were 0.656 (0.662), 0.073 m3/m3 (0.075 m3/m3), 0.051 m3/m3 (0.054 m3/m3), and
0.033 m3/m3 (0.032 m3/m3), respectively. Overall, the accuracy of the reconstructed surface
soil moisture products was high, and the reconstructed surface soil moisture product main-
tained the same level of accuracy as the original NN-SM product (Table 3 and Figure 14),
which verified the reliability and usability of the generated spatiotemporal continuous
SM products.
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SM values.

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 27 
 

 

ulated sub-regions by different methods on 1 January and 1 July 2019, respectively. Re-

gardless of high or low surface soil moisture values, our method generally produced re-

sults consistent with the distribution of the original data. The distribution of the results 

by the global uniform method shows large bias in terms of peak and frequency, when 

compared with the original data. 

 

Figure 12. Boxplots of the gap-filled surface soil moisture by the traditional global uniform (TGU) 

gap-filling method and our pixel-wise method in ten sub-regions compared with the original NN 

SM values. 
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Table 3. Statistical comparisons of the SM-Ori, SM-Recon, and SM-Gapfree with the in situ SM.

R RMSE (m3/m3) ubRMSE (m3/m3) Bias (m3/m3)

Sites SM
-Ori

SM
-Recon

SM
-Gapfree

SM
-Ori

SM
-Recon

SM
-Gapfree

SM
-Ori

SM
-Recon

SM
-Gapfree

SM
-Ori

SM
-Recon

SM
-Gapfree

Benin 0.800 0.853 0.818 0.120 0.112 0.117 0.058 0.042 0.052 0.105 0.104 0.104
Fort Cobb 0.495 0.447 0.453 0.061 0.049 0.061 0.061 0.048 0.061 −0.004 −0.006 −0.002
Kyemba 0.740 0.613 0.708 0.105 0.108 0.105 0.079 0.074 0.076 0.070 0.079 0.073

Little River 0.539 0.552 0.505 0.138 0.126 0.137 0.054 0.037 0.051 0.127 0.121 0.127
Little Washita 0.498 0.391 0.452 0.066 0.052 0.065 0.062 0.051 0.061 0.024 0.011 0.023

Naqu 0.810 0.751 0.809 0.075 0.072 0.074 0.071 0.054 0.053 −0.025 −0.049 −0.052
Niger 0.786 0.669 0.708 0.033 0.044 0.038 0.025 0.023 0.026 0.021 0.037 0.029
Pali 0.598 0.811 0.811 0.051 0.03 0.038 0.028 0.029 0.032 −0.043 −0.009 −0.02

Remedhus 0.835 0.76 0.826 0.036 0.034 0.034 0.036 0.034 0.034 −0.001 0.002 −0.001
Reynolds Creek 0.497 0.423 0.468 0.069 0.057 0.07 0.067 0.057 0.067 0.016 0.003 0.018
Walnut Gulch 0.574 0.553 0.572 0.065 0.051 0.058 0.044 0.028 0.036 0.047 0.043 0.046

Yanco 0.770 0.628 0.737 0.080 0.072 0.076 0.062 0.062 0.061 0.050 0.036 0.045
all 0.662 0.621 0.656 0.075 0.067 0.073 0.054 0.045 0.051 0.032 0.031 0.033
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SM observations.

Figure 15 shows the time series of the reconstructed (SM-Recon) and the in situ
observations at 6 selected validation sites (each from one continent) from 2010 to 2016
to further validate the performance of the reconstructed products. The variation of in
situ surface soil moisture ranged from 0.1 to 0.6 m3/m3 with different magnitudes at
different sites, and the reconstructed surface soil moisture data could reproduce similar
daily dynamics to the observations. The reconstructed surface soil moisture showed inter-
annual variability and correlated with the temporal pattern of precipitation at most sites.
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Low values of surface soil moisture occurred mainly in the dry seasons and winter frozen
periods, and high values of surface soil moisture occurred mainly during the wet and rainy
summer seasons. In general, the reconstructed surface soil moisture data could not only
maintain temporal consistency with the in situ surface soil moisture data, but also reflected
the dynamic variability of surface soil moisture. The reliability of the proposed method and
the usability of the established gap-free surface soil moisture product were demonstrated
by the time series validation, which is of great practical significance for the application and
analysis of long-time series products.
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Figure 15. Time series of SM-Ori (grey hollow circles), SM-Recon (red hollow circles), in situ SM
(Obs-SM in blackline) and precipitation (blue columnar) in 2010–2016.

Figure 16 shows the scatterplots of the reconstructed surface soil moisture (also the
original values) against the in situ observations. The reconstructed surface soil moisture
values at different sites were not significantly different from the site observations, indicating
a good agreement with the in situ surface soil moisture values. For example, the comparison
at the Benin site in Africa showed that the R for the original product was 0.800 (ubRMSE was
0.058 m3/m3), while the R for the reconstructed data was 0.853 (ubRMSE was 0.042 m3/m3);
for the Little River site in the United States, the correlation for the original surface soil
moisture product was 0.539 (ubRMSE was 0.054 m3/m3), while the correlation of the
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reconstructed results changed to 0.553 (ubRMSE was 0.037 m3/m3). This was a satisfactory
validation of the research method, since our goal was to extend the established original
surface soil moisture products to the areas where data were missing, rather than to improve
the accuracy of the retrieval algorithm itself. The R values are high, ranging from 0.553 to
0.853. The lower RMSE values are 0.034 m3/m3 at the REMEDHUS sites and 0.044 m3/m3

at the Niger sites, where the dynamic range of surface soil moisture is small. The lower R
values at the Little River sites compared to the original surface soil moisture may be due to
errors in the original product. In addition, the reconstructed results have lower Bias values,
indicating that the reconstructed product has good consistency and stability.
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5. Discussion
5.1. The Proposed Pixel-Wise RF Method and the Gap-Filling Results

Applications of surface soil moisture products based on satellite remote sensing
observations are often hampered by gaps in the time series. The spatiotemporal gaps in the
satellite remotely sensed surface soil moisture data are caused by a variety of factors, such as
different satellite revisit times, human-induced radio frequency interference contamination,
presence of ice, snow or frozen ground, and high uncertainty of retrievals in coastal and
mountain areas; some of these problems cannot be mitigated by increasing the number of
sensors or improving the data fusion techniques [69–73]. The successful applications of
machine learning based gap-filling methods at regional scale are based on the fact that SM
is somehow related to other variables, e.g., precipitation, NDVI, LST, terrain. In this study,
we reconstructed the data to fill the gaps in the NN-SM product using the RF algorithm in
a pixel-wise manner, which performed much better than the global uniform RF model for
surface soil moisture gap-filling, as shown in the results section. The global gap-free dataset
with spatiotemporal continuity (SM-Gapfree) could be obtained by merging our gap-filled
values with the original NN-SM dataset. The accuracy of the gap-filling and the obtained
gap-free dataset were well illustrated by comparison with the ground observations.

We also realize that the physical basis of our gap-filling method for the pixels covered
by snow/ice or frozen soil need further investigation. Although it may be controversial,
some datasets retain the surface soil moisture values for these special pixels (water, snow,
ice, frozen soil or others); for example, the ERA5 global reanalysis data also gives the soil
moisture value for the water and snow/ice covered pixels. It is also noteworthy that even
though the amount of liquid water in the frozen soil is very small, it is not negligible. For
example, a recent study shows that the soils in permafrost regions of Alaska contain 5–25%
liquid water at near freezing temperatures; this plays a very important role, particularly in
promoting permafrost thaw, controlling cold-season carbon emissions, and enhancing the
microbial carbon release prior to permafrost collapse [74]. Similar results were also found
in high altitude areas in the Tibetan Plateau, such as Naqu and Maqu, where both surface
and root zone soil moisture values based on in situ observations were above zero even
during the cold winter [55,75]. To avoid the controversy, in this study, we used a method
to exclude (flag) the pixels covered by frozen soil, snow/ice and water. The water and
permanent snow/ice covered pixels were first masked based on the annual MODIS land
cover product; further, pixels with daytime land surface temperature lower than 0 ◦C were
labeled and excluded in our daily soil moisture dataset. We constructed a flag layer to easily
distinguish different data quality levels of our gap-free dataset: “0” represents the original
surface soil moisture value from NN-SM; “1” represents the gap-filled surface soil moisture
value; “2” represents the excluded pixels relating to areas that are covered by water or
snow/ice, and frozen soils. A similar strategy to exclude the special pixels is also commonly
adopted in other microwave remote sensing soil moisture product, e.g., the ESA-CCI soil
moisture product, which provides a flag of ‘Snow_coverage_or_temperature_below_zero’
based on land surface temperature [76]. Further studies will be conducted to explore
the rationale for and possibility of obtaining soil moisture values in frozen soil to further
improve our understanding.

5.2. Uncertainty Analysis of the Gap-Free Results

Most satellite-based surface soil moisture products have data gaps. The NN-SM data
product can reproduce the spatial and temporal distribution of SMAP SM with a longer
time series, and the accuracy is comparable to that of the SMAP surface soil moisture
product. However, there are inevitable gaps in the NN-SM product, mainly caused by
various factors such as satellite revisit times, human-induced radio frequency interference,
presence of ice, snow or frozen ground, and errors of soil moisture retrievals in coastal and
mountain regions.

A variety of machine learning techniques have been evaluated and applied to fill
gaps in surface soil moisture data [35–37]. The successful regional applications of machine
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learning-based gap-filling methods are built on the assumptions that surface soil moisture
is somehow related to other variables, such as precipitation, NDVI, LST, etc. However,
when the model is established by training the machine learning in a traditional way, it
cannot fully fit all the details and often results in a boundary effect between the filled and
the original values (a phenomenon where the reconstruction results do not quite match the
spatial characteristics of the original NN-SM product in some areas, as shown in Figure 8).
This study proposed to build a pixel-wise machine learning model by training the model
with the sample data developed in each pixel, and it performed much better in terms of
spatial continuity and accuracy. The quantitative validation based on in situ observations
also shows the validity of the gap-filling method and the good accuracy of the generated
gap-free surface soil moisture dataset.

The uncertainty in the original NN-SM dataset should be mentioned because the gap-
free SM in this study is obtained by filling the gaps in the NN-SM dataset. The errors in the
original surface soil moisture product, as shown in Figure 11, will inevitably be transferred
to the reconstructed product. The external uncertainties in the selected input datasets as
feature variables will certainly be propagated into the gap-free SM dataset. In addition
to the uncertainties of the NDVI and LST data (mainly based on MODIS) themselves, the
use of the satellite-based instantaneous information as a surrogate to characterize the all-
weather surface state will also introduce uncertainties [77,78]. In addition, the relationship
between surface soil moisture and precipitation is complicated, including some mismatch
between the adopted ERA5 precipitation and NN-SM dataset which could be seen during
the study; this certainly affects the accuracy of the reconstructed surface soil moisture.
Precipitation is one of the most important factors affecting surface soil moisture, as it is the
main source of soil moisture. The inherent errors in the precipitation data can affect the
prediction of surface soil moisture when propagated through reconstruction models [79].

In addition, the setting of parameters is very important for the training accuracy of
the machine learning method. The purpose of adjusting the parameters is to achieve the
maximum harmony of the deviation and variance in the model. The models of this study
are established pixel-by-pixel; considering the computation time, we did not search for the
optimal parameter at each pixel. This uncertainty may affect the parameter generalization
of the proposed gap-filling model to some extent. In addition, the spatial component was
not considered during the samples separation. Since our model is based on a pixel-by-pixel
basis, the model itself is constructed within each pixel and its neighborhood pixels. We
also notice that the RF algorithm can lead to more centralized values in the predicted
results. This could happen because RF tends to fit to the mean of the dependent variable
while ignoring the extremes. It may overestimate the likelihood of average outcomes and
underestimate the probability of extreme outcomes. This problem is especially severe for
the global uniform method. The pixel-wise RF method proposed in this study significantly
improves the accuracy under the extreme conditions, but some bias still exists. Further
improvement on the RF algorithm may be helpful to solve this problem.

6. Conclusions

In this paper, a pixel-wise machine learning (Random Forest) model was developed to
fill the gaps in the NN-SM product and the reconstructed gap-free of surface soil moisture
product was generated from 2002 to 2020. Various feature variables were used to build
the pixel-wise RF model, such as NDVI, precipitation, LST, land cover type. The model
training and validation, as well as the application, were conducted in a pixel-by-pixel
manner to account for the difference between different geographical locations, which
proved to be helpful improving the gap-filling accuracy and spatial discontinuity of the
dataset. The evaluation was conducted by comparing the reconstructed SM with the in situ
surface soil moisture observations and by cross-comparison with the original surface soil
moisture product.

The main conclusions of this study are as follows: (1) The NN-SM dataset frequently
exhibits gaps on a global scale. These gaps are not restricted to specific geographical regions
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or seasons, as they are observed in both warm and cold periods and regions. The largest
fraction of non-valid data is more than 80%, and the average gap percentage is about 53%
globally. (2) The pixel-wise RF method developed in this study has a stronger gap-filling
ability after careful quality evaluation, which achieved a good agreement with the NN-SM,
with R of 0.649 and RMSE of 0.050 m3/m3 globally. These well-validated indicators ensure
the reliability of the long-term dataset of surface soil moisture that will be produced by
subsequent steps. (3) The pixel-wise RF model performed well based on the comparison
with the original NN SM product as demonstrated over the ten simulated areas with R
ranging from 0.770 to 0.918, ubRMSE from 0.053 to 0.081 m3/m3, and Bias from −0.012 to
0.008 m3/m3. Compared to the in situ surface soil moisture observations of the ISMN
networks, the pixel-wise RF model achieved good performance with R of 0.610, ubRMSE
of 0.045 m3/m3 and Bias of 0.031 m3/m3. The evaluation results highlighted the high
accuracy and reliability of the generated global long-term gap-free surface soil moisture
dataset. In conclusion, our research demonstrates that a pixel-wise training approach for
the Random Forest machine learning can effectively reconstruct global gap-free surface soil
moisture products. The approach we have developed holds promise for future application
to soil moisture products from other satellite missions, provided that sufficient time series
samples are available.
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