remote sensing

Communication

A Target Imaging and Recognition Method Based on

Raptor Vision

Bitong Xu, Zhengzhou Li *

check for
updates

Citation: Xu, B.; Li, Z.; Cheng, B.;
Yang, Y.; Siddique, A. A Target
Imaging and Recognition Method
Based on Raptor Vision. Remote Sens.
2023, 15,2106. https://doi.org/
10.3390/rs15082106

Academic Editors: Xanthoula Eirini

Pantazi and Domenico Velotto

Received: 23 February 2023
Revised: 29 March 2023
Accepted: 14 April 2023
Published: 17 April 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Bei Cheng, Yuxin Yang and Abubakar Siddique

College of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
* Correspondence: lizhengzhou@cqu.edu.cn; Tel.: +86-132-0601-5717

Abstract: It is a big challenge to quickly and accurately recognize targets in a complex background.
The mutual constraints between a wide field of vision (FOV) and high resolution affect the optical
tracking and imaging ability in a wide area. In nature, raptors possess unique imaging structures
and optic nerve systems that can accurately recognize prey. This paper proposes an imaging system
combined with a deep learning algorithm based on the visual characteristics of raptors, aiming
to achieve wide FOV, high spatial resolution, and accurate recognition ability. As for the imaging
system, two sub-optical systems with different focal lengths and various-size photoreceptor cells
jointly simulate the deep fovea of a raptor’s eye. The one simulating the peripheral region has
a wide FOV and high sensitivity for capturing the target quickly by means of short focal length
and large-size photoreceptor cells, and the other imitating the central region has high resolution
for recognizing the target accurately through the long focal length and small-size photoreceptor
cells. Furthermore, the proposed algorithm with an attention and feedback network based on octave
convolution (AOCNet) simulates the mechanism of the optic nerve pathway by adding it into the
convolutional neural network (CNN), thereby enhancing the ability of feature extraction and target
recognition. Experimental results show that the target imaging and recognition system eliminates the
limitation between wide FOV and high spatial resolution, and effectively improves the accuracy of
target recognition in complex backgrounds.

Keywords: target recognition; high-resolution imaging; wide FOV; biological-based imaging and
processing; AOCNet convolutional neural network

1. Introduction

Currently, various electro-optical tracking systems are applied to detect and track tar-
gets because they can provide abundant and detailed information [1-4]. Lin et al. designed
a real-time embedded vision system on an unmanned rotorcraft using an onboard color
camera for ground target tracking [5]. Ferone et al. proposed a background subtraction
approach based on pan-tilt-zoom cameras to detect moving targets [6]. Minaeian et al.
designed a vision-based target recognition and localization method through the mobile
camera of the UAV [7]. It is well known that FOV and spatial resolution are both important
to electro-optical tracking systems, which, respectively, determine the speed and accuracy
of target recognition. A wide FOV is conducive to capture prey quickly, and the higher the
resolution, the more characteristic information could be obtained, which is more conducive
to target recognition. So, a wide FOV and high spatial resolution are always desired in
automatic target recognition. Taking the airborne electro-optical tracking system as an
example, it usually requires a wide FOV to quickly obtain battlefield information and
high spatial resolution to accurately recognize targets. However, the FOV and spatial
resolution of electro-optical tracking systems are mutually restricted, that is, the wider the
FOV, the lower the spatial resolution.

Many optical imaging devices have been proposed to overcome the limitation between
FOV and spatial resolution [8,9]. An electro-optical tracking system integrating various
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spatial resolutions with different lens is proposed to solve the problem of mutual influence
between imaging resolution and FOV [10]. In addition to heavy weights and low integra-
tion, this non-co-aperture integration mode requires it to calibrate its spatial coordinates for
calculating position information. Inspired by biology, an artificial compound eye for optical
imaging is proposed, which is a lightweight imaging device composed of 630 artificial
ommatidia (visual sensors) with panoramic and undistorted FOV [11]. Inspired by studies
on animals, a biomimetic control strategy is proposed for visually-guided micro-aerial
vehicles, which uses a micro lens as the robot’s eye [12]. A multi-scale monocentric spheri-
cal lens imaging system is investigated to compensate for geometric aberrations without
additional assistance [13]. However, the spherical lens imaging structure requires more
variables, which increases the calculation and reduces the accuracy to some extent. Thus,
it is necessary to develop a novel imaging equipment with wide FOVs and high spatial
resolutions.

Diverse raptors such as eagles are known to capture prey from miles away through
complex visual perception and processing strategies [14]. Each of their eyes has two distinct
foveae, namely, deep fovea and shallow fovea [15]. The shallow fovea has a narrow FOV of
around 20 degrees for tracking nearby targets by means of binocular vision. The deep fovea
is responsible for target capture and recognition due to its wide FOV of approximately
120 degrees and high-density photoreceptor cells [16]. The closer to the central area of the
fovea, the higher the density and smaller the volume of photoreceptor cells. In addition,
the concave spherical surface of the deep fovea has the function of partially enlarging
the image of the central region [17]. Inspired by the biologically visual strategies of a
raptor’s eye, many optical imaging devices are proposed to enhance the performance
of target recognition. The visual imaging guidance platform is proposed based on the
characteristics of eagle eye image stitching, side suppression and visual attention [18].
To expand FOV, Deng et al. proposed an eagle-eye-based optical imaging platform by
mounting several optical imaging systems with different FOV and resolutions at multiple
orientations [19]. The images of the sub-optical system needs to be spliced into a whole
image after complex coordinate transformation due to its inconsistent line of sight. A
raptor-eye-based combination of traditional target recognition and a convolutional neural
network is an innovative method [20], which has improved the algorithm but does not
consider the impact of FOV.

There are many methods to recognize targets. Template matching is a traditional
method [21,22], as it calculates the correlation between the reference template and the target
template to seek the maximum peak. Visual saliency is the ability of fast focusing in the
human visual system. According to the salient feature information of the target, the salient
region is extracted and then the target is further recognized [23]. Machine learning has a
strong ability of feature representation and target classification, and it transforms the target
detection problem into a classification problem by means of a trained classifier. The training
methods include support vector machine [24], AdaBoost [25], k-nearest neighbor [26],
conditional random field [27] and so on. Gong et al. [28] introduced a rotation invariant
layer in the region extraction stage, and added regularization constraints to optimize the
function to improve the performance of multi-class target recognition. The learning-based
RPN [29] effectively integrates the network structure by means of sharing the extracted
features. Based on the perspective of the amplification of the deep fovea center region,
the DeepFoveaNet algorithm proposed by Guzman-Pando et al. [30] divides the input
image into four quadrants for locally enlarging the target. A system composed of two
subsystems is proposed to recognize targets [31] without the consideration of the raptor’s
optic nerve.

The raptor’s visual cortex has two pathways, i.e., the optic tectum and thalamus
pathway [32]. The thalamus pathway perceives spatial information for navigation, and the
optic tectum pathway is responsible for understanding the scene, and capturing and
recognizing targets. The tectum pathway has a feedback mechanism to selectively enhance
the stimulation of related characteristics while inhibiting the irrelevant stimuli.
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Inspired by the imaging structure and optic nerve pathway of raptors, a novel bio-
logical visual device combined with convolutional neural network (CNN) is proposed in
this paper to achieve wide FOV, high resolution and accurate recognition ability simulta-
neously. Two sub-optical imaging systems with different focal lengths and various-size
photoreceptor cells jointly simulate the deep fovea. The one with short-focus and large-size
photoreceptor cells has wide FOV and high sensitivity, which simulates the peripheral re-
gion. The other one with long-focus and small-size photoreceptor cells has high resolution,
which simulates the central region. Moreover, the system has the same sight line by means
of a co-aperture lens and a splitter prism, which divides the incident light into two parts
and passes them to the different sub-optical imaging systems. In addition, by means of
simulating the raptor’s optic nerve pathway, this paper proposes an AOCNet module with
feedback to enhance the performance of target recognition. Through the feedback mecha-
nism, the bottom layer of the network can effectively suppress or enhance the irrelevant or
related information. The proposed system integrating the imaging device and the target
recognition algorithm is verified.

2. Optical Imaging Equipment and Target Recognition Method

Raptors can see prey from a long distance, and it provides a good biological model for
target recognition technology in complex backgrounds. This paper proposes a co-aperture
optical imaging system to overcome the limitation between imaging resolution and field
angle, as well as improve the capability of target monitoring and recognition.

2.1. Optical Imaging Equipment Based on Raptor Vision

The raptor’s eye contains two parts: deep fovea and shallow fovea, which are also
known as central fovea and lateral fovea, respectively. As shown in Figure 1 [33], the deep
fovea is close to the reference line (in front of the head) with a FOV of 120 c/deg (cy-
cles/degree). The shallow fovea is close to the lateral of eye with a FOV of 20 c/deg.
The maximum measured visual acuity of the eagle is about 140 ¢/deg, which is obtained
at the luminance of 2000 cd/m? [19]. When measured under the same psychophysical
method and laboratory conditions, the maximum visual acuity of eagles is about twice that
of humans [34]. The deep fovea is mainly responsible for target recognition in wide FOV,
and the shallow fovea from two eyes could track nearby target by means of binocular vision.

. . Frontage
Binocular visual

dee[; fovéa \deep fovea

shallow fovea shallow fovea

(a) (b)

Figure 1. The structure of raptor’s eye. (a) Deep fovea and shallow fovea. (b) Horizontally-orientated
visual area.

Moreover, the photoreceptor cells of fovea include rod cells and cone cells. Rod cells
have high brightness sensitivity, while cone cells could provide color vision information.
The density of an eagle’s fovea photoreceptor cells is 65,000/ mm?, while that of the human
eye is 38,000/ mm? [35]. Furthermore, as shown in Figure 2a, the cone cells located closer to
the center of the fovea have a smaller volume and higher density [34]. The density of the
photoreceptor cells is highest at the deep fovea as shown in Figure 2b [15].
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Figure 2. Distribution of cone cells in the deep fovea. (a) The distribution of foveal cone cells. (b) The
relative receptor density.

Meanwhile, there is a concave spherical structure at the bottom of deep central
fovea, which acts as a negative lens to partially magnify the center area of the sight line.
The anatomical structure of a raptor’s deep fovea is shown in Figure 3 [17]. It means that
the target in the center of the sight line would be seen more clearly with abundant details.

Deep fovea
magnification

Figure 3. Anatomy of the deep fovea.

According to the deep fovea structure, an optical imaging system is proposed in this
paper. As shown in Figure 4, there are two sub-optical systems with different focal lengths
and various-size photoreceptor cells, which jointly simulate the deep fovea structure to
achieve wide FOV and high resolution. The black solid line and blue dotted line in the
designed diagram represent the photoreceptor cells density of the raptor’s eye and the
proposed simulation method, respectively. A CMOS sensor with high density and small-
size photoreceptor cells is adopted to simulate the central region of the deep fovea, and the
other CMOS sensor with low density and large-size photoreceptor cells is used to simulate
the peripheral region of the deep fovea. The imaging system utilizes a piecewise constant
function to fit the relationship curve between the photoreceptor density and the FOV of
raptor’s eye.

The concave spherical structure acts as a negative lens that could partially magnify
targets at the center of the sight line. Therefore, the central region of the deep fovea should
be stimulated by a sub-optical system with long focal length and small-size photoreceptor
cells, and the peripheral region of the deep fovea is simulated by a short focal length
sub-optical system with large-size photoreceptor cells. The one with a short focal length
and large-size photoreceptor cells has a wide FOV, while the one with a long focal length
and small-size photoreceptor cells has high resolution.
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Figure 4. The designed two sub-optical systems.

The schematic diagram of the designed optical imaging device is shown in Figure 5.
The incident beam focused by the focusing lens is divided into two parts by a beam splitter
prism with the same reflectivity and transmittance. After beam splitting, the reflected light
and the transmitted light are focused on two different sub-optical systems, respectively. It
is worth noting that the central part of the reflected beam is further expanded in order to
fill the FOV of the imaging system with a long focal length. Through the above methods,
the two sub-optical systems integrated in the proposed system not only own the same
aperture, i.e., co-aperture, but also have the same center coordinate, which overcomes
the coordinates conversion between the two sub-systems. Therefore, this optical imaging
system could obtain a wide FOV with high resolution. The physical picture of this imaging

system is shown in Figure 6.

Detection

U Light Optical equipment
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Figure 5. The schematic diagram of optical imaging.

Light

Figure 6. The designed optical imaging device.
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2.2. AOCNet Based on Biological Vision

The special structure between the eyes and brain of a raptor makes it visually sensitive.
There are two major visual pathways in the visual cortex of the raptor, i.e., the optic tectum
pathway and thalamus pathway [36]. The sketch is shown in Figure 7, where Cere, Ec, OPT,
Rt, TeO and Wulst represent the cerebellum, ectostriatum, thalamus’s main visual nucleu,
nucleus rotundus, optic tectum and visual cortex, respectively, and Ep is the peripheral
layer of Ec.

Waulst > Ep

Retina »  OPT Ec
: v t
e T F————- > Rt

Figure 7. The sketch of the optic tectum pathway (dotted line) and thalamic pathway (solid line) in a
raptor’s brain [36].

The thalamic pathway and optic tectum pathway are responsible for perceiving mo-
tion information and recognizing targets of interest. The schematic diagram is shown
in Figure 8. The pathway from Retina to Ec could be used to analyze and recognize the
target, and nucleus isthmus feedback controls Teo’s visual response. The nucleus isthmus
includes two sub-nuclei, i.e., the large cells and small cells. TeO transmits information to
the large cells , and its output is projected to the 12th to 14th deep layer of TeO, which has
an incentive on the tectum cells. The small cells part of the nucleus isthmus receives the
input of neurons in the 10th layer of TeO and forms inhibitory information projected to
the 2th to 5th layers of TeO. The positive and negative feedback could enable tectum cells
to selectively enhance the stimulation of related characteristics and inhibit the response
to other irrelevant stimuli in the visual field. Therefore, the raptor could selectively pay
attention to the targets of interest.

N
Retina )
\\\_\_ }_7//

— —_— ~ e —

-~ - - - . )

| \ | ——— ;

( Ec )(—\ Rt /{—(\ Teo e — Nucleus isthimus
- . - — ey S

.

— — — - — -

Figure 8. The schematic diagram of the optic tectum pathway.

Inspired by the structure of a raptor’s visual information processing, the proposed
AOCNet method with a feedback mechanism is shown in Figure 9. In this CNN algorithm,
a top-down module is used to simulate the feedback control mechanism of the optic tectum
pathway. Firstly, the four different feature maps of ResNet50 are obtained through forward
transmission. The channel and spatial information are extracted by the attention module
(AT). Then, the octave convolution (OC) [37] divides the features of each layer into high-
frequency and low-frequency features, and performs feature fusion in the feedback layers.
The top-level output is integrated with the underlying feature map, which is similar to the
reverse transmission of the raptor’s eye vision. Finally, the low-frequency layer (LFL) is
added to the proposed AOCNet, which expands the receptive field of the network and
enhances the feature extraction ability.
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Figure 9. The designed AOCNet.

The classical Faster R-CNN algorithm [38] with ResNet50 backbone is the baseline
in this paper. The network of the classical algorithm consists of many convolution layers
and Relu layers . The feature map is calculated from the input image through ResNet50.
Then, the regional proposal network (RPN) and Rol pooling module are used to obtain the
classification probability and prediction coordinates.

The structure of original ResNet50 is shown in Table 1. Taking an image with 576 x 1024
as an example, four feature maps could be obtained from different layers of ResNet50. The
sizes of feature map F;; € R©*H*Win [i (Ii = 1,2,3,4) layer are [256, 144, 256], [512, 72,
128], [1024, 36, 64] and [2048, 18, 32], respectively.

Table 1. The structure and output sizes of ResNet50 layers.

Layer I Convolution Operation Output Size Strides
7 X 7conv, 64, stride 2
layer 0 3 x 3MaxPool, stride 2} [144, 256] 4
1x1,64
layer 1 3x3,64| x3 [144, 256] 8
|1x1,256
[1x1,128
layer 2 3 x 3,128 [72,128] 16
|1x1,512
[1x1,256
layer 3 3 x 3,256 6 [36, 64] 32
|1x1,1024
1x1,512
layer 4 3x3,512 | x3 [18,32] 64
|1 x1,2048

The calculation of AT(F;) is shown in Equation (1), and it consists of C,(F;;) and
Sa(Fy;) [39]. Ca(Fy;) is the channel attention function and S,(F;) denotes the spatial atten-
tion function. The feature map Fj;(li = 1,2,3,4) as the input tensor is transmitted to C, (F;;)
and S,(F};), respectively. C,(F;;) and S,(Fj;) are calculated as shown in Equations (2)
and (3). A sequential module composed of a convolution and rectified linear unit (CR)
works after average-pooling (AvgPool) and max-pooling (MaxPool) operations.

AT (Fy;) = (Co(Fyi) + Sa(Fyy)) @ Fy; ¢))



Remote Sens. 2023, 15, 2106 8 of 16

Ca(Fj;) = 0(CR(AvgPool(Fj;)) + CR(MaxPool (Fj;))) )

Sa(Fy)) = o (f77 ([ AvgPool (Fy;); MaxPool (F;)]))
= J(f7><7( [Favgi;Fmﬂxi] ))

where ¢ denotes the sigmoid function, f”*7 is the convolution layer with kernel 7 by
7. The output of AvgPool(Fy;) is Fayg, € RUHXW “and the output of MaxPool (Fy;) is
c RIXHXW

The calculation of OC is shown in Equation (4), where X = {X!, X!} is the input of
OC. XH represents the high-frequency feature, and X" is the low-frequency feature. As can
be seen from Figure 9, the channels of the feature map become 256 after the convolutional
layer. Hence, the channel of input Xt € REXH*W and XL € RC~ 2% is 256. The formulae
of YH and Y are shown in Equations (5) and (6), respectively.

®)

Fmax,-

YH yH — oc((xH,x1)) 4)
YH = f(XH;WHHH> + upsample (f(XL; WL%H),Z) (5)
YE = £ (X5 W)+ £ (pool (XH,2); WHEL) ©)

where the f(X; W) is a convolution layer with parameters W, pool (X, K) is an average
pooling operation with kernel size 2 by 2. upsample(X, K) is the upsample function of the
torch and its factor is set to 2, and the mode of interpolation is nearest. Assuming that
the output channel of the convolution operation is x, and the « is set as 0.5 in this paper,
the details of different f(X; W) are shown in Table 2.

Table 2. The details of different f(X; W).

Convolution Channel Kernel Stride Padding
H=H (1—a)xx 3 1 1
H=L O X x 3 1 1

fL—H (1—a)xx 3 1 1
oL o X x 3 1 1

In addition, the LFL is added after the OC3 layer, which produces a lower frequency
feature map than the input tensor, so that the system could obtain more global information.
The formula of low-frequency feature map X' is denoted as Equation (7).

XL — £(pool(X,2); WLEL) 7)

where the X is the input data, and the WL denotes the parameters of the convolution
mentioned in Equation (5).

The designed feature fusion module with feedback layers is shown in Figure 10.
The P and PL,i = (2,3,4) represent the high-frequency and low-frequency feature maps
obtained by the OC layer, respectively. In this way, the top features are transferred to the
bottom in reverse. The bottom layer will comprehensively consider the extracted features
of the top layer, so as to improve the ability of selectively enhancing relevant neurons.
Taking an image with 576 x 1024 as an example, the output feature dimension information
of AOCNet is as follows:X; € RE*HXW (i = 1,2 3,4 5), the output channel C of X; is 256,
and the sizes of the feature maps are [256, 144, 256], [256, 72, 128], [256, 36, 64], [256, 18, 32]
and [256,9,16], respectively. The output after this module will be transmitted to the RPN
module, which is similar to the traditional Faster R-CNN algorithm.
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Figure 10. The designed feedback layers.

3. Results and Discussion
3.1. Datasets and Evaluation Metrics

In the simulation environment, grass is considered as background interference, while
targets include trunk gun, UAV, ball, plane, tank, car, carrier, and “person”. Meanwhile,
the images are captured from different angles in the simulation environment as our dataset.
This dataset comprises 3643 images, encompassing 10 categories of targets. Additionally,
the proposed method’s effectiveness is evaluated on the NWPU VHR-10 dataset [40,41],
consisting of a total of 650 images. There are ten categories of targets in the public dataset:
airplane, ship, storage tank, baseball diamond, tennis court, basketball court, ground track
field, harbor, bridge and vehicle. For all model training experiments, the ratio of training
dataset to test dataset is 1:1.

To evaluate the capability of the proposed method, the precision and recall rate are
employed as performance indicators [42]. The calculation formulae of recall and precision
are as shown in Equations (8) and (9), respectively.

.. TP
precision = TP——FFP (8)
TP
recall = m (9)

where TP, FN and FP are true positives, false negatives, and false positives, respectively.

3.2. Implementation

In the proposed optical imaging system, the two sub-optical systems capture images
simultaneously. The images obtained from the wide FOV and narrow FOV are not subjected
to additional processing, such as image combination. The images from the two sub-optical
systems are fed into the same target recognition algorithm to extract targets. The system
performs image capture and target recognition simultaneously.

Taking Faster R-CNN and Dynamic R-CNN algorithms as the baseline, the proposed
AOCNet is trained to evaluate its performance. During training of the proposed method,
the learning rate is set to 0.02, the momentum is 0.9, the weight decay is 0.0003, and the
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maximum epoch is 30. In the contrast experiment, five different models were used to train,
respectively. The learning rate (Ir) of SSD and yolov3 is 0.0002 and 0.003 according to the
need of the algorithms. Additionally, to verify the effectiveness of the proposed system,
the ablation experiments in terms of equipment and algorithm are designed, respectively.

All the experiments are implemented on a PC with an Intel single Core i7 CPU and
NVIDIA GTX-1060 GPU. The RAM is 8 GB and the operating system is Ubuntu 18.04.
The environment of the software is pytorch 1.10. and cuda 10.2.

3.3. Optical Imaging System

This optical imaging system and its target recognition performance are tested in
a simulation environment. The imaging device based on the biological raptor’s eye is
shown in Figure 11. The images captured by the imaging equipment are transferred to the
computer via a USB interface. The novel optical imaging device could obtain a wide FOV
and high resolution simultaneously.

(b)

Figure 11. The imaging device based on raptor vision. (a) Optical imaging equipment. (b) Experi-

mental environment.

Through testing and calibrating of the optical imaging system, the FOV and angular
resolution of the sub-optical system simulating the peripheral region of the deep fovea
are 32 X 24 degrees and 145.45 u rad, respectively. The FOV and angular resolution of
the imaging system imitating the central region of the deep fovea are 4.8 x 3.6 degrees
and 18.25 y rad, respectively. Figure 12a,b are the images obtained from the two sub-
optical systems, respectively. The small truck located at the center of Figure 12a is optically
magnified in Figure 12b, where its details can be seen more clearly for feature extraction
and target recognition.

In the simulation environment, the targets” color and texture resemble that of the
background, making them difficult to distinguish. The partial masking of the background
interferes with the target recognition process in the scene. It is commonly known that the
target recognition rate will decline when the target is hidden. However, in this equipment,
if the target is in the center of the FOV, the long-focus subsystem could recognize it syn-
chronously, improving the recognition ability of the system under background interference.
The image of the sub-optical system simulating the peripheral region of deep fovea is
shown in Figure 13a, and the recognition probability of the tank (marked with yellow
lines) is 0.877. Additionally, the bounding box deviates from the real location due to the
strong nearby background interference. At the same time, the target recognition results
of the sub-optics simulating the deep foveal central region is shown in Figure 13b. The
recognition probability of the tank is 0.962 and the location of the bounding box is also more
accurate. This situation benefits from the wide FOV and high resolution of the proposed
imaging system.
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(a) (b)

Figure 12. Images captured by the optical imaging system. (a) Imaging from the peripheral region.
(b) Imaging from the central region.

(@) (b)

Figure 13. Target recognition in the imaging system. (a) Target recognition results of wide FOV.
(b) Target recognition results of narrow FOV.

3.4. Target Recognition Results

The effectiveness of the proposed algorithm is verified on the NWPU VHR-10 dataset
and our dataset captured in the simulation environment mentioned above. The proposed
network is applied to Faster R-CNN and Dynamic R-CNN [43], respectively. The perfor-
mance of the CNN model both with and without AOCNet is shown in Table 3. By means of
the proposed AOCNet with a feedback mechanism, the mean average precisions (mAP) of
Faster R-CNN algorithm and Dynamic R-CNN algorithm rise from 0.809 to 0.855, and from
0.804 to 0.833, respectively. Meanwhile, the AP values of some targets, such as storage tank,
tennis court, bridges and vehicles have been significantly improved.

Table 3. The comparative experiments of different methods on the NWPU VHR-10 dataset.

Faster Faster ] Faster ] Dynamic DynamiF
Method R-CNN R-CNN with  R-CNN with R.CNN R-CNN with
FPN AOCNet AOCNet
Airplane 0.909 0.909 0.909 0.909 0.909
Ship 0.813 0.814 0.877 0.816 0.816
Storage tank 0.762 0.843 0.902 0.861 0.884
Baseball diamond 0.900 0.903 0.970 0.908 0.909
Tennis court 0.697 0.789 0.817 0.724 0.727
Basketball court 0.810 0.814 0.896 0.810 0.883
Ground track field 0.996 0.907 0.993 0.907 0.908
Harbor 0.673 0.751 0.737 0.773 0.788
Bridge 0.535 0.556 0.644 0.527 0.626
Vehicle 0.782 0.806 0.801 0.803 0.884

mAP 0.788 0.809 0.855 0.804 0.833
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Moreover, five algorithms are introduced to verify the performance of the proposed
algorithm on the NWPU VHR-10 dataset, and they are SSD300 [44], YOLOV3 [45], Dynamic
R-CNN, Faster R-CNN with FPN [46] and Faster R-CNN. The results of these algorithms
and the proposed methods are shown in Table 4. The mAP of the proposed method is
significantly higher than that of other algorithms, as evidenced by the results. In fact,
the AOCNet requires more time than the baseline algorithm. Nevertheless, the inference
speed of AOCNet is only two images per second slower than that of the baseline algorithm.

Table 4. The performance of various methods on the NWPU VHR-10 dataset.

Method Backbone mAP FPS
SSD300 VGG16 0.786 33.4
YOLOV3 MobileNetV2 0.832 68.4
Dynamic R-CNN Resnet50 0.804 9.6
Faster R-CNN Resnet50 0.788 9.6
Faster R-CNN with FPN Resnet50 0.809 9.5
Faster R-CNN with AOCNet Resnet50 0.855 7.4

In addition, the comparison experiment with baseline on our dataset is shown in
Table 5. Compared to the baseline, the mAP of Faster R-CNN with AOCNet is promoted
from 0.935 to 0.952, the mAP of Dynamic R-CNN with AOCNet is increased from 0.931 to
0.950. The comparison experiment with different algorithms on our dataset is shown in
Table 6, and the performance of the proposed algorithm is better.

Table 5. The comparative experiments of different methods on our dataset.

Faster
Dynamic Dynamic R-CNN . Faster R-CNN with
Method R-CNN with AOCNet R'CIEII:INW“I‘ AOCNet
Truck gun 0.909 0.995 0.909 0.997
UAV 0.999 1.000 1.000 1.000
Ball 0.906 0.907 0.904 0.907
Plane 0.908 0.991 0.909 0.993
Person 0.999 1.000 1.000 1.000
Tank 0.909 0.909 0.909 0.909
Carrier 0.962 0.971 1.000 0.987
Car 0.909 0.909 0.909 0.909
Airplane 0.908 0.909 0.909 0.908
Ship 0.906 0.907 0.904 0.906
mAP 0.931 0.950 0.935 0.952
Table 6. The performance of various methods on our dataset.

Method Backbone mAP FPS
SSD300 VGG16 0.930 31.8
YOLOV3 MobileNetV2 0.921 67.5
Dynamic R-CNN Resnet50 0.931 9.5
Faster R-CNN Resnet50 0.932 9.5
Faster R-CNN with FPN Resnet50 0.935 9.4
Faster R-CNN with AOCNet Resnet50 0.953 7.3

During the training period, the accuracy and loss curve of different algorithms on
the NWPU VHR-10 dataset and our dataset are shown in Figures 14 and 15, respectively.
As can be seen from the figures, the loss value of the proposed method is reduced better
than the baselines, and the accuracy and mAP are significantly improved. This indicates
that the proposed network enhances the ability of feature extraction.
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Figure 15. The results on our dataset. (a) Accuracy. (b) Loss. (¢) mAP.

3.5. Ablation Experiments

Several ablation studies of the proposed method have been conducted on the NWPU
VHR-10 data set. The performance of Faster R-CNN without any additional network is
figured out at first. The output of Resnet50 passed directly to the RPN and subsequent
operations. The mAP of Faster R-CNN is 78.8% (Faster R-CNN, Table 7). Afterwards,
the experiments on Faster R-CNN with AT, Faster R-CNN with OC and Faster R-CNN
with AOCNet are performed in order to explore the influence of each part of the network
on target recognition, respectively. The mAP of Faster R-CNN with AT is 82.5%, while
the mAP of Faster R-CNN with OC is 84.9%. The mAP of Faster R-CNN with AOCNet is
85.6%. In the experiment, other factors are consistent: the epoch is 30, the Ir is 0.02, and
the optimizer is SGD. The results are shown in Table 7.

Table 7. The ablation experiment of the designed network.

Method Faster Faster R-CNN Faster R-CNN Faster R-CNN with
R-CNN with AT (Ours) with OC (Ours) AOCNet (Ours)
Airplane 0.909 0.906 0.996 0.996
Ship 0.813 0.803 0.810 0.808
Storage tank 0.762 0.885 0.895 0.888
Baseball diamond 0.900 0.957 0.909 0.975
Tennis court 0.697 0.798 0.815 0.814
Basketball court 0.810 0.869 0.893 0.882
Ground track field 0.996 0.970 0.992 0.984
Harbor 0.673 0.612 0.730 0.740
Bridge 0.535 0.613 0.653 0.673
Vehicle 0.782 0.836 0.793 0.797
mAP 0.788 0.825 0.849 0.856

Furthermore, Faster R-CNN with AOCNet is investigated on our dataset, which is
captured by the optical imaging system in the simulation scene. Table 8 shows the average
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precision and recall results of the algorithm that has been embedded with the designed
device. The narrow FOV effectively improves the recognition probability of some targets.
The results confirm that the optical imaging and target recognition system, which imitates
the unique imaging structure and optic nerve system of the raptor’s deep fovea, could
effectively search for targets in a wide FOV and achieve high target recognition performance.
Therefore, this method has the ability to track and recognize the target with high accuracy
in a wide FOV.

Table 8. Target recognition results of AOCNet in different FOVs.

Targets Precision Recall
Wide FOV Narrow FOV Wide FOV Narrow FOV

Car 0.908 1.000 0.974 1.000
Carrier 0.963 1.000 0.976 1.000
Truck gun 0.802 0.839 0.604 0.867
UAV 0.939 1.000 0.969 1.000
Ball 0.932 0.904 0.976 0.977
Plane 0.934 1.000 0.843 1.000
Person 0.922 0.944 0.913 0.895
Tank 0.911 1.000 0.952 1.000
mean 0.913 0.961 0.901 0.967

4. Conclusions

The imaging structure and optic nerve pathway of the raptor’s deep fovea provide
advantages for rapid target detection and precise recognition in a wide FOV. A target
imaging and recognition system based on the deep fovea of raptor’s eye has been proposed
and implemented in this paper. The incident light beam from a co-aperture is divided
and focused on two sub-optical imaging systems, which has different focal lengths and
various-size photoreceptor cells. The sub-optical system that imitates the peripheral region
of the deep fovea by means of short focal length and large-size photoreceptors has wide
FOV and high sensitivity, while the other one that simulates the central area has high
resolution. Inspired by the feedback mechanism of optic nerve pathway, the AT and
feedback module based on octave convolution is designed to improve the ability of feature
extraction. The AT module could extract information from both the spatial and channel
dimensions of the input data. The OC module and LFL layer extract the high-frequency
components in the top feature map to expand the receptive field of the original pixel space.
The feedback layers in AOCNet transmit the top feature map back to the bottom layer,
and they further improve the feature extraction ability of the high-frequency feature map.
The target imaging and recognition system based on a biological raptor’s eye cannot only
achieve wide FOV and high spatial resolution imaging, but also effectively improve the
accuracy of target recognition under complex background interference.
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Abbreviations

The following abbreviations are used in this manuscript:

FOV Field of view

CNN Convolutional neural network

AOCNet The proposed attention and feedback module based on octave convolution network
AT The attention module

ocC The octave convolution

LFL Low-frequency layer
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