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Abstract: A remote sensing method that integrates virtual sampling from formalized visual inter-
pretations is proposed to facilitate land cover mapping and enhance its accuracy, with an emphasis
on spatial and temporal scalability. Indices are widely used for mapping and monitoring surface
water across space and time; however, they typically display some kind of limitation across different
environments and seasons. A decision matrix framework based on observations derived from inter-
pretation keys was designed to compare the performance of existing indices alongside a set of newly
developed indices. This comparison helped to shortlist indices that warranted further evaluation
and accuracy assessment to identify effective indices for global inter-seasonal surface water extent
mapping. Additional visual inspections were conducted for criteria that remained unresolved by
the decision matrix to examine index consistency across the seasons in a wide range of geographic
settings around the world, and further reduce the shortlist. An accuracy assessment was performed
for three new shortlisted indices. On a global scale, CAWI (Comprehensive Automatic Water Index)
was the best-performing index. Its distinct binary data distribution provides the possibility of regional
automatic Otsu thresholding. CAWI was determined to be compatible for Sentinel-2 and Landsat
8 sensors, providing the highest possible spatial resolution as well as the longest time series for
retrospective analyses with freely available multispectral imagery. Two alternative indices were
identified for sensors limited to the visible and NIR bands. The first index, CATWIC (Clear and Turbid
Water Index Combination), split the classification of water into two components, with one index
for generally clear water and another index for turbid water. The second, NDCHRWI (Normalized
Difference Colourimetric High Resolution Water Index), applied the hue angle from a normalized
difference RGB. Masking indices based on modified HSV Saturation equations were developed
to reduce misclassification due to other high reflectance features. The indices’ overall accuracies,
respectively, were: 94.97%, 94.51%, and 94.85%. This study concludes with recommendations for
the application of different indices for sensors possessing shortwave infrared bands and for sensors
limited to the visible and NIR bands, with a simple stratification of six zones for Global Surface
Water monitoring.

Keywords: water; indices; Satellite Imagery Interpretation; interpretation keys; decision matrix;
colourimetry; holistic reduction; inter-seasonal monitoring; Google Earth Engine

1. Introduction

The monitoring of water extent, use, and quality is becoming increasingly important for
water and food security given that flood and drought events are becoming more frequent,
intense, and unpredictable under climate change [1,2]. Accurate monitoring and auditing of
water supplies is important for the defence of human rights and livelihoods against threats to
water security from issues such as privatization, theft, and redirection [3,4].

The spectral range and variability of inland surface waters, adjacency effects, and
spectral similarity with other land cover classes, as well as atmospheric and topographic
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(hill shade) illumination issues, present different challenges compared with ocean colour
remote sensing. Inland surface waters can exhibit high concentrations of chlorophyll
and phytoplankton biomass, mineral particles, detritus, suspended solids, and coloured
dissolved organic matter, with depths and water body bottom materials in shallow waters
that vary over space and time [5–7]. The extent of surface water has changed significantly
due to human activities and climatic change, and it is challenging to capture inter-annual
changes of water bodies, particularly in arid environments, due to their high seasonal
variation and abrupt climatically induced changes [8]. Global Surface Water datasets have
been found to underestimate the presence and extent of small and turbid water bodies
in arid ecoregions that are essential for fauna and agriculturalists [9]. These are typically
ephemeral, filling up in rainy seasons and can disappear completely in dry seasons—a
challenge for monitoring efforts [9].

Most mapping efforts have required some form of exception handling and manual edit-
ing [6], and the highest-performing water indices have relied on Shortwave Infrared (SWIR)
bands to capture turbid waters. However, SWIR bands have lower spatial resolutions
than the visible bands (Blue, Green, and Red) and the Near-Infrared band on multispectral
sensors, such as Landsat and Sentinel-2, and are currently not common or feasible for
most publicly accessible drones/UAVs and archival aerial photography. Indices are widely
used for surface water mapping (Table 1), especially in large-scale and time series analyses
because of their high computational efficiency and easy implementation [10].

Table 1. Major water indices applied to imagery from Landsat and Sentinel-2 satellites. References
are provided by first use, regardless of thematic implementation.

Index Equation Reference

TCW
(Tasselled Cap Wetness)

(0.1363*Blue) + (0.2802*Green) +
(0.3072*Red) − (0.0807*NIR) −

(0.4064*SWIR1) − (0.5602*SWIR2)

Original transformation concept by Kauth
and Thomas, 1976 [11], with Sentinel-2

parameters by Nedkov, 2017 [12]
Normalized difference NIR/SWIR1 index
(also known as NDMI or NDWI or LSWI) (NIR − SWIR1)/(NIR + SWIR1) Hardisky et al., 1983 [13]

Normalized Difference Green/SWIR1
index (also known as NDSI or MNDWI) (Green − SWIR1)/(Green + SWIR1) Hall et al., 1995 [14]

Normalized difference Green/NIR index
(also known as NDWI) (Green − NIR)/(Green + NIR) McFeeters, 1996 [15]

Normalized difference Red/SWIR1 index (Red − SWIR1)/(Red + SWIR1) Rogers and Kearney, 2004 [16]
WRI (Green + Red)/(NIR + SWIR2) Shen and Li, 2010 [17]

AWEI (no shadow) 4*(Green − SWIR1) − (0.25*NIR +
2.75*SWIR2) Feyisa et al., 2014 [18]

AWEI (shadow) Blue + (2.5*Green) − (1.5*(NIR +
SWIR1)) − (0.25*SWIR2) Feyisa et al., 2014 [18]

WI, 2015 1.7204 + (171*Green) + (3*Red) −
(70*NIR) − (45*SWIR1) − (71*SWIR2) Fisher, 2015 [19]

SWI 1/(sqrt(Blue − SWIR1)) Malahlela, 2016 [20]

The limitations of the normalized difference indices are well known. The popular
‘NDWI’, expressed as a normalized difference between the NIR and SWIR1 bands, for
example (which is essentially the same as the NDMI), is known to confuse built-up (urban)
areas, sand, and exposed rocks, dark soils, and shadows with water bodies [9,21]. Similarly,
‘MNDWI’ [22], which is essentially the same as the ‘NDSI’ [14], is known to confuse
vegetated areas with water bodies, particularly inundated vegetation or vegetated water [9],
as well as buildings and shadows [21]. All these indices, except for the Normalized
difference Green/NIR index, require SWIR bands that are not available on most higher
resolution sensors.
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The perception of colour does not require knowledge of optical properties [23] and
colourimetry provides the potential for quantifiable measurements and easily communi-
cable ontologies [24]. Hue angle has been considered the most perceptibly intuitive way
for humans to consistently differentiate and communicate their observations about land
cover features [25,26]. In natural colour (R,G,B: Red, Green, Blue), clear water appears blue
or black in satellite imagery, phytoplankton is typically perceived as having a green hue,
suspended particle matter appears yellow, and coloured dissolved organic matter appears
brown; however, when these features are mixed, spectral signatures are more difficult to
separate uniquely [23]. Colourimetric approaches have been applied to aquatic detection
and classification studies based on hue, typically for RGB combinations of the SWIR1, NIR,
and Red bands [23,27–31]. The technique has proven effective for Global Surface Water
mapping [6].

It can be very challenging to separate water from other spectrally similar land cover
classes, including high albedo features, such as urban roof tops and other infrastructure,
mines, industrial sites, photovoltaic farms, snow, ice, and clouds, as well as low albedo
non-water surfaces including hill shade and urban features such as asphalt roads, airport
runways, building shadows, and coal and waste heaps [6,7]. Existing solutions to these
problems include index thresholding, decision tree or rule-based approaches, spectral
mixture analysis, linear discriminant analysis [19], and supervised or unsupervised classi-
fication schemes, including machine learning algorithms [9,10]. Alternative approaches
have combined existing water indices with other methods, including colour space transfor-
mation, principal components analysis, image segmentation, topographic masking [32],
or a combination of multiple water indices with ensembles for collaborative decision-
making [33]. However, differences among water bodies have rarely been considered, and
the accuracies have been inconsistent among water body types [32].

Holism is considered a fundamental characteristic of landscape ecology [34]. It is
commonly simplified as ‘the whole is more than the sum of its composing parts’, where
each element receives its significance or measure based on its position and relationship
with the surrounding elements [35]. It has been referred to as a ‘shuttle analysis’, where
zooming in and out from space to the smallest element in the landscape progressively
reveals the details necessary to understand the landscape [36]. Holistic analysis provides
simplification by reducing observations to better understand complex Earth systems while
attempting to maintain an understanding of the systems in their entirety [37]. Loucks [38]
noted the need to balance holism and reductionism in ecological studies in order to ‘explain
outcomes by looking at parts of complex systems (reductionist view) against the desire to
understand how the parts work together in a fully functioning system (holistic view)’. Here,
an approach of ‘holistic reduction’ will be demonstrated, showing how it can facilitate
the classification of visually recognizable ecological or land cover features across seasons
and scales. Applying holistic reduction, the myriad expressions of water, from shallow to
deep, and from clear to turbid, can be reduced to a singular class of water. The way that
this singular class relates to, and differentiates spectrally from, the rest of the landscape in
different ecoregions around the world and how it varies across the seasons in turn needs to
be considered holistically.

Satellite Imagery Interpretation (SII) has previously been proposed as a more rigorous
analogue to Aerial Photographic Interpretation (API) for multispectral imagery analysis,
with the potential for direct and repeatable quantitative measurement [24]. SII is formal-
ized by the creation of interpretation keys that summarize visual perception cues for the
identification of land cover classes for the development of colourimetric or index-based
ontologies for their classification.

This study aimed to create a holistic reductionist framework to identify the most
suitable surface water indices for global monitoring with minimal sampling effort. The
framework combines SII with a decision matrix [39] to assess and compare the strengths
and limitations of existing indices with:
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(1) A new globally applicable multispectral index for mapping and monitoring surface
water extent that is able to include all the expressions of water regardless of turbidity
across all seasons.

(2) A new index with the same capabilities for sensors limited to the visible and NIR
bands for local and retrospective monitoring of surface water extent at the highest
possible resolution.

The proposed problem meets a recurring demand from analysts and decision-makers
dealing with the monitoring, planning, and conservation of water resources.

2. Methods
2.1. Understanding Temporal Variability via Visualization

A holistic approach to surface water mapping must first consider temporal variability
in water expression, not only to classify water accurately across the seasons, but to also
avoid false positives in change detection studies.

The Global Surface Water (GSW) dataset [6] characterizes this variability through a
set of layers: Water Occurrence, Occurrence Change Intensity, Seasonality, Annual Recur-
rence, Transitions, and Maximum Extent. Lakes and rivers can vary seasonally in water
level/volume, extent, and turbidity [40], as illustrated in Figure 1.

Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 28 
 

 

the identification of land cover classes for the development of colourimetric or index-
based ontologies for their classification. 

This study aimed to create a holistic reductionist framework to identify the most suit-
able surface water indices for global monitoring with minimal sampling effort. The frame-
work combines SII with a decision matrix [39] to assess and compare the strengths and 
limitations of existing indices with: 
(1) A new globally applicable multispectral index for mapping and monitoring surface 

water extent that is able to include all the expressions of water regardless of turbidity 
across all seasons. 

(2) A new index with the same capabilities for sensors limited to the visible and NIR 
bands for local and retrospective monitoring of surface water extent at the highest 
possible resolution. 
The proposed problem meets a recurring demand from analysts and decision-makers 

dealing with the monitoring, planning, and conservation of water resources. 

2. Methods 
2.1. Understanding Temporal Variability via Visualization 

A holistic approach to surface water mapping must first consider temporal variability 
in water expression, not only to classify water accurately across the seasons, but to also 
avoid false positives in change detection studies. 

The Global Surface Water (GSW) dataset [6] characterizes this variability through a 
set of layers: Water Occurrence, Occurrence Change Intensity, Seasonality, Annual Recur-
rence, Transitions, and Maximum Extent. Lakes and rivers can vary seasonally in water 
level/volume, extent, and turbidity [40], as illustrated in Figure 1. 

 
Figure 1. Inter-annual seasonal comparison of the Tonlé Sap Lake and its surrounding floodplain in 
Cambodia displaying the variation of water extent over the floodplain as well as the variation in 
water colours. Colours vary from black to dark blue to purple, with reduced depth and increasing 
temperature and turbidity during the drier seasons. Visualization in Google Earth Engine starting 
with a VHR (Very High Resolution) image, then showing seasonal variation with Landsat 8 imagery 
between 2013 and 2022 in the ‘Land/Water’ RGB combination—R,G,B: NIR, SWIR1, Red. Location: 
WGS84: 12°31′08.7″N, 104°27′29.3″E. 

Additionally, vegetation and agricultural features also change seasonally. Their col-
ourimetric expression in multispectral false colour RGB combinations vary dramatically, 
as do relative contrasts in different landscapes across the seasons. For example, the satu-
ration of colours for water, intensely irrigated crops, and hill shadows can appear simi-
larly dark and under-saturated, particularly in Winter (Figure 2). Seasonal observations 
are therefore important to understand surface water extents and dynamics, and any indi-
ces created to map and monitor water need to take this variation into account. 

Figure 1. Inter-annual seasonal comparison of the Tonlé Sap Lake and its surrounding floodplain
in Cambodia displaying the variation of water extent over the floodplain as well as the variation in
water colours. Colours vary from black to dark blue to purple, with reduced depth and increasing
temperature and turbidity during the drier seasons. Visualization in Google Earth Engine starting
with a VHR (Very High Resolution) image, then showing seasonal variation with Landsat 8 imagery
between 2013 and 2022 in the ‘Land/Water’ RGB combination—R,G,B: NIR, SWIR1, Red. Location:
WGS84: 12◦31′08.7′′N, 104◦27′29.3′′E.

Additionally, vegetation and agricultural features also change seasonally. Their colouri-
metric expression in multispectral false colour RGB combinations vary dramatically, as do
relative contrasts in different landscapes across the seasons. For example, the saturation
of colours for water, intensely irrigated crops, and hill shadows can appear similarly dark
and under-saturated, particularly in Winter (Figure 2). Seasonal observations are therefore
important to understand surface water extents and dynamics, and any indices created to
map and monitor water need to take this variation into account.
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Figure 2. Inter-annual seasonal comparison of variation in colour and saturation for water, intensely
irrigated crops, and hill shades, starting with a VHR (Very High Resolution) image, then showing
seasonal variation with Landsat 8 imagery between 2013 and 2022 in R,G,B: NIR, SWIR1, Red.
Location: Trino, north-western Italy, south-west of Vercelli, WGS84: 45◦11′54.9′′N 8◦15′49.3′′E.

2.2. Analysis Design

This study was conducted in phases. The first phase evaluated existing water indices
from the literature (Table 1), while new indices proposed in this study (Table 2) were
evaluated with SII at 100 m resolution using a decision matrix to define a set of visually
discernible evaluation criteria. The criteria focused on known issues for discriminating
surface water in a large and diverse area during the seasonal extremes of Summer and
Winter. Interpretation keys with colourimetric descriptions were created for the water and
non-water features that were compared in the decision matrix. Interpretation keys are
formalized by a set of examples, which are as mutually exclusive as possible to support
reliable recognition and communication of features [24,41–43]. The examples can be based
on existing reference data or maps. The decision matrix was constructed to tally scores
representing the symptomatic omission and commission of the different water and non-
water features across the landscape based on visual observation in keeping with features
defined in the interpretation keys and others like them around the study area according
to the reference maps by each of the existing and new indices. The decision matrix was
also applied to guide choices during the development of the new indices for water. The
index with the highest score was considered the best. Criteria were all given a value of
1 to reduce the subjectivity involved with weighted scores. The severity or impact of
each criterion is better assessed in the proceeding phases, particularly with the formal
quantitative accuracy assessments.

Because the decision matrix did not produce distinct first and second places, and it
is possible to miss certain details at 100 m resolution due to spectral mixture, a second
phase was conducted. This was a process of elimination for the best performing indices,
with additional visual assessments of the index classifications at high resolution for annual
median-based image composites for landscape features that were identified in the first
phase as problematic for the discrimination of surface water. These included: (1) a coastal
wetland area, (2) an arid wetland area, (3) an intensely irrigated agricultural area, and (4) a
complex urban area.

Due to the characteristically ephemeral nature of surface water bodies in the arid
western zone, a conventional quantitative accuracy assessment was only conducted for
the eastern temperate zone in the third phase. Omissions of very large semi-permanent
water bodies in the arid western zone (e.g., Lake Urana, 35◦17′33.6′′S 146◦11′16.7′′E and
Lake Cowal, 33◦37′10.9′′S, 147◦26′43.0′′E) in global scale products such as the European
Space Agency’s (ESA) 10 m WorldCover product [44] ‘Permanent water bodies’ class and
the GSW Occurrence and Seasonality indicators meant that deriving a suitable validation
dataset for that zone was not possible. Illumination masks were developed to reduce
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the amount of misclassification due to hill shading and urban/built-up features for the
best performing indices limited to the typically higher resolutions bands. The accuracy
assessment was conducted within the eastern temperate zone for three shortlisted indices
with the selected illumination masks. In order to separate any issues arising from hill
shading and snow cover, the accuracy assessment was conducted for a median-based
image composite between Spring and Summer. A total of 10,000 validation points were
used, derived from the ESA’s 2020 WorldCover product, with random sampling stratified
with a 50%/50% split between the ‘Permanent water bodies’ class and the remaining land
cover classes. An additional accuracy assessment was conducted for the best performing
index with automatic Otsu thresholding [45] for Sentinel-2 and Landsat 8 imagery due to
its distinctly binary histogram distribution, with the dual purpose of testing for automation
and sensor compatibility.

The fourth phase applied a visual inspection to examine the consistency of perfor-
mance for the shortlisted indices in a wide range of geographic settings in the study area
and around the world, as well as including a consideration of the effects of atmospheric
haze in a tropical area.

2.3. Study Areas

To evaluate large scale performance, scalability, and global transferability of alternative
water indices, a study zone was purposively selected to encompass diverse hydrological
environments (temperate coastal, mountainous, alpine, semi-arid, and arid environments)
that display an extensive range of low and high albedo features and a range of features that
indices might fail to discriminate from water. The first and third phases of this analysis
were conducted across New South Wales (NSW), covering an area of 801,150 km2 in south-
eastern Australia. NSW has a wide variety of water expressions as well as other diverse land
cover classes that may (at times) have similar spectral properties over varied environments
and terrain. It includes coastal and montane rivers and lakes, dams and agricultural ponds,
and ephemeral lakes. It also encompasses spectrally diverse non-water landscape features
including rainforests, plantations, grasslands, pastures, a range of freshwater and saline
wetlands on the coast and inland, shrublands and chenopods [46]; substantial areas of hill
shading in mountainous terrain; an alpine range with Winter snow cover; dense urban
areas with industrial zones; intensely irrigated agricultural areas; and a varied arid region
exhibiting bright, exposed bare land surfaces. It is important to recognize the ephemeral
nature of water in arid environments. Australia is a country where there is a great deal of
inter-annual stochastic variability in rainfall. Understanding its phenology is challenging
due to its diverse range of ecosystems and the high inter-annual variability they display,
largely due to the combined circulation patterns of the ENSO (El Niño Southern Oscillation)
and the IOD (Indian Ocean Dipole) [47,48].

The second phase of analysis examined the highest performing indices from the first
phase at full resolution within and around the study zone in the neighbouring northern
State of Queensland, for a coastal and an arid wetland area, as well as an intensely irrigated
agricultural area. The city of Amsterdam in the Netherlands was used to examine the
performance of indices in urban environments. Amsterdam displays a wide range of urban
water features within a complex urban environment, including a large river, a multitude of
narrow canals, and small park ponds. Further testing for water bodies within an intensely
irrigated agricultural area was conducted in an area between the Condamine and Cecil
Plains in Queensland, north-eastern Australia.

A wide range of locations from around the world were selected for the fourth phase to
evaluate the best indices from the accuracy assessment. These included salt lakes in Bolivia
and South Australia; inundated agricultural areas in Bangladesh, Taiwan, Thailand, and
Vietnam; and arid areas in Chile, Iran, Central Sahara, the Arabian Peninsula, and Pakistan.
The effects of atmospheric haze typical for tropical areas was examined on the southern
coast of Papua New Guinea.
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2.4. Imagery Preparation

Temporal aggregation from median-based image composites have been shown to
significantly reduce data volume, anomalies, clouds, and shadows, resulting in faster and
simpler analyses with equally high accuracy as time series data from single, purposively
selected annual or monthly composites [49–51]. Inter-annual median-based image compos-
ites were prepared in Google Earth Engine (GEE) for the southern hemisphere Summer
and Winter seasons between the years 2016 and 2018, to simulate the typical seasonal
variability expected throughout an ENSO (El Niño Southern Oscillation) and to avoid the
flooding events in the subsequent years. The full Sentinel-2 Top-Of-Atmosphere reflectance
Level 1C archive was considered, after removing scenes with a cloudy pixel percentage of
20%. Dense and cirrus clouds were also masked out using a per-pixel approach, via the
bitmasks provided in the Level 1C processing algorithm. This process provided a seamless,
well colour-balanced imagery mosaic indicative of the typical conditions expected during
those seasons.

2.5. Satellite Imagery Interpretation Key with Colourimetric Benchmarks

Interpretation keys with colorimetric benchmarks were developed for each major water
feature type and potentially similar non-water feature types around the study zone as a basis
for SII. The benchmarks for the Water SII key (Figure 3) were identified visually and selected
to represent the variety of hues and saturations of each water feature. The interpretations
were validated for agreement of extent with the GSW [6], the ESA WorldCover ‘Permanent
water bodies’ class, and the WOFS (Water Observations from Space) [52] datasets and are
described in the key.
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The general pattern that can be observed from the SII key of colourimetric benchmarks
in the ‘Land/Water’ RGB for water features is that water bodies are generally clearer in
the temperate zone (in the lime green boundary), appearing black to dark blue, and they
become more turbid towards more arid areas (in the orange boundary) where ephemeral
water bodies are more typical, appearing either blue, purple, or magenta/fuchsia in colour.

Figure 4 shows the SII key for non-water feature benchmarks for a range of high and
low albedo features that are commonly misclassified as water. The interpretations were
validated from a variety of sources, including the map of Keith Vegetation Formations for
NSW for forest and inland wetland features [46], the Landuse Mapping for NSW 2017,
v1.2 [53] for agricultural features, and the mapping from Seamap Australia for detailed
coastal wetland features (particularly the Estuarine macrophytes dataset) [54]. It is worth
noting, however, that several of these features may actually have surface water at certain
times (for example, salt lakes, irrigated crops, and mangroves).
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Figure 4. SII key colourimetric benchmarks for the variety of non-water features in NSW. Images
viewed with a stretch of 2.5 standard deviations and a gamma of 1.5 in the ‘Land/Water’ RGB
composite at 100 m resolution. All location co-ordinates are in decimal degrees.

Most non-water features have obviously different colours to those from the water SII
key; however, snow and ephemeral lakes both had magenta hues, and some features are
also characterized by different tones of blue but can be differentiated contextually and by
their shape and brightness with SII and validated with existing reference maps. It should
be noted that most of the ambiguity occurs in the temperate zone (in the green boundary),
where fewer ephemeral water bodies occur.
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2.6. Creation of the New Water Indices Presented in This Study

The new indices presented in this study (Table 2) were based on optical properties [55]
and refined by experimentation. This involved a large-scale holistic assessment of the
omission or commission of the colourimetric benchmarks specified in the SII keys with
a decision matrix. Preference was given to simple, non-parametric algebraic indices that
would not need to be calibrated across sensors or different environmental landscapes.

Table 2. Indices presented in this study.

Index Equation

Indices requiring SWIR bands

CHI (Green − SWIR2)/NIR
CAWI Log10 (Green/SWIR2/NIR)

CWI R,G,B: SWIR2, NIR, Green
→ H,S,V: Hue and Saturation

Indices limited to the visible and
NIR bands

CATWIC
(combination of HRCWI and SR)

Where HRCWI = (Green − Red)/NIR
and SR = Red/NIR

CHRWI R,G,B: Red, (NIR + Blue)/2, Green
→ H,S,V: Hue

BRCHRWI R,G,B: Red/NIR, Blue/Green, Green/NIR
→ H,S,V: Hue

NDCHRWI

R,G,B:
((Red − NIR)/(Red + NIR)) + 1,

((Blue − Green)/(Blue + Green)) + 1,
((Green − NIR)/(Green + NIR)) + 1

→ H,S,V: Hue

The CHI (Comprehensive Hydrologic Index) was created by testing different bands in
the equation format (a− b)/c, where c = NIR, in order to try and capture a thematic gradient
of moisture. The best performing index required the SWIR2 band:

CHI = (Green − SWIR2)/NIR

CHI was able to classify both clear and turbid water but was found to also classify
snow and wetland elements such as mangroves as water, hence the name Comprehensive
Hydrologic Index rather than Comprehensive Water Index. Dividing the bands in the
same sequence as CHI in the equation format a/b/c appeared to serve as an automatic
threshold index, namely CAWI (Comprehensive Automatic Water Index). Applying a
Log10 transformation provided a better histogram stretch:

CAWI = Log10 (Green/SWIR2/NIR)

Taking a colourimetric approach [24] to decorrelate RGB composite hues from satu-
ration and brightness, bands from CHI and CAWI were also tested to create a hue-based
index from an HSV (Hue, Saturation, Value) colour space transformation to provide a linear
gradient where water was at an extreme, to be referred to as CWI (Colourimetric Water
Index). This HSV transformation also provided a Saturation that was able to mask out
features such as dark agricultural features, urban/built-up, and coal and mining areas,
which might be misclassified by the hue angle alone.

CWI (Colourimetric Water Index) =
R,G,B: SWIR2, NIR, Green→ H,S,V: Hue > a and Saturation > b

(where a and b are the selected thresholds).

Further experimentation was conducted to find a combination of indices that would
only require the visible and NIR bands for the highest possible precision and compatibility
with higher resolution sensors. The HRCWI (High Resolution Clear Water Index) was thus
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created by replacing the SWIR2 band in CHI with the Red band, which performed best for
clearer waters.

HRCWI = (Green − Red)/NIR
(Applying a square root transformation provided a better histogram stretch).

HRCWI was observed to saturate before being able to distinguish all turbid water
bodies from other land cover features. Therefore, an accompanying ‘turbid water’ masking
index was found to be necessary. The Simple ratio of Red/NIR proved to be effective:

SR (Simple Ratio) = Red/NIR

Their combination will be referred to as CATWIC (Clear and Turbid Water
Index Combination).

Similarly, to CWI, rearranging the bands from HRWCI to R,G,B: Red, NIR, Green (as
opposed to the textbook ‘NIR composite’ of R,G,B: NIR, Red, Green) also provided an unin-
terrupted linear gradient for water, which appeared to indicate vegetation moisture. This
rearrangement displayed the greatest thematic correlation and optimal separability—the
ordering of RGB channels is therefore important. The process is similar to the Tasselled
Cap transformation in that the rearrangement of the bands in the 3D RGB colour space can
optimize the separability of particular features with similar spectral characteristics. Some
errors were observed on visual inspection, so the second channel with the NIR band was
modified to ‘tone down’ the hill shading characteristically produced by the NIR band with
an average between NIR and the Blue band (the full range of the typically high resolution
bands) to form CHRWI:

CHRWI (Colourimetric High Resolution Water Index) =

R,G,B: Red, (NIR + Blue)/2, Green→ H,S,V: Hue

Different strategies were tested to find any improvement with RGB combinations
composed of only visible and NIR bands and to try to keep the solution to just one index.
The values for the RGB channels were considered from either single band RGBs, band ratio
RGBs, or normalized difference RGBs, which appear to maintain the highest definition
of data with smoother gradients and the least noise (pixel speckle) compared to band
subtraction RGBs, for example.

Two channels were selected to emphasize the majority of the feature of interest with a
common denominator, and a third channel was selected to distinguish spectrally similar or
overlapping features. A visual inspection of band ratios suggested that Red/NIR displays
a high contrast for turbid water with minimal hill shading but lacks definition for clear
waters. Green/NIR provides better contrast for clear water with minimal hill shading but
will also include bright features such as urban features, mining areas, and highly irrigated
agricultural crops. Blue/Green displays water and vegetation in a similar range but was
selected to balance out the brightness from NIR bands in the other two band ratios. Placing
the Blue/Green ratio in the second channel produced a colour scheme with vegetation in
green for a more intuitive interpretation to facilitate deductions for the presence of water.
Combining these produced:

BRCHRWI
(Band Ratio Colourimetric High Resolution Water Index) =

R,G,B: Red/NIR, Blue/Green, Green/NIR→ H,S,V: Hue

Lastly, a normalized difference RGB combination was created from the aforementioned
band ratios to test for any improvements to form:
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NDCHRWI
(Normalized Difference Colourimetric High Resolution Water Index) =

R,G,B: ((Red − NIR)/(Red + NIR)) + 1,
((Blue − Green)/(Blue + Green)) + 1,
((Green − NIR)/(Green + NIR)) + 1

→ H,S,V: Hue

The addition of 1 to each normalized difference ratio is necessary if a HSV colour
space transformation will have the Hue and Saturation within the range of 0 to 1, as it is
in GEE. It was observed that the first channel in an RGB combination order is important,
while the order for the second and third channels will only affect the hue angle distribution
relative to the range of the colour circle, and thus only the visual appearance of the RGB.

2.7. Threshold Determination for Indices and Their Comparison in the Decision Matrix

The process for determining the thresholds for each index that was entered and
compared in the decision matrix is illustrated in Figure 5.
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Each index was analysed for its ability to separate water from non-water features with
visual density slicing in pseudo colour by referring to the colourimetric benchmarks in
the interpretation keys in the ‘Land/Water’ RGB combination (R,G,B: NIR, SWIR1, Red).
Preliminary classifications were performed holistically in a GIS at a resolution of 100 m
with resampled Sentinel-2 median-based imagery for each seasonal extreme of Summer
and Winter. Pseudo colour intervals were classified as water until they included all the
recognizable water features from the SII key (including the ends of rivers and turbid lakes)
or until they began to misclassify either hill shaded or urban areas excessively as water.
High resolution background imagery/photography and the existing reference maps were
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referenced when water presence was not obvious. Each of the criteria in the decision matrix
were scored based on visual interpretation of the colourimetric benchmarks.

Once all the general criteria had been assigned a score in the decision matrix, more
precise thresholds and the criteria of whether or not they overlapped urban buildings
excessively, or maintained narrow river detail in Summer, were then determined at the full
image resolution in GEE in an AOI (Area of Interest).

Pixels in shallow and narrow water bodies are difficult to capture due to mixed
reflectances caused by sediments and surrounding land [32]. When applying density
slicing to define index-based thresholds, it was observed that the ends of narrow rivers were
consistently at the same intervals of the indices that captured the most turbid water bodies
around the study area, and before intervals that began to include hill shade or other land
cover classes. These intervals were therefore considered ideal for determining water index
thresholds. These features can be considered PIFs (Pseudo Invariant Features)—historically
consistent pseudo ground-truth points [56–58]. The PIF used in this study was identified
by associating a thin, tree-lined river by API in GEE with the VHR imagery/photography
available there to the Sentinel-2 imagery. The PIF is shown by the point symbolized in
cyan in Figure 5, where the indices were no longer sensitive enough to further classify
the river. The AOI was used for logistic practicality and efficiency to perform a more
precise threshold determination because it represented a wide range of water features,
including different turbid water bodies. It was also used as the area for determining the
Otsu thresholds for the CAWI index.

This holistic assessment created a shortlist of best performing indices, which were then
further assessed at the full 10 m resolution with annual median-based image composites in
GEE for a set of environments which showed the most errors for the majority of indices
in the decision matrix. The following fixed thresholds were applied to the coastal and
arid wetlands and the highly irrigated agricultural area: CAWI ≥ 1.25, CWI hue angle
≥ 0.4 and Saturation = 0.44, HRCWI ≥ 0.2 and SR ≥ 0.985, CHRWI ≥ 0.4, BRCHRWI
hue angle ≥ 0.369, and NDCHRWI hue angle ≥ 0.386. These thresholds were set by the
same PIF in Figure 5, except for the fixed thresholds for SR and the Saturation for CWI. A
colourimetric gradient of black to dark blue, to blue, to purple, to magenta was deduced
from a holistic scan of the study zone, as shown in the interpretation key to represent clear-
to-turbid waters in the ‘Land/Water’ RGB in GEE. Since SR was only intended to mask out
the generally turbid end of the water spectrum, thresholds for it were derived from what it
managed to cover from purple- and magenta-coloured agricultural dams before it began
to misclassify non-water features. Visual association to the ESA WorldCover ‘Permanent
water bodies’ class, the GSW Occurrence and Seasonality indicators, and interpretation
with Google Earth Pro was used to confirm the colourimetric deduction for the extreme
expressions of turbid water. The imagery time slider in Google Earth Pro also allowed the
confirmation of any temporal changes that might have made the interpretation ambiguous
across the seasons.

CAWI, CWI, and HRCWI by itself were selected for further assessment in the com-
plex urban area of Amsterdam because of their high performance in Phase 1. Thresh-
olds here were adjusted as required. CAWI was density sliced using 0.5 standard devi-
ations, and HRCWI with 10 natural breaks, while CWI was colour clustered with GEE’s
ee.Clusterer.wekaKMeans function.

2.8. Development of Indices to Reduce Misclassification of Hill Shade, Urban Areas, Dry Salt Lakes,
and Snow

The results of the decision matrix showed that all the indices were affected by hill
shade, urban/built-up areas, and snow.

In order to reduce hill shade effects without a topographic illumination correction, a
Shadow Index (SI) [59] was considered. However, it was observed that it masked out some
lakes and rivers. The ee.Terrain.hill shade function available in GEE was also tested, but
the results were considered too coarse at 30 m resolution for a 10 m resolution product. A



Remote Sens. 2023, 15, 2063 13 of 28

simpler solution was determined to be the use of a slope with a threshold set at >10 degrees
as a compromise between shaded slopes and the errors inherited from the available 30 m
DEM [60] using the ee.Image(‘USGS/SRTMGL1_003′).

It was observed that the Saturation from CWI (which included a SWIR band) con-
tributed to masking out bright buildings in urban areas. However, this was not the case for
the RGBs limited to the higher resolution bands (Blue to NIR). An RGB’s HSV Saturation is
defined by:

(Max(R,G,B) −Min(R,G,B))/Max(R,G,B)

Modifications of the Saturation equation were tested with the four higher resolution
bands (Blue, Green, Red, and NIR) and on the NDCHRWI, and were checked by visual
interpretation to appraise the range of urban/built-up environment that they were able to
mask out without masking water. The modifications included the following:

(1) Range: Max(R,G,B) −Min(R,G,B)
(2) Simple ratio: Min(R,G,B)/Max(R,G,B)
(3) Normalized difference ratio: (Max(R,G,B) −Min(R,G,B))/(Max(R,G,B) −Min(R,G,B))
(4) Saturation of four bands: (Max(R,G,B,NIR) −Min(R,G,B,NIR))/Max(R,G,B,NIR)

For CATWIC, in order to keep the solution as simple as possible without needing
to create an RGB for it, the Saturation of the four bands was selected as an urban mask.
For the NDCHRWI, the Simple ratio was selected. Thresholds were density sliced by
visual interpretation and set to the point where the index classified bright urban buildings
correctly, but began to misclassify water in Lake Urana (146.1899, −35.2829), an ephemeral
lake in the central south of the study zone.

These masked out most urban/built-up features, except for a very small proportion of
very bright buildings. A High Resolution Snow Index (HRSI) has been developed as part
of concurrent research, which can mitigate these problems. This index is able to separate
snow/ice mutually exclusively from water, hill shade, and other highly reflective surfaces
which only require the visible and NIR bands. The HRSI was therefore applied as an
additional mask to remove the very bright buildings, together with snow and dry, saline
lakes in the arid interior.

HRSI = Green/((Red + Blue)/2)/Blue.

The full classification chorology applied for CATWIC for the temperate eastern zone
was therefore:

HRCWI > a,
Or SR > b,

And (Max(R,G,B,NIR) −Min(R,G,B,NIR))/Max(R,G,B,NIR) > c,
And HRSI > d.

The full classification chorology applied for the NDCHRWI for the temperate eastern
zone was:

NDCHRWI Hue > a,
And Min(R,G,B)/Max(R,G,B) < b,

And HRSI > c.

3. Results
3.1. Phase 1—Comparison of Existing and New Indices with a Decision Matrix

Table 3 provides a look-up table which lists all the indices that were tested and
compared with the decision matrix in Table 4, where the most positive score indicates best
overall performance.
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Table 3. Look-up table for the water indices compared in the decision matrix.

Normalized Difference Indices Other Indices Indices from This Study Requiring
SWIR Bands

Indices from This Study Requiring Only
Visible or NIR Bands

(1) Normalized difference NIR/SWIR1 (5) Tasselled Cap Wetness (11) CHI (14) CATWIC (combination of HRCWI and SR)
(2) Normalized difference Green/SWIR1 (6) WRI (12) CAWI (15) CHRWI Hue
(3) Normalized difference Green/NIR (7) AWEI (no shadow) (13) CWI Hue, Saturation (16) BRCHRWI Hue
(4) Normalized difference Red/SWIR1 (8) AWEI (shadow) (17) NDCHRWI Hue

(9) WI, 2015
(10) SWI

Table 4. Decision matrix for 17 candidate water indices in either Summer or Winter seasonal conditions. Colour-related descriptions refer to visualization in R,G,B:
NIR, SWIR1, Red. The seasons displaying the problems are labelled as: S (Summer), W (Winter), or B (Both Summer and Winter). The most positive score indicates
best overall performance.

Criteria Threshold Determinants and Attributes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Overlaps moist evergreen forests and dark reddish

tree plantations (−1) −1,B −1,S 0 0 0 0 0 0 0 −1,W 0 0 0 0 0 0 0

Overlaps intensely irrigated (bright orange)
agriculture (−1) −1,B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Overlaps intensely irrigated (dark blue) agriculture
(−1) 0 −1,B −1,S 0 −1,S 0 −1,S −1,S 0 0 0 0 0 0 0 0 0

Overlaps coastal wetland features, including
mangroves and sedges (−1) −1,S −1,W −1,S 0 −1,S 0 −1,S −1,S 0 −1,S 0 −1,B 0 0 0 0 −1,S

Overlaps coastal sand (−1) 0 −1,S −1,S 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Overlaps urban buildings (−1) −1,S −1,S −1,S −1,W −1,S −1,W −1,S −1,B −1,W −1,B 0 0 −1,B −1,W −1,B −1,B −1,S

Overlaps mining areas (−1) 0 −1,B −1,S 0 −1,S 0 −1,S −1,S 0 0 0 0 0 0 0 0 0
Overlaps coal (−1) −1,S −1,B −1,B −1,S −1,B −1,B −1,B −1,B −1,B −1,S −1,S 0 −1,B −1,B −1,B −1,B −1,S

Overlaps shadows (particularly in Winter) (−1) −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
Overlaps snow in Winter (−1) −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

Overlap of
spectrally

similar
features

Overlaps dry lakes or saline wetlands (−1) 0 −1,S −1,S 0 −1,S 0 0 0 0 0 0 0 0 0 0 0 0
Includes most turbid water (+1) 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

Sensitivity
Maintains narrow river detail in Summer (+1) 0 1 0 0 1 0 1 0 0 1 1 1 1 1 1 1 0

Resolution Requires SWIR band/s (−1) −1 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 −1
Score: −4 −6 −7 −9 −4 −7 −4 −6 −7 −5 −4 −2 −2 −3 −2 −2 −2
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None of the indices was able to completely discriminate water from shadows; however,
SR was the least affected by hill shade. Six of the new indices presented in this study
ranked higher than existing indices. These included: (1) CAWI, (2) CWI Hue and Saturation,
(3) CATWIC (combination of HRCWI and SR), (4) CHWRI Hue, (5) BRCHRWI Hue, and
(6) NDCHRWI Hue. Of all the relatively successful indices that scored greater than −4,
none was mutually exclusive of snow, all except for the colourimetric CWI misclassified
coal as water, and all except CAWI and CWI misclassified most urban buildings excessively
in both or either season. The HRCWI by itself, however, appeared to display minimal
urban misclassification.

A comparison of threshold stability for each of the best performing indices, based
on the PIF, is shown in Table 5. SR and the Saturation for CWI remained stable because
they were assigned fixed thresholds across the seasons. The hue-based indices displayed
the greatest threshold stability; however, CWI is better applied with a colour-clustering
routine to automate the balance between its Hue and Saturation. CAWI displayed the
greatest variability, while CATWIC’s combination of HRCWI with SR was the most stable
algebraic index.

Table 5. Thresholds for best performing indices, with standard deviations as an indication of threshold
stability. All indices calculated from image reflectance values divided by 10,000.

Index Summer Autumn Winter Spring Average Std Dev

CAWI 1.25 1.3 1.34 1.24 1.2825 0.04

CWIHue 0.4 0.4 0.4 0.4 0.4 0

CWI Saturation 0.44 0.44 0.44 0.44 0.44 0

HRCWI 0.2 0.23 0.2 0.2 0.2075 0.013

SR 0.985 0.985 0.985 0.985 0.985 0

CHRWIHue 0.4 0.4 0.4 0.4 0.4 0

BRCHRWIHue 0.37 0.37 0.37 0.37 0.37 0

NDCHRWIHue 0.4 0.4 0.4 0.4 0.4 0

3.2. Phase 2—Assessment of Best Performing Indices in Wetland, Agricultural, and
Urban Environments

All the reference RGB images in Figures 6–8 are in the ‘Land/Water’ RGB: NIR, SWIR1,
Red, with a linear stretch of min: 0, max: 0.3, in GEE for a visual perception of characteristic
appearances and differences in land cover brightness and colour saturation.

3.2.1. A Coastal Wetland Area

The indices requiring SWIR bands displayed the most misclassification of mangroves,
excessively so for CWI (Figure 6). The indices limited to the visual and NIR bands displayed
better performance. Zooming in to the imagery showed that CATWIC and the NDCHRWI
performed the best.

3.2.2. An Arid Wetland Area

Based on the deduction that the turbid water in Figure 7 appears purple to magenta in
colour, the results were the opposite in the arid wetland, where CWI performed the best
and the other indices underestimated the extent.
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Figure 8. Index performance comparison in a highly irrigated agricultural area. Location: Between
the Condamine and Cecil Plains in Queensland, Australia (151.3054, −27.558). Reference RGB: NIR,
SWIR1, Red, min: 0, max: 0.3. Red circles indicate misclassifications.

3.2.3. An Intensely Irrigated Agricultural Area

Water bodies in the intensely irrigated area (Figure 8) are typically turbid agricultural
dams and appeared dark purple in GEE with the ‘Land/Water’ RGB. The highly irrigated
agricultural parcels displayed very low saturations which appeared dark blue in the SII
key, which was based on a standard deviation stretch in the GIS. All the indices performed
well for turbid water mapping within the extent of NSW. However, validation outside the
extent in the northern State of Queensland displayed that CATWIC (combination of HRCWI
and SR) classified most turbid water bodies except for those with a magenta colour, while
the NDCHRWI misclassified some intensely irrigated parcels as water. CAWI and CWI
performed better. CAWI omitted an insignificant number of very turbid ponds, while CWI
classified the full range. Colour clustering for CWI produced varying results depending on
the sampling extent and intensity; therefore, its Hue and Saturation were set manually for
consistency and processing feasibility.

3.2.4. A Complex Urban Area

On close inspection and comparison with the Google Map reference layer and the
GSW water product in Figure 9, HRCWI included the most noise from buildings followed
by CAWI, mainly from shadows. The colour-clustered CWI performed best and classified
the most water from the small ponds in urban parks. Colour clustering was, however,
much more processing intensive than thresholding. All the indices misclassified the low
albedo dark steel from Amsterdam Central Station as water.
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3.3. Phase 3—Accuracy Assessment

Based on the observations from Phase 2, CAWI, CATWIC, and the NDCHRWI Hue
were considered for an accuracy assessment of the eastern zone (Figure 3). The results in
Tables 6–8 indicate that CAWI scored the highest overall accuracy of the three indices.

Working on the premise that the interpretation of water presented in the SII keys was
correct, visual inspection of the errors suggested that they can generally be attributed to
errors in the reference data, since the ESA land cover product evidently has errors due
to the smoothing techniques that were applied to it. For example, isolated trees are not
present, and many thin rivers have been classified as mangroves. Further visual analysis
determined that CATWIC displayed slightly more misclassification of urban/built-up
features than the NDCHRWI Hue.

The additional accuracy assessments for the CAWI index with thresholds automatically
set by the Otsu technique for Sentinel-2 and Landsat 8 imagery in Tables 9 and 10 suggest
that automation can provide acceptable results, though lower in overall accuracy than a
manual effort. The CAWI index maintained the same data distribution, albeit tighter for
Landsat 8, but that the performance was better with Sentinel-2. This is expected due to the
lower resolution of the Landsat 8 sensor.

A visual appraisal of CAWI’s performance across all the seasons with the automated
thresholding indicated that the slope mask of 10 degrees was not sufficient to resolve
misclassifications due to hill shading for either Sentinel-2 or Landsat 8 during Winter.
Sentinel-2 displayed more misclassified hill shading, bright urban/built-up features, man-
groves, and dark, intensely irrigated soils than Landsat 8, but Landsat 8 missed more thin
rivers and small dams/ponds than Sentinel-2, suggesting that there are trade-offs between
higher spatial resolution and errors of omission and commission.

3.4. Phase 4—Validation of the Selected Indices’ Performances across the Seasons and around
the World

A visual assessment of the best performing threshold-based indices (CAWI, CATWIC,
and the NDCHRWI Hue) confirmed that they were effective across all four seasons for the
initial study zone of the State of NSW. However, the thresholds for CAWI were less stable
and required more natural breaks to distinguish water during Autumn and Spring than it
did during Summer and Winter.
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Table 6. Accuracy assessment results for CAWI with a slope mask.

Reference Data

Classes Water Tree Cover Shrub
Land Grass Land Crop Land Built-Up Bare/Sparse

Vegetation
Herbaceous

Wetland
Man-

Groves Total User
Accuracy

C
la

ss
ifi

ed
da

ta

Water 4501 2 0 2 0 0 0 0 1 4506 99.89%
Non-water 499 2302 10 1935 684 31 28 14 9 5512 90.95%

Total 5000 2304 10 1937 684 31 28 14 10 10,018
Producer
accuracy 90.02% 99.90%

Overall accuracy: 94.97%

Table 7. Accuracy assessment results for CATWIC with slope, urban, and snow masks.

Reference Data

Classes Water Tree Cover Shrub
Land Grass Land Crop Land Built-Up Bare/Sparse

Vegetation
Herbaceous

Wetland
Man-

Groves Total User
Accuracy

C
la

ss
ifi

ed
da

ta

Water 4455 2 0 3 0 0 0 0 0 4460 99.89%
Non-water 545 2302 10 1934 684 31 28 14 10 5558 90.19%

Total 5000 2304 10 1937 684 31 28 14 10 10,018
Producer
accuracy 89.10% 99.90%

Overall accuracy: 94.51%

Table 8. Accuracy assessment results for NDCHRWI Hue with slope, urban, and snow masks.

Reference Data

Classes Water Tree Cover Shrub
Land Grass Land Crop Land Built-Up Bare/Sparse

Vegetation
Herbaceous

Wetland
Man-

Groves Total User
Accuracy

C
la

ss
ifi

ed
da

ta

Water 4490 2 0 3 0 0 0 0 1 4496 99.87%
Non-water 510 2302 10 1934 684 31 28 14 9 5522 90.76%

Total 5000 2304 10 1937 684 31 28 14 10 10,018
Producer
accuracy 89.80% 99.88%

Overall accuracy: 94.85%
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Table 9. Accuracy assessment results for CAWI with a slope mask on Sentinel-2 imagery using Otsu thresholding.

Reference Data

Classes Water Tree Cover Shrub Land Grass Land Crop Land Built-Up Bare/Sparse
Vegetation

Herbaceous
Wetland Man-Groves Total User

Accuracy

C
la

ss
ifi

ed
da

ta

Water 4457 1 0 5 1 0 0 0 1 4465 99.82%
Non-water 543 2303 10 1932 683 31 28 14 9 5553 90.22%

Total 5000 2304 10 1937 684 31 28 14 10 10,018
Producer accuracy 89.14% 99.84%

Overall accuracy: 94.50%
Histogram

Frequency
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Table 10. Accuracy assessment results for CAWI with a slope mask on Landsat 8 imagery using Otsu thresholding.

Reference Data

Classes Water Tree Cover Shrub Land Grass Land Crop Land Built-Up Bare/Sparse
Vegetation

Herbaceous
Wetland Man-Groves Total User

Accuracy

C
la

ss
ifi

ed
da

ta

Water 4284 0 0 5 1 0 1 0 0 4291 99.84%
Non-water 716 2304 10 1932 683 31 27 14 10 5727 87.50%

Total 5000 2304 10 1937 684 31 28 14 10 10,018
Producer accuracy 85.68% 99.86%

Overall accuracy: 92.78%
Histogram

Frequency
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An extended global visual inspection identified a limitation for all the indices in
dry salt lakes, including the Salar de Uyuni in Bolivia and Lake Eyre in South Australia,
which were misclassified as water. The SR index displayed the most misclassification of
snow and misclassified very arid areas such as the north of the Atacama Desert in Chile,
the Central Persian desert basins, the Tibesti–Jebel Uweinat montane xeric woodlands in
Saharan Africa, the Red Sea–Arabian desert shrublands, the South Iran Nubo–Sindian
desert, the Indus Valley desert, and the Rann of Kutch seasonal salt marsh in India. It was
observed that these errors can be avoided, or at least minimized, with the HRSI and the
modified saturation masks that were used to mask out the bright urban features for the
accuracy assessment.

The global inspection also showed that inundated agriculture, for example, north of
the Sundarban mangroves in Bangladesh; the Mekong River delta in the south of Vietnam;
Yilan County in the north-west of Taiwan; or Samut Sakhon, south of Bangkok in Thailand,
were classified as water, which concurred with the GSW mapping.

Comparison of Atmospheric Effects

A comparison was made for the best performing indices in an area in the tropics
(Figure 10) that is typically affected by cloud cover and atmospheric haze. CAWI was
affected to some degree, and HRCWI (one of the indices that made up CATWIC) more so.
This could have consequences for the classification of thin rivers under hazy atmospheric
conditions. The NDCHRWI did not appear to be affected at all. It should be noted, however,
that both CATWIC and the NDCHRWI did not have urban and snow masks applied,
and that applying them introduced errors due to the haze. Therefore, caution is advised
regarding where and when to apply those masks.
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Figure 10. Comparison of atmospheric effects on the best performing indices. Location: Deception
Bay, Papua New Guinea (144.5862, −7.8875).

4. Discussion

The results showed that the new CAWI index effectively classified surface water across
the seasons in a wide, globally representative range of environments, and that it is also
possible to achieve high classification performances from indices limited to the typically
higher resolution (visible and NIR) bands. Two alternatives for the latter, CATWIC and the
NDCHRWI Hue, require additional masking for other high reflectance land cover features
including urban buildings and snow. The workflow presented here is highly feasible given
that only one visually interpreted PIF was necessary to threshold the indices.

Reference to Google Maps and Wikipedia was sufficient to facilitate the deductions
that were made to interpret the false colour appearances of surface water bodies. This
and the use of existing reference maps such as the ESA land cover classification and GSW
indicators published in GEE can provide an analytical feasibility that analysts have not
enjoyed such easy access to in the past. Therefore, their reference as benchmarks for
regional and local classification refinements and questions relating to land cover mapping
is highly recommended.

The results suggest that the international datasets used in this study were sufficient
as references, but higher precision national mapping inventories with typically higher
precisions may be preferred for other land cover classification efforts. The quality of



Remote Sens. 2023, 15, 2063 22 of 28

available reference datasets will determine the quality of the results of this analysis. Any
errors in the reference data will be inherited by the selected model. Errors may be due
to differing land cover class definitions, low spatial resolution and classification accuracy
of reference data, differing time of data collection and classification, and the number of
spectrally similar classes [58]. Sample datasets that include mixed pixels can also decrease
the accuracy of algorithms and provide erroneous validations [9]. The ESA WorldCover
product only scored an overall accuracy of 74.4% on a global scale, with a user’s accuracy of
88.5% and a producer’s accuracy of 85% for ‘Permanent water bodies’. For Oceania, it had
a lower overall accuracy of 67.5% [44]. Those accuracy estimates were for 2020, whereas
the inter-annual median-based image composites used in this study were for the years 2016
and 2018, to simulate typical landscape seasonal variability and to avoid outliers from the
anomalous flooding events in the subsequent years.

Alvarez-Vanhard et al. [61] identified the potential ecological insights that multiscale
explanation could provide with data fusion and inter-operability between very high spatial
resolution imagery from drones/UAVs and large-scale time series data from satellite-based
sensors. While the visible and NIR bands from multispectral sensors are not directly com-
parable with those of drones/UAVs [62], it is expected that the results from the equivalent
Sentinel-2 bands from this study could in the future translate to drones/UAVs once the
necessary radiometric inter-calibration, testing, and refinement based on solar radiation
conditions are conducted [63,64]. The indices developed here for application with sen-
sors limited to the visible and NIR bands should be further tested with the necessary
calibration/simulation, with basic four-channel cameras mounted on drones/UAVs for
local water mapping. These indices are also compatible with the new generation of high
resolution satellites, such as those of PlanetScope, which can provide daily acquisition for
dense time series change detection studies at 3 m resolution. They would also allow for
retrospective time series analyses to be conducted with archival imagery from the SPOT,
RapidEye, and WorldView satellites, and aerial photography from ADS40, for example. At
the higher resampled resolution of 5 m, HRCWI produced less noise compared with the
10 m imagery in the urban mapping assessment. The atmospheric effects on drone/UAV
sensors are minimal in comparison with satellite sensors because they are so close to the
surface [64]; therefore, further testing is needed to determine if it might produce less noise
at even higher resolutions with a sensor-calibrated drone/UAV.

All the indices analysed in this study misclassified snow/ice to some extent and were
affected by hill shade in highly rugged mountainous terrain to varying degrees between
Autumn and Spring. The new High Resolution Snow Index (HRSI) should help to resolve
these problems. Unlike the NDSI, HRSI can separate snow/ice mutually exclusively from
water and hill shade and only requires visible and NIR bands.

One way to reduce errors of commission related to hill shading in surface water map-
ping could be to mask it out, for example, with the GEE hill shade algorithm: ee.Terrain.hill
shade. However, this requires a DEM, which is only currently publicly available in GEE at
30 m resolution. This would overlap fine features in 10 m resolution mapping, explaining
why a simple layer of slope was used in this study as a globally applicable surrogate.
Alternatively, imagery selection could be filtered to include only images with the azimuth
set to less than the corresponding amount for the latitudinal range in question. This may
be a useful approach if only the average annual presence of water is of interest. Further
research would serve to improve on an index-based solution for shadow masking with an
index such as Huemmrich’s [59] SI (Shadow Index). The same applies to the development
of an urban/built-up index that could completely separate all urban features mutually
exclusively of water.

Ning and Lee [65] suggested that the various water indices differ in their strengths and
weaknesses, and that combining indices (and morphology), depending on the environment
in question, may provide solutions to river mapping. A simple spatial stratification with
minimal inputs would be more efficient than a multitude of ecoregionally specific masking
rulesets for global monitoring. The GSW (Global Surface Water) layers appear to have
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omitted substantial areas of water bodies in urban areas around the world because they
applied the GHSL (Global Human Settlement Layer) [66] at 38 m resolution (or lower) as a
mask on 30 m products. Rather than mask out non-water misclassifications, fewer errors
of omission would be possible by classifying a designated set of zones with the optimal
indices. A global hydrologic stratification is therefore proposed in Table 11 to apply the
most appropriate indices to six zones for a consistent multispectral satellite-based global
monitoring effort.

Table 11. Proposed global stratification for hydrologic satellite-based multispectral mapping and
monitoring. Datasets to define the zones are listed if currently available on GEE.

Strata Potential Zone Definitions Recommended Indices

1 Snow/ice covered areas Areas mapped by MOD10A1.006 Terra
Daily, Global 500 m, Snow Cover [67].

CAWI with hill shade masking or
azimuth filtering, and HRSI for a snow

mask.

2 Urban areas

Areas mapped by GHSL (Global
Human Settlement Layer) [66], World
Settlement Footprint [68], or Tsinghua
Global Artificial Impervious Areas [69],

depending on local/regional
performance and future currency.

CAWI, with the Saturation from CWI if
further masking of extremely bright

buildings is required.

3 Coastal wetland areas
An elevation- and slope-defined buffer

along coastlines known to have
wetland areas.

CATWIC for the greatest precision, or
NDCHRWI Hue in areas such as the

tropics or areas at high latitudes that
are expected to have regular

atmospheric haze.

4
Arid wetlands and intensely
irrigated agricultural areas
with highly turbid waters

Ecoregion maps such as the Resolve
Ecoregions 2017 [70] for ecoregions

with arid wetlands and the ESA
WorldCover classes, or zonations from

local ecological knowledge.

CWIHue and Saturation for fixed
thresholds.

5 Mountainous areas during
seasons of high hill shading

Ecoregionally specific combinations of
DEM-derived elevation and slope.

SR only during Autumn and Winter, or
NDCHRWI Hue during Spring and

Summer with a hill shade mask.

6 Remaining areas Areas remaining in the world from
those above.

CAWI with regionally adaptive
thresholding and hill shade masking
(or azimuth filtering, or topographic

illumination correction if <10 m DEM
is available), with the HRSI as a mask
for bright arid soils and salt lakes in

extremely arid areas.

For high resolution sensors limited to the visible and NIR bands, a modified stratifi-
cation is suggested in Table 12. Note that the urban masks proposed in this study should
only be used in urban areas, and not in arid areas prone to more turbid water bodies, or
areas prone to high levels of haze.

The HSV colour space was used in this study because it enables colours to be com-
municated ontologically, both quantitatively and verbally, if the histogram stretch and
extent is defined. For the communication of false colour RGB composites with SII keys, it is
important to include the stretch that was used and the spatial extent that the stretch was
applied to. For linear stretches with a specified minimum and maximum, this is not really
an issue; however, when applying statistically derived stretches to enhance the contrast
of features, such as a histogram equalization or standard deviations, for example, colours
and their contrasts are expected to vary. The CWI {R,G,B: SWIR2, NIR, Green} index is both
quantitatively indicative and ontologically communicable and is most effectively used with
a colour-clustering technique. However, visualization of varying degrees of water turbidity
appears more distinguishable in the ‘Land/Water’ {R,G,B: NIR, SWIR1, Red}, making the



Remote Sens. 2023, 15, 2063 24 of 28

latter easier to identify differences and extremes of different water expressions when setting
thresholds for density slicing.

Table 12. Proposed global stratification for hydrologic mapping and monitoring for sensors limited
to the visible and NIR bands.

Strata Recommended Indices

1 Snow/ice covered areas NDCHRWIHue with hill shade masking or azimuth filtering, and
HRSI for a snow mask.

2 Urban areas
HRWI alone where no turbid water bodies are expected, or

NDCHRWI Hue with the modified Saturation of
Min(R,G,B)/Max(R,G,B) and HRSI as masks.

3 Coastal wetland areas CATWIC (combination of HRCWI and SR) for the greatest precision,
or the NDCHRWI Hue to mitigate atmospheric haze.

4 Intensely irrigated agricultural areas with
highly turbid waters CATWIC.

5 Mountainous areas during seasons of
high hill shading

SR only between Autumn and Winter when terrain indicators cannot
be remotely sensed, or NDCHRWI Hue with hill shade masking.

6 Remaining areas
NDCHRWIHue with hill shade masking or topographic illumination
correction if a high resolution DEM is available, with the HRSI as a

mask for bright arid soils and salt lakes in extremely arid areas.

Further multivariate colourimetric development based on sample-dependent machine
learning approaches could optimize the automation and precision of classifications with
more modern colour spaces such as CIE LUV or LAB and their LCH cylindrical transfor-
mations. Weighting each RGB channel with statistically derived coefficients might also
improve performance.

Standard deviations or natural (Jenks) breaks will help narrow down the spatial
extent of a land cover class if it has a limited spatial representation in the image extent.
This will apply to all the indices presented in this study. However, if automation was
desired, CAWI lends itself well to Otsu thresholding because of its binary distribution.
The fact that CAWI displayed a lower threshold stability than the other candidate indices
and required more natural breaks to distinguish it during Autumn and Spring suggests
that its data distribution for water relative to other land cover classes is not proportional
throughout the year. It may therefore require adaptive spatial–temporal thresholding for
large-scale mapping efforts, such as with a moving window or by bioregions if processing
capacities permit.

Given the high performance of the fixed thresholds for the indices designed for
high resolution sensors limited to the visible and NIR bands (aside from HRCWI, which
scored a very low standard deviation across the seasons in Table 5), users will not need to
approximate thresholds now that they have been established and assessed for accuracy,
and for novel areas they will have a very good starting point. They may however want
to validate and refine them for their particular study zones. The end of a thin, tree-lined
river was used as a PIF in this study to define the index thresholds. If this type of feature is
not present in another ecoregion, then it is recommended to find an area at the last interval
of an index gradient that still captures purple or magenta-coloured water bodies in the
‘Land/Water’ RGB before misclassifying any other unrelated non-water features.

An incomplete consideration of ecological factors, landscape diversity, and variation of
phenologic processes within limited study zones can lead to inadequate results or ecological
inference fallacies. Scalability and inter-seasonality require a search for absolutes. An index
can therefore be considered comprehensive if it can separate the full range of features of a
particular land cover class mutually exclusively from other land cover classes throughout
the seasons and across the full range of the planet’s ecoregions. A holistic, multi-scalar,
ecophysiographic approach recognizes the need for visual validation to identify land cover
class variations that may not be present in a particular study area’s field samples. In order
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to formulate an index with minimal sampling effort that is relevant on a global scale for
monitoring efforts, both holism and reductionism need to be taken into account. One of
the major advantages of the rapid access to global datasets, such as those of Google Earth
Engine, is that it readily enables the testing of general assumptions for consistency across
different environments around the world with different ecoregional limits and expressions.
SII is only really expected to work over large regions and diverse landscapes—this is
the holistic element for a spectrally complex reduced class such as water. SII aims to
rationalize and facilitate the communication of deductions for virtual sampling to formalize
proposed classification methods with accuracy assessments. Quantitative field sample-
based modelling and accuracy assessments for the high resolution mapping of highly
spatio-temporally variable land cover classes such as turbid ephemeral water bodies and
snow over large and diverse regions would be very expensive and difficult to design.
We believe that they can be worked towards with preliminary SII and expert agreement
about the globally ubiquitous and distinguishable appearance of the land cover features of
interest and the indices and thresholds that are necessary for them. The method proposed
here offers a way to overcome this, with a trade-off between potential developmental
subjectivity and broad, practical applicability.

In the context of remote sensing, holistic reduction and multi-scalar SII facilitate the
effective discrimination of landscape features by identifying their appearance globally and
across the seasons, and reducing or grouping them into land class ‘primitives’ [71] which
can be classified distinctly with one-class classifications, rather than considering them to-
gether with every other class in and across landscapes [24,72,73]. Consequently, classifying
sub-classes only from the extents of reduced super-classes (such as water or forest masks)
can be more effective because their multispectral overlap with other classes will have been
eliminated, reducing the analytical complexity of the data space to be considered.

The JavaScript code that was used in GEE for this study is available in the Supplemen-
tary Materials.

5. Conclusions

Satellite Imagery Interpretation and purposive virtual sampling with PIFs can help
to efficiently identify the full range of different land cover expressions and extremes. This
study has demonstrated the effectiveness of holistic reduction and colourimetry for an
ecogeographic approach to multi-temporal visual interpretation for the understanding
and scalable measurement of natural phenomena, using the example of water. For extent
mapping (as opposed to sub-classification), since only one point was necessary to determine
the threshold for a linear index, we may conclude that with the creation of comprehensive
interpretation keys, testing what a feature is not is as important, if not more important,
than testing what it is.

The decision matrix in combination with the SII keys and a quantitative accuracy
assessment served the purpose of a holistic spatial–temporal assessment. It provided a
simple analytical framework that can not only help a geographer decide which index will
be most suited to their ecoregion, but also assist in developing and refining new indices
that meet the prescribed criteria. It provides a holistic appraisal of known symptomatic
problems from the literature, with a comparison of a set of commission and omission
criteria to show the strengths and weaknesses that each index has and the compromises
they can make by emphasizing certain features over others. Creating such a matrix should
also be able to guide the design of representative sampling stratifications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15082063/s1.
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