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Abstract: Point cloud registration is the process of aligning point clouds collected at different locations
of the same scene, which transforms the data into a common coordinate system and forms an
integrated dataset. It is a fundamental task before the application of point cloud data. Recent years
have witnessed the rapid development of various deep-learning-based global registration methods
to improve performance. Therefore, it is appropriate to carry out a comprehensive review of the
more recent developments in this area. As the developments require access to large benchmark
point cloud datasets, the most widely used public datasets are also reviewed. The performance of
deep-learning-based registration methods on the benchmark datasets are summarized using the
reported performance metrics in the literature. This forms part of a critical discussion of the strengths
and weaknesses of the various methods considered in this article, which supports presentation of the
main challenges currently faced in typical global point cloud registration tasks that use deep learning
methods. Recommendations for potential future studies on this topic are provided.
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1. Introduction

Registration aligns point clouds from one source, multiple sources, or multiple epochs
in a common coordinate system. It plays an indispensable role in most point cloud applica-
tions, such as documentation, change detection, deformation measurement and navigation,
and its accuracy directly determines the quality of these applications. Typical applica-
tions of point clouds in documentation include the reconstruction of cultural heritage [1],
‘as-built’ and ‘as-is’ conditions of building information modelling [2–4], and forest invento-
ries [5]. Applications involving change detection or quantitative deformation estimation
can be realized by comparing point clouds obtained at multiple epochs; they include ex-
cavation volume estimation [6–8], deformation monitoring of buildings [9,10] and civil
structures [11–13], and quantification of landform variations of terrain surfaces [14–16].
Registered point clouds are also widely used to assist with the navigation of robots [17] and
autonomous driving vehicles [18], for which not only accuracy, but also real-time efficiency
of registration, are considered.

Among various forms of registration, the pairwise global registration of point clouds
from the same source is fundamental for the following reasons: (a) multi-view registration
can be built on multiple pairwise registrations of every two-point cloud; (b) the accuracy
of a local registration often depends on the quality of its proceeding global registration;
(c) multi-modal registration is an extension from same-source registration. Unless otherwise
stated, registration hereafter in this article generally refers to the pairwise global registration
of same-source point clouds.

The mathematical representation of point cloud registration is given as follows: Sup-
pose there are two partially overlapping point clouds P = {pi ∈ R3 }M

i=1 and
Q = {qi ∈ R3 }N

i=1. P and Q are termed the source point cloud and the template point
cloud, respectively. M and N represent the number of points in P and Q, respectively.

Remote Sens. 2023, 15, 2060. https://doi.org/10.3390/rs15082060 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15082060
https://doi.org/10.3390/rs15082060
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-5609-5561
https://doi.org/10.3390/rs15082060
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15082060?type=check_update&version=1


Remote Sens. 2023, 15, 2060 2 of 24

Suppose px and qy are a matched point pair established by the mutual nearest neigh-
bour search of point positions, and Cgt is a set containing all the matching pairs found in
the overlapping area of P and Q when the ground truth registration is applied. The goal
of registration is to find a rotation matrix R ∈ SO(3) and a translation vector t ∈ R3, by
minimising the sum of the distances between all matched point pairs, as defined in

arg min
R∈SO(3), t∈R3

1∣∣Cgt
∣∣ ∑(px ,qy)∈Cgt

‖ Rpx + t− qy ‖2, (1)

where
∣∣Cgt

∣∣ is the number of matched point pairs in Cgt.
In practice, the ground-truth matched point pair set Cgt is unknown. Therefore, many

efforts towards a registration pipeline have been made for the estimation of Cgt. The
accuracy of the estimated set of matched point pairs, Cest, is crucial for the performance
of registration methods. Cest is usually obtained by matching the points of similar feature
values from source and template point clouds. Therefore, the point feature extraction is a
fundamental step in point cloud registration.

A point feature is often represented by a vector incorporating the information on the
characteristics of data points in a neighbourhood. An algorithm that extracts point features
from the neighbourhood geometric information is called a feature descriptor. ‘Traditional’
point cloud registration methods adopt manually defined feature descriptors [19–23],
which are referred to as ‘handcrafted’ feature descriptors. The distinguishability of the
handcrafted feature descriptors is limited, which could lead to spurious matching of points
and, hence, inaccurate registration.

To overcome this limitation, in recent years, deep neural networks [24–28] have been
proposed with the growth of various benchmark registration datasets [29–32] for more
competent feature descriptors. Using deep neural networks as backbones, various ‘deep’
feature descriptors (e.g., [32–40]) have been trained and evaluated on various benchmark
registration datasets. As shown in Figure 1, deep feature descriptors [32,34–36,38,40]
outperformed traditional handcrafted feature descriptors [19–22] by a large margin in
terms of feature match recall (FMR) on the 3DMatch dataset [32]. It should be noted that
the FMR of the handcrafted feature descriptors [19–22] were cited from [33], where the
handcrafted feature descriptors [19–22] were evaluated on the 3DMatch dataset as baselines
for comparison. As reported in [41], some recently proposed handcrafted descriptors, such
as SGC [42] and LoVS [43], performed better than their earlier counterparts, such as
USC [21] and SHOT [22]. However, their performances have not been compared with those
of deep-learning-based descriptors.

The trend in research interests in deep-learning-based point cloud registration may
be represented by the number of relevant publications. Therefore, screening of relevant
publications from 2017 to 2022 was conducted. Journal and conference publications were
searched for using Google Scholar. The key words used for the search included point cloud,
registration, and deep learning. However, this choice also resulted in the identification
of publications focusing on other topics, such as point cloud segmentation. Therefore, a
further manual screening was conducted after checking the abstracts of all search results.
During the manual screening, it was found that many relevant studies were published
in proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR),
the International Conference on Computer Vision (ICCV), and the European Conference
on Computer Vision (ECCV) since 2017. Therefore, the abstracts of the articles in the
proceedings of these three conferences published since 2017 were exhaustively browsed for
any relevant publications missed by the search using the key words.
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Figure 1. FMR for various representative feature descriptors of different years, based on the 3Dmatch
dataset. In an individual year, when multiple deep feature descriptors were proposed, only that
with the highest FMR is shown. The presented feature descriptors are SpinImage [19], FPFH [20],
USC [21], SHOT [22], 3DMatch [32], PPF-FoldNet [34], FCGG [35], Multi-view [36], MS-SVConv [38],
and GeDi [40].

As shown in Figure 2, the publication number increased gradually for the period from
2017 to 2021, during which 2021 witnessed a big increase in the number of publications.
However, by the end of 2022, when this review was conducted, the number of publications
seemingly suggested a decreasing interest in this topic. This was probably due to further
improvements in the registration performance on the existing datasets being limited, as
indicated in Figure 1. Therefore, it is a suitable time to review the current status quo and
the progress of deep-learning-based point cloud registration algorithms.
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Figure 3 visualizes a network of the keywords from the surveyed literature using
VOSviewer software [44]. Challenging factors such as ‘rotation’, ‘noise’, ‘point density’,
‘point order’ and ‘partial overlap’ are shown. The figure also indicates that most of the
pairwise global point cloud registration algorithms rely on the ‘correspondence’ of a point
‘feature’ extracted by a ‘descriptor’. For developing deep-learning-based algorithms, a
‘benchmark’ ‘dataset’ is essential for training and testing. Recent research has focused
on self-supervised and ‘end-to-end’ deep learning. Figure 3 shows a high frequency of
occurrence of the phrase ‘state-of-the-art’, suggesting that ‘state-of-the-art’ performances
have continuously been updated with new algorithms for improved registration ‘accuracy’
and ‘robustness’. However, the rate of update is slowing down, as indicated by the number
of publications in 2022.
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There are several existing reviews [17,45–53] on point cloud registration algorithms
from various perspectives. Some [17,45–48] have focused mainly on traditional methods.
There are also a few reviews [49–53] on learning-based registration. However, due to their
different focuses, they did not cover all algorithms or benchmark datasets for pairwise
global point cloud registration. More importantly, the interpretations in these reviews
were often centred on individual algorithms and the associated contributions. This may be
less useful for audiences who wish to understand the advancements made to individual
key steps involved in the whole pipeline of deep-learning-based pairwise global point
cloud registration. The present review article comprehensively reviews the key steps of
deep-learning-based methods for pairwise global point cloud registration, presents the
advancements in those key steps, discusses the performance of different algorithms, and
provides insights for future developments. In addition, the main benchmark registration
datasets are also reviewed and discussed because the development and evaluation of
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registration algorithms rely on those datasets. The review also presents the performance of
various deep-learning-based registration methods on the benchmark point cloud datasets
in the literatures considered.

The remainder of this article is structured as follows: Section 2 introduces two
strategies of deep-learning-based point cloud registration, one of which is based on pose-
invariant point features and the other on pose-variant point features. Section 3 introduces
key steps of deep-learning-based registration relying on pose-invariant features. Section 4
covers the main benchmark datasets that are of use for the training and testing of deep-
learning-based algorithms for point cloud registration. Section 5 summarizes the reported
performance in the literature of these algorithms on the benchmark datasets. Section 6
discusses current challenges and suggests future research directions. In Section 7, the
conclusions are drawn.

2. Deep-Learning-Based Point Cloud Registration Strategy
2.1. ‘Hybrid’ Methods Utilising ‘Pose-Invariant’ Features

Typically, a registration method, where some but not all steps are realized using deep
neural networks, is termed a ‘hybrid’ registration method [54]. Many ‘hybrid’ registration
algorithms share a similar pipeline of processing modules, typically comprising point
feature descriptors, key point detection, feature matching, outlier rejection, and rigid
motion estimation, as shown in Figure 4. Among these modules, deep-learning-based
implementation is often considered for feature extraction, key point detection, and outlier
rejection modules in the ‘hybrid’ methods.
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Figure 4. The pipeline of the ‘hybrid’ and ‘end-to-end’ algorithms relying on pose-invariant features.

A feature descriptor extracts local features of an input point cloud. The extracted
features are designed to be pose-invariant, and, therefore, can be matched between point
cloud pairs regardless of their differences in initial poses. The key point detection module
estimates score for each point based on which key points are detected. It should be noted
that, more often than not, the key point detection is based on the extracted feature values
and, hence, is implemented after the feature descriptor, as indicated in Figure 4. However,
some methods (e.g., [55]) detect key points directly from input point cloud data, in which
the key point detection may be conducted parallel to, or even before, the feature descriptor.
Feature matching yields initial matches based on the features of the detected key points.
An outlier rejection algorithm rejects spurious matches out of the initial matches. Finally,
the rigid motion parameters, which are the goal of a registration, can be estimated from the
constraints provided by the coordinates of the matched point pairs. Among those modules,
the feature descriptors, feature matching and motion estimation modules are mandatory to
produce a registration. Key point detection and outlier rejection are optional and, hence,
their corresponding arrow lines in Figure 4 are dashed.

Taking GeDi [40] (one of the best-performing ‘hybrid’ methods), for example, the
following steps are involved. First, it extracts all points within a spherical neighbourhood
of each (key) point in both source and template point clouds. These points form a point
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cloud patch. Then, each point cloud patch is canonicalized, and the feature of the point
cloud patch is extracted using PointNet++ [25]. Afterwards, the (key) points in a source
point cloud are matched to the corresponding (key) points in a target point cloud (i.e., point
pairs), based on the features of the point cloud patches that they are centering. Finally,
the outliers in the corresponding (key) point pairs are rejected in a RANdom SAmple
Consensus (RANSAC) [56] process and the rigid motion is estimated based on the spatial
constraints provided by the correspondences of (key) point pairs. Note that GeDi does not
incorporate a key point detection module and every point is treated as a key point.

2.2. ‘End-to-End’ Methods

Registration methods (e.g., [57–63]) where all essential registration steps are executed
using deep neural networks are referred to as ‘end-to-end’ methods. Depending on the
type of features used, ‘end-to-end’ methods can be categorized into the two categories
described below.

2.2.1. ‘End-to-End’ Methods Utilising Pose-Invariant Features

The majority of ‘end-to-end’ methods conform to a pipeline similar to the ‘hybrid’
methods (see Figure 4), utilising the pose-invariant features. In addition, some ‘end-to-end’
(e.g., [57–60]) methods iterate the entire pipeline to refine the registration with the updated
poses of the source point cloud.

Except for nearest neighbour search (NNS) used in the feature-matching module,
and RANSAC [56] used in the outlier rejection module, the implementation of the other
individual modules in the ‘hybrid’ methods is also compatible with ‘end-to-end’ methods.
Singular value decomposition (SVD) [64] is the protocol motion estimation algorithm of
both ‘hybrid’ and ‘end-to-end’ methods.

For example, REGTR [60] is one of the best-performing ‘end-to-end’ methods based on
pose-invariant features. Firstly, the REGTR method utilizes the KPConv [28] convolutional
backbone to extract features of key points in both source and template point clouds. These
features are subsequently fed into multiple Transformer cross-encoder layers to condition
the features of key points with context-awareness and positional encoding. The conditioned
features of key points are passed into the output decoder to predict the overlap scores and
the corresponding point pairs of the key points between source and template point clouds.
The overlap scores serve to reject outliers, which are probably outside of the overlapping
area between the source point cloud and the target point cloud. Finally, the rigid motion is
estimated based on the spatial constraints provided by the corresponding point pairs.

2.2.2. ‘End-to-End’ Methods Utilising Pose-Variant Features

Some ‘end-to-end’ methods (e.g., PointNetLK [61], PCRNet [62], and RelativeNet [63])
seek to embed pose information in pose-variant local or global features of point clouds
and to infer the rigid motion directly from the pose-variant features via regression algo-
rithms [61–63,65], as shown in Figure 5.
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The global features in PointNetLK [61] and PCRNet [62] are extracted by similar
PointNet-like MLPs. It should be noted that the T-Net with a canonical orientation ability,
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which is a part of the original PointNet, is excluded from the PointNetLK and PCRNet to
ensure that the global features are pose-variant. However, a global feature learned in this
way embeds both structure and pose information. Therefore, PointNetLK and PCRNet are
not robust to point cloud pairs with low overlapping because the rigid motion estimation
is confused by the differences in structure information.

In order to eliminate this confusion, a pose-specific feature, which ideally embeds
only pose information, was designed in RelativeNet [63]. In RelativeNet, PPF-FoldNet [34]
features and PC-FoldNet [66] features are extracted from each point cloud patch, respec-
tively. The PPF-FoldNet feature is pose-invariant and only contains structure information.
In contrast, PC-FoldNet is pose-variant and contains both structure and pose information.
The discrepancy between PPF-FoldNet and PC-FoldNet features is deemed pose-specific
(i.e., it contains only pose information) and is fed into a regression network for the rigid
motion estimation.

2.2.3. Pose-Invariant Features Versus Pose-Variant Features

In most cases, pose-invariant features were used because they typically outperform
pose-variant features. There are a very limited number of methods utilising pose-variant
features, mainly including PointNetLK [61], PCRNet [62] RelativeNet [63], and OMNet [67].
It was observed that the performances of PointNetLK, PCRNet, and RelativeNet were
significantly worse than those of pose-invariant methods, as reported in [18,40,60].

2.3. Performance Comparisons between ‘Hybrid’ and ‘End-to-End’ Methods

As the 3DMatch dataset has been the most widely used dataset for testing the perfor-
mance of deep-learning-based methods, more comprehensive test results are available to
facilitate direct comparisons between performances of different methods. The reported
performances, in terms of registration recall (RR), of representative deep-learning-based
methods on the 3DMatch dataset is illustrated in Figure 6. It should be noted that the
‘hybrid’ [32,33,35,68–70] and ‘end-to-end’ [59,60] methods shown in Figure 6 are those with
the best performance(s) of each year. For more detailed information on the performances of
all methods considered on various datasets, refer to Section 5.2.
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By 2022, the state-of-the-art performances of ‘end-to-end’ methods and ‘hybrid’ meth-
ods (i.e., REGTR [60] and GeoTransformer [70], respectively.) were very similar. It was also
observed that the test results of ‘end-to-end’ methods on 3DMatch have only become available
in the last two years, likely because such methods are often very computationally demanding.

3. Key Steps of Deep-Learning-Based Point Cloud Registration Utilising
Pose-Invariant Features
3.1. Feature Descriptors

The most commonly used backbones in the feature extraction networks for point cloud
registration are the sparse 3D convolutional neural network (sparse 3D CNN) [26], the
shared multi-layer perceptron (MLP) derived from PointNet [24] (referred to as PointNet-
like MLP hereafter), the dynamic graph convolutional neural network (DGCNN) [27], and
kernel points convolution (KPConv) [28]. These networks were originally proposed for
other tasks, such as semantic segmentations and classifications. However, their utility in
similar architectures was later extended to point cloud registration. The parameters of these
networks were trained on the benchmark datasets for registration, using the loss functions
relevant to the point cloud registration. A trained feature extraction network, combined
with any necessary pre-processing or post-processing, is essentially a ‘feature descriptor’
(see Figure 4). A desirable feature descriptor should possess two properties, including
description ability (represented by performances on seen datasets) and generalization
ability (represented by performances on unseen datasets). These two properties are typically
related to the pose-invariance, the size of the receptive field, and the ‘context-awareness’ of
point features, which are elaborated in Sections 3.1.1–3.1.3, respectively.

3.1.1. Pose Invariance

The source and the template point clouds are of arbitrarily initial poses. If a point
cloud registration is based on point feature matching, the matched points, regardless of
their initial poses, should ideally have the same feature values quantified by the feature
descriptors. A feature descriptor of such a capability is termed pose-invariant. As the effect
of the initial poses is eliminated, the point features produced by the pose-invariant feature
descriptor contain only structure information. This can be realized by canonical orientation
or data augmentation, which are elaborated, respectively, below.

Before introducing different realizations of pose-invariance, it is necessary to dis-
tinguish ‘patch-based’ and ‘frame-based’ feature descriptors, following the definition in
Ao et al. [71]. The former take point cloud patches as an input. A point cloud patch
is formed by a centre point and its neighbourhood that can be defined using K nearest
neighbour (KNN) search or radius neighbourhood search. The output of a ‘patch-based’
feature descriptor is the point feature of the centre point, embedding the information of its
neighbourhood. A ‘frame-based’ feature descriptor takes an entire point cloud as an input
and outputs features of each point, embedding the neighbourhood information via a fully
convolutional network.

Canonical orientation is applied to patch-based feature descriptors [33,34,39,57,58,72–74],
and it aligns point cloud patches of arbitrary initial poses into a canonical pose. Ideally, the
canonical pose only depends on the distribution of points within the point cloud patches.
Therefore, matched point cloud patches of different initial poses are expected to have
similar poses after the canonical orientation, and, consequently, the effect of the initial
poses is eliminated. The canonical orientation can be realized by either a handcrafted local
reference frame (LRF) or a trained deep neural network [39,55].

Canonical orientations of corresponding point clouds or point cloud patches can
be inconsistent due to variations in data densities, noises, and clutters. For ‘patched-
based’ feature descriptors, the risk of such an inconsistency can be tolerated because
individual patches of inconsistent canonical orientations can be rejected in subsequent
feature-matching and/or outlier-rejection modules. However, in the case of ‘frame-based’
feature descriptors, if inconsistent canonical orientations are applied to the whole point
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clouds, the pose invariance of all point features may not be ensured. Therefore, the canonical
orientation is often not applicable to ‘frame-based’ feature descriptors [35,37,38,57,60,75,76].
Pose-invariance can be broken down into rotational invariance and translational invariance.
Luckily, as the translational invariance is an inherent property of feature extraction networks
(e.g., sparse 3D CNN, DGCNN, and KPConv) of ‘frame-based’ feature descriptors, only the
rotational invariance is of concern. The rotational invariances of those feature descriptors
are learned during training implicitly through random rotations applied to the input
training data, which is termed ‘data augmentation’.

3.1.2. Size of Receptive Field

Except for a few feature descriptors [33,34,72] that incorporate the parameterization of
point clouds in pre-processing, many feature descriptor descriptions and generalization
abilities are often solely offered by feature extraction networks. The receptive field of
a feature extraction network should be large enough for capturing the objects of large
sizes [77]. However, increasing the size of the receptive field is usually restricted by
computational costs. As a mitigating measure, such an increase often requires more
computationally efficient deep neural networks.

In early studies, standard 3D convolutional neural networks (CNNs) were adopted as
feature extraction networks [32,74]. In these CNNs, their computational costs increased
with the number of cells of the voxel-grid in the receptive field because the convolution
was conducted on all cells, regardless of whether a cell was occupied or empty. In many
point clouds, large portions of their 3D space are empty. Convolutions on empty cells
contribute little to the description ability but consumes much computational resource. To
counter this, ‘point-based’ deep neural networks were proposed for feature extraction,
including PointNet-MLP, sparse 3D CNN, DGCNN and KPConv. In these networks, the
computational cost increases with increase in the number of points within the receptive
field, while empty spaces are disregarded. As such, ‘point-based’ networks are more
computationally efficient [24,27] than standard 3D CNNs, and, hence, have been commonly
adopted in more recent investigations.

Reducing the density of input point clouds is another means of facilitating the increase
in the receptive field while the overall computational cost is under control. However, the
side-effect is that it also reduces geometrical details. To keep the benefits of both detailed ge-
ometries and large receptive fields, ‘multi-scale’ feature extraction networks [38,40,70,78,79]
were proposed. In these networks, an input point cloud is subsampled to multiple levels of
data densities and fed into the feature extraction networks under different sizes of receptive
fields. Low-density inputs correspond to large receptive fields, while high-density inputs
correspond to small receptive fields. The outputs under the multiple sizes were fused into
a final feature.

3.1.3. Context Awareness

Although the receptive field of point features can be increased, a point feature de-
scriptor without ‘context awareness’ cannot incorporate information outside its receptive
fields. As such, it is believed that adding ‘context awareness’ can enhance the description
ability and the generalization ability of a feature descriptor [33,57,58]. To this end, ‘global
context awareness’ and ‘mutual context awareness’ are often considered. ‘Global context
awareness’ is the awareness of the global geometry of the current point cloud. ‘Mutual con-
text awareness’ is the awareness of the geometry of the other point cloud. Usually, ‘global
context awareness’ and ‘mutual context awareness’ are realized by applying self-attention
and cross-attention layers of Transformer [80], respectively, on point features. DCP [57]
and PRNet [58] incorporate mutual context awareness between source and template point
clouds by applying cross-attention layers to the features initially extracted. Similarly,
REGTR [60] and Lepard [81] use both self-attention layers and cross-attention layers to
incorporate both ‘global context awareness’ and ‘mutual context awareness’. Alternatively,
in PPFNet [33], the global geometry is summarized in a global feature, which is obtained
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by the channel-wise pooling of initial point features. Then, the initial point features and the
global feature are fused into the final point features with ‘global context awareness’.

As described in Section 3.1.1, feature descriptors are designed to embed only structure
information but not to pose information. However, without pose information, it is difficult
to distinguish repetitive objects (e.g., multiple streetlamps in a street scene) and to correctly
match the points representing the repetitive objects based on point features. To this end,
Lepard [81] also enhanced point features with ‘positional context awareness’ using rotary
positional encoding [82], while the source template cloud is repositioned with rigid motion
parameters from a soft Procrustes layer to mitigate the effect of initial pose.

3.2. Key Point Detection

Key point detection is a common module in the point cloud registration pipeline. Since
a 3D rigid motion contains only six degrees of freedom, matching of a small number of
key points would often be sufficient for registration. By filtering out a large number of
‘unimportant’ points, the key point detection module helps to reduce the computational
cost and, at the same time, increases the accuracy of point feature matching. The key point
detection module can be executed before, after, or in parallel to the local feature extraction
module [55,83].

There are generally two steps in the key point detection module. The first is to estimate
the scores of individual points, which represent the saliency of geometry and the likelihood
of overlapping. Point scores can be handcrafted or learned. Handcrafted scores are usually
derived from feature values, such as the norm [39,58] or channel-max [37] of point features.
The estimation of these handcrafted point scores incurs little additional computational cost.
Alternatively, deep-learning-based key point detectors [55,75,83–85] are incorporated to
estimate point scores. Learned point scores are usually based on an attention module [80].
The second step is to detect the key points by filtering in the top K points or the points
above a certain score threshold, which is straightforward to implement.

Most of the early key point detectors [37,39,55,83,84] estimate the point scores of
sources and template point clouds independently, without referring to each other, and,
hence, cannot specifically predict the likelihood of overlapping. When source and tem-
plate point clouds have a low overlap ratio, the inclusion of non-overlapping points in
feature matching would cause significant spurious matches. Therefore, the prediction
of overlapping points is also considered. MaskNet [85] uses a PointNet-like network to
predict whether points in template point clouds overlap with those in source point clouds.
However, MaskNet detects the overlapping points only in the template point cloud. To
counter this, PREDATOR [75] uses a deep-learning-based cross-attention module to predict
the overlapping points from both the source and the template point clouds. Alternatively,
NgeNet [79] uses a specially designed voting scheme to detect overlapping points. PR-
Net [58] embeds mutual context awareness in the feature descriptor, and, hence, its key
point detection (based on L2 norm of the feature values) also implicitly contains the ability
to predict the overlapping likelihood.

It was also observed that some methods [38–40] did not adopt a learned key point
detector but still achieved the state-of-the-art performance on benchmark datasets. This
suggests that a learned key point detector is not always essential in a point cloud registration
pipeline. A common limitation of the current key point detectors is that the criterion of
filtering is usually manually set, which may need to be altered if the key point detectors are
applied to unseen datasets.

3.3. Feature Matching

Key points detected from source and template point clouds need to be matched into
pairs to enable rigid motion estimation. In most ‘hybrid’ methods, matched point pairs are
obtained using mutual nearest neighbour search (MNNS) of point features.
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Due to its robustness and simple implementation, MNNS is still widely used and has
been shown to cause no harm to the state-of-the-art performances of the methods adopting
it (e.g., [38–40]).

However, MNNS is not desirable in two respects. Firstly, it produces a ‘one-to-one’
match of points, which may contain errors resulting from low data densities and data
noises of point clouds. Secondly, it produces a ‘hard’ match, i.e., either 0 (not matched) or
1 (matched). The ‘hard match’ forbids the backpropagation of a deep neural network and,
therefore, cannot be incorporated in an ‘end-to-end’ method.

‘End-to-end’ methods (e.g., [57–59,76]) adopt differentiable soft matching between
the features of source and template point clouds. Soft matching enables one-to-multiple
matching, in which the likelihood of matching is represented by a value within an interval,
usually from 0 to 1 (increase with increasing likelihood). However, such a soft matching
lacks the ability to reject the points outside the overlapping area(s). Therefore, soft matching
is not ideal when source and template point clouds have a low overlap ratio. This limitation
can be addressed in the key point detection module or the outlier rejection module.

Some recent methods [70,86,87] also implemented feature matching in a ‘coarse-to-fine’
manner. For the coarse match step, the features of point cloud patches are aggregated and
matched. For the fine match step, within coarsely matched point cloud patches, individual
points are matched based on their features.

3.4. Outlier Rejection

In most cases, many of the initial matched point pairs are inaccurate. If all matched
point pairs are used to estimate the rigid motion, the rigid motion parameters estimated
are most likely to be inaccurate. Therefore, inaccurate matchings of point pairs (referred to
as ‘outliers’) need to be rejected, leading to a set where accurately matched point pairs (i.e.,
‘inliers’) are kept. This process is termed ‘outlier rejection’.

RANSAC is the most widely used outlier rejection algorithm in ‘hybrid’ methods
due to its robustness and simple implementation. However, RANSAC is time-consuming,
especially when the inlier ratio is low [68]. Therefore, it is worthwhile incorporating
additional means of outlier rejection before applying RANSAC. For ‘hybrid methods’,
the matched point pairs resulting from MNNS can be reused for outlier rejection. Both
Unsupervied R&R [88], Lepard [81] and GeoTransfomer [70] assumed that matchings
should be more accurate when the point pairs are closer in the feature space. These
methods estimate the weights of matched point pairs based on their distance in feature
space, with higher weights corresponding to smaller distances. The Unsupervised R&R
and Lepard reject matched point pairs of low weights according to a certain threshold,
while GeoTransfomer rejects matched point pairs outsides of the top k rankings by weights.
Moreover, deep learning algorithms dedicated for outlier rejection [68,89,90] were also
developed for ‘hybrid’ methods. These dedicated outlier rejection networks are trained
separately from the feature extraction networks and classify matched point pairs into inliers
and outliers.

However, all the aforementioned outlier rejection methods are based on ‘hard match’
of point pairs and, hence, are not applicable to ‘end-to-end’ methods. This is because
the ‘hard match’ of point pairs cannot be differentiated, and, as such, do not support the
backpropagation of deep neural networks, as mentioned in Section 3.3. For ‘end-to-end’
methods, differentiable outlier rejection methods based on ‘soft match’ of point pairs have
been devised. For example, the soft feature matching in PRNet was refined by applying a
gumbel-sampler [91] on the matching matrix.

3.5. Rigid Motion Estimation

It is common practice to apply SVD in deep-learning-based registration methods for
estimating the rigid motion, and, as such, this step is not elaborated here.
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4. Benchmark Datasets

Point cloud datasets are fundamental to deep-learning-based methods for the registra-
tion of point clouds, which are used to train and/or to test those methods. Some widely
used benchmark datasets are elaborated in Section 4, and their key information is presented
in Table 1. Overall, these benchmark datasets evolved in the following respects: from small
to large amounts of data, from small to large spatial scales, and from indoor scenes to
diverse scenes.

Table 1. Summary of some widely used benchmark datasets for point cloud registration.

Dataset # Scenes # Frames or Scans Format Scenario

Stanford [92] 9 - TIN mesh individual objects
ModelNet [31] 151,128 - CAD synthetic individual objects

ModelNet40 [31] 12,311 - CAD synthetic individual objects
3Dmatch [32] 62 200,000 RGB-D indoor
ScanNet [93] 1513 2,500,000 RGB-D indoor

TUM [94] 2 39 RGB-D indoor
ETH [30] 8 276 point cloud indoor and outdoor

KITTI [29] 39.2 km - point cloud outdoor
RobotCar [95] 1000 km - point cloud outdoor

WHU [47] 11 115 point cloud indoor and outdoor
Composite [96] 14 400 RGB-D and point cloud indoor and outdoor

# means ‘number of’.

A single point cloud is often not sufficient to train or to test deep-learning-based
registration algorithms. Attempts were made to combine point clouds from multiple
publications to establish more useful datasets (e.g., Stanford 3D Scanning Repository [92]
and Bologna Retrieval (BR) [97]). However, these datasets are still comparatively small,
and, thus, few researchers [72] have used them for the training of deep learning models.
Moreover, these datasets usually contain data representing individual objects rather than
complex scenes, which are incompetent for producing deep learning models for real-life
application scenarios.

3DMatch [32] is one of the most popular real-life datasets used for developing deep-
learning-based point cloud registration methods. It has widely been adopted in many
previous studies [32–35,37–39,63,70,71,73,88,90,98,99]. It includes over 8 million correspon-
dences out of 200,000 registered RGB-D images from 62 RGB-D real-life indoor scene
reconstructions conducted in previous studies [100–104]. A total of 54 and 8 scenes can be
used for training and testing, respectively. Such a partition was also conveniently followed
by later researchers. To limit the difficulties of training and testing, 3DMatch utilized only
the image pairs with over 30% overlap. The dataset is valuable because it includes a large
number of correspondences and covers real-life scenes. Deng, Birdal and Ilic [34] found that
the frames in 3DMatch were already oriented to the correct orientations to a certain extent,
and, as such, it would not challenge the rotation invariance of point feature descriptors.
Therefore, the Rotated 3DMatch [34] datasets were derived by applying random rotations
to the original 3DMatch. Moreover, Huang, Gojcic, Usvyatsov, Wieser and Schindler [75]
gathered the 3DLoMatch dataset by considering only the image pairs with overlaps of
less than 30% in 3DMatch, to test the performance of their method under the low overlap
condition. ScanNet [93] is also a large-size real-life indoor dataset comprising 2.5 million
RGB-D images in 1513 scenes. It was used for both the training and testing of deep learning
registration models [88]. TUM [94] is another real-life indoor dataset containing 39 RGB-D
images in two scenes. Due to its limited number of images, it has usually been used as
a test dataset [20] for verifying the generalization ability of a deep learning method. The
3Dmatch, ScanNet and TUM datasets consist of only indoor scenes.

ETH [30] contains both indoor and outdoor scenes, consisting of 276 LIDAR scans in
eight scenes. The ETH dataset provides realistic outdoor scenes, which have often been
missing in previous registration benchmark datasets. However, due to its limited number
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of scans, it was often used as a test dataset [37–39,55,71]. For both training and testing
of deep learning models aiming at outdoors scenes, the KITTI [29] dataset is the most
widely used [35,37,55,70,71,78,90,99,105]. KITTI includes a range of point clouds, covering
a total length of 39.2 km, which were acquired by a Velodyne laser scanner mounted
on a car travelling in rural areas and along highways. The ground-truth registration
was given by the GPS (global positioning system) and IMU (inertial measurement unit)
measurements synchronized with the scanner. The point cloud sequence can be cropped
to make overlapping pairs of point clouds [55]. Oxford RobotCar [95] is a multi-platform
dataset of outdoor scenes with large spatial and temporal spans. It consists of 100 traversals
of an outdoor route of over 10 km in Oxford, taken over a one-year period under various
weather conditions. 2D scans were obtained by 2D LIDAR sensors mounted on a vehicle.
Each 2D scan contained points with the coordinates in two axes, and the coordinates in the
third axis were provided by the forward motion of the car in a ‘push-broom’ manner. 3D
point cloud data were generated by registering numerous 2D scans using the ‘ground-truth’
measurements of the forward motion of the vehicle, which were provided by a combination
of GPS and INS. However, the authors of Oxford RobotCar did not suggest use of the
‘ground truth’ for benchmarking localization and mapping algorithms because the qualities
of the GPS reception and the fused GPS and INS solution varied significantly during data
collection. Therefore, in 3DFeat-Net [55], the initial ground-truth registration of Oxford
RobotCar was refined using the iterative closest point (ICP) [106] before it was used as the
test benchmark. Recently, researchers [47,96] have proposed outdoor datasets of larger
scales; however, tests (e.g., [107,108]) on these datasets are rare

Compared to the establishment of a benchmark dataset using a large amount of real-
life point clouds, it is more convenient to use synthetically generated point clouds from 3D
CAD models. ModelNet [31] is a collection of 3D CAD models, including 151,128 models
from 660 categories. ModelNet40, a subset of ModelNet, was often used as a point cloud
registration benchmark dataset. ModelNet40 consists of 12,311 3D CAD models from
40 categories. Points are sampled on exterior surfaces of the CAD models of ModelNet40
to generate point clouds. Random rotations and translations can be applied to the synthetic
point clouds to produce template and source point clouds with the known registration
ground-truth. ModelNet is popular in the training and testing of many deep-learning regis-
tration models [38,57,58,76]. However, synthetic point clouds often have less complexity
compared to those acquired from real-life scans. As such, it is perhaps less convincing to
use synthetic data for the evaluation of registration methods.

5. Evaluation Metrics
5.1. Definition

In many ‘hybrid’ registration methods, the processes after deep feature descriptors are
similar. Therefore, the performance of deep feature descriptors in terms of feature matching
can often represent the overall performances of ‘hybrid’ methods.

The basic index for assessing the performance of feature matching is the inlier ratio In
(sometimes referred to as the hit ratio) [38]. Suppose that px′ and qy′ are a matched point
pair estimated by the MNNS of point feature values, and that Cest is a set containing all the
matched pairs found between P and Q. In is defined as the ratio of the correctly matched
pairs to all matched pairs, as in

In(Cest) =
1
|Cest|∑(px′ ,qy′ )∈Cest

1(‖ Rgt px′ + tgt − qy′ ‖2
≤ τdist), (2)

where Rgt and tgt are the ground-truth rotation and translation, respectively, and |Cest| is the
total number of matched point pairs that are estimated. A matched pair is deemed correct
if the distance between the paired points is under a threshold, τdist, when the ground-truth
rigid motion is applied.

For the ‘hybrid’ methods, to evaluate the performance of feature matchings over a
dataset consisting of n pairs of source and template point clouds, FMR is often used [33].
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FMR is the ratio of the number of the pairs with an inlier ratio over τIn to the total number
(i.e., n) of pairs.

However, the FMR metric is not applicable to ‘end-to-end’ methods. As such, the
evaluation metrics that are based on the estimated rotations and translations are also
proposed [76]. The performance of a registration method on a benchmark dataset can also
be represented by the mean values of v, as defined in

RE = arccos(
tr
(

R−1
gt Rest

)
− 1

2
) (3)

TE = ‖ tgt − test ‖2, (4)

where the Rgt and tgt are the ground-truth rotation and translation, respectively; Rest and
test are the estimated rotation and translation, respectively; RE and TE are the rotation and
translation errors, respectively.

Instead of using RE and TE, it is more convenient to compare the performances of
registration methods using a single evaluation metric, such as FMR for the performance of
feature matching. To this end, either success rate (SR) or registration recall (RR) is used,
depending on the dataset under consideration.

Both SR and RR represent the ratio of the number of accurately registered pairs of
source and template point clouds to the total number of the pairs in a dataset. However,
the definitions of ‘accurately registered’ are different between SR and RR. In the case of SR,
a registration is deemed accurate if RE and TE are smaller than the thresholds τRE and τTE,
respectively. For RR, a registration is deemed accurate when the root mean square error
(RMSE) of the ground-truth matched point pairs underestimates the rotation Rest and the
translation test (i.e., RMSE (Rest, test) is lower than a threshold τRMSE. The RMSE (Rest, test)
is defined as follows:

RMSE(Rest, test) =

√
1∣∣Cgt
∣∣ ∑(px ,qy)∈Cgt

‖ Rest px + test − qy ‖2, (5)

5.2. Summary of Evaluation Metric Results from the Literature

This section summarises the published results of the evaluation metrics defined in
Section 5.1 on the benchmark datasets considered. Based on this summary, the perfor-
mances of different deep-learning-based registration methods can be compared. It should
be noted that some pioneering methods were not evaluated for some benchmark datasets
in their original publications but were considered in later studies as baselines for compar-
ison. In such cases, the source(s) where the results were published is cited in the same
cell. Table 2 summarises FMR where τdist 0.1 m and τIn = 0.05 were set for its estimation.
Table 3 summarises RR, SR, RE, and TE (τRMSE = 0.2 m was used for the estimation of RR
on 3DMatch, Rotated 3DMatch and 3DLoMatch; τRE = 5◦ and τTE = 2 m were used for
the estimation of SR on KITTI). For evaluating the RR of hybrid methods, the number of
sample points was 5000 and the maximum iterations of RANSAC were 55,000.

Overall, it was observed that the deep-learning-based feature descriptors and reg-
istration methods outperformed the traditional methods by notable margins in terms of
FMR and RR. It is difficult to name an individual method as the top performer, in gen-
eral, not only because none of the methods were exhaustively tested on every benchmark
data configuration, but also because the differences in the performances of some lead-
ing methods were small. For example, the following methods GeDi, SpinNet, REGTR,
GeoTransformer, Lepard, and NgeNet, showed top performances in the corresponding
benchmark datasets where each method was tested. Specifically, GeDi and SpinNet showed
good pose-invariance (see Rotated 3DMatch in Table 2) and a generalization ability on the
unseen datasets (see ETH (3Dmatch) in Table 2 and KITTI (3DMatch in) Table 3), while Geo-
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Transformer and NgeNet demonstrated strong performances on low-overlapping datasets
(see 3DLoMatch in Table 3).

Table 2. FMR on the four benchmark datasets.

Method
3DMatch Rotated 3DMatch KITTI ETH (3DMatch)

Title C

PPFNet [33] D 0.623 0.003 - -
PPF-FoldNet [34] D 0.718 0.731 - -

3DMatch [32] D 0.573 0.011 - 0.169
FCGF [35] D 0.952 0.953 0.966 0.161

Multi-view [36] D 0.975 0.969 - 0.799
D3Feat [37] D 0.958 0.955 0.998 0.616

MS-SVConv [38] D 0.984 - - 0.768
DIP [39] D 0.948 0.946 0.973 0.928

GeDi [40] D 0.979 0.976 0.998 0.982
PREDATOR [75] D 0.967 - - -
3Dfeat-Net [55] D - - 0.960 -

Equivariant3D [73] D 0.942 0.939 - -
RelativeNet [63] D 0.760 - - -

CGF [72] D 0.478 0.499 - 0.202
3DsmoothNet [74] D 0.947 0.949 - 0.790

FoldingNet [66] D 0.613 0.023 - -
CapsuleNet [98] D 0.807 0.807 - -

SpinNet [71] D 0.978 0.978 0.991 0.928
YOHO [107] D 0.982 - - 0.920

GeoTransformer [70] D 0.979 - - -
Lepard [81] D 0.983 - - -

Equivariant [109] D 0.976 - - -
NgeNet [79] D 0.982 - - -

WSDesc [110] D 0.967 0.785 - -
CoFiNet [86] D 0.981 - - -
OCFNet [87] D 0.984 - - -

SpinImage [19] H 0.227, [33] 0.227, [34] - -
FPFH [20] H 0.359, [33] 0.364, [34] - 0.221, [74]
USC [21] H 0.400, [33] - - -

SHOT [22] H 0.238, [33] 0.234, [34] - 0.611, [74]
The methods of top three in performance are marked in bold. In the column ‘C’, which represents classification
of the feature descriptors, D and H represent deep feature descriptors and handcrafted feature descriptors,
respectively. In the column ETH (3DMatch), the methods were trained on 3DMatch but tested on ETH. Zero
before the decimal point is left out to save space. The symbol ‘-’ means that the results are unavailable.

Comparisons between the ‘hybrid’ and the ‘end-to-end’ methods can be made based
on the relatively limited number of results in the literature. Most of the pioneering ‘end-to-
end’ methods (e.g., [57,58,61,62]) are suitable only for simple objects [75], probably because
they can only tolerate several thousands of points as the input data. Moreover, some studies
of ‘end-to-end’ methods (e.g., [57,58,61,62,111–119]) did not report the evaluation results
in terms of RE and TE metrics, which were adopted in tests of both the ‘hybrid’ and the
‘end-to-end’ methods. Therefore, comparisons between the test results of those ‘end-to-end’
methods were found to be rare in the literature. In terms of the ‘hybrid’ methods, they
were often tested on more challenging datasets, such as 3DMatch, but rarely on synthetic
datasets, such as ModelNet40.
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Table 3. SR, RR, RE and TE on the benchmark datasets.

Method 3DMatch 3DLoMatch KITTI KITTI (3DMatch) ModelNet40

Title C RR RR SR SR RE ( ◦ ) TE(m)

DCP [57] E - - - - 11.975 [75] 0.171 [75]
RelativeNet [63] E 0.777 - - - - -

PCAM [59] E 0.855 [60] - - - - -
REGTR [60] E 0.920 - - - 1.473 0.014

PointNetLK [61] E - - - - 29.725 [60] 0.29, [60]
RPM-Net [76] E - - - - 1.712 [75] 0.018 [75]
OMNet [67] E 0.359 [60] - - - 2.947 [75] 0.032 [75]
RCP [120] E - - - - 1.665 0.016

HRegNet [78] E - - 0.997 - - -
WSDesc [110] E 0.814 - - - - -
PPFNet [33] H 0.71 - - - - -
FCGF [35] H 0.851 [75] 0.401 [75] 0.966 0.350 [40] - -

3DMatch [32] H 0.670 [33] - - - - -
D3Feat [37] H 0.816 [75] 0.372 [75] 0.998 0.387 [40] - -

DIP [39] H 0.890 - 0.973 [40] 0.750 [40] - -
GeDi [40] H - - 0.998 0.831 [40] - -

PREDATOR [75] H 0.890 0.598 [75] 0.998 - 1.739 0.019
DGR [68] H 0.853 [60] - - - - -
CGF [72] H 0.56 [33] - - - - -

3DSmoothNet [74] H 0.784 [75] 0.330 [75] 0.960 [75] - - -
SpinNet [71] H - - 0.991 0.654 [40] - -

GeoTransformer [70] H 0.920 0.750 0.998 - - -
S-FCGF [69] H 0.914 - - - - -
NgeNet [79] H 0.929 0.845 0.998 - - -
Lepard [81] H 0.935 0.690 - - - -
P2-Net [121] H 0.880 - - - - -
CoFiNet [86] H 0.893 0.675 0.998 - - -
OCFNet [87] H 0.897 0.681 0.998 - - -

SpinImage [19] T 0.34 [33] - - - - -
FPFH [20] T 0.40 [33] - - - - -
USC [21] T 0.43 [33] - - - - -

SHOT [22] T 0.27 [33] - - - - -

The methods of top three in performance are marked in bold. In the column ‘C’, which represents classification
of the methods, T, H and E represent traditional, hybrid and ‘end-to-end’ methods, respectively. In the column
KITTI (3DMatch), the methods were trained on 3DMatch but tested on KITTI. Zero before the decimal point is left
out to save space. The symbol ‘-’ means that the results are unavailable.

Based on the reported results of RE and TE on ModelNet40 in Table 3, the best ‘end-
to-end’ method is REGTR. The decent performance of REGTR may be attributed to the
‘global context awareness’ and ‘mutual context awareness’ components incorporated in its
point features. Based on RR on 3DMatch in Table 3, except for REGTR, the other ‘end-to-
end’ methods are inferior to at least five ‘hybrid’ methods. As shown by the test results
on the seen datasets in Tables 2 and 3, strong description abilities were achieved by the
PointNet-like MLP feature descriptors (e.g., DIP, GeDi, SpinNet), the sparse CNN feature
descriptors (e.g., MS-SVConv, FCGF), and the KPConv feature descriptors (e.g., D3Feat,
CoFiNet, Lepard, and NgeNet). However, from the tests results on the unseen datasets, i.e.,
FMR on ETH (3DMatch) in Table 2 and SR on KITTI (3Dmatch) in Table 3, the PointNet-like
MLP feature descriptors showed better generalization abilities, compared to the sparse
CNN and the KPConv feature descriptors. The likely reason is that the latter two feature
descriptors are sensitive to scale and density variations.

In Table 3, the RE and TE results of PointNetLK are shown to be inferior to those of
the other methods. This shows that the methods that are based on pose-invariant features
generally perform better than PointNetLK, which is based on pose-variant features. The
pose-invariance of the feature descriptors is inferred by comparing the FMR metric on
3DMatch and Rotated 3DMatch in Table 2. Some of the early-year deep feature descriptors
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(e.g., 3DMatch and PPF-FoldNet) show significant drops in performance from 3DMatch to
Rotated 3DMatch, suggesting poor rotation invariances. The RR on 3DLoMatch in Table 3
demonstrate that better performance on low-overlapping data can be achieved by special-
ized efforts in either the overlap detection module (e.g., PREDATOR and NgeNet), or the
outlier rejection module (e.g., GeoTransformer). For the size of the receptive field, the ad-
vantage of multi-scale feature descriptors can be highlighted by the superior performances
exhibited by GeDi, MS-SVConv, GeoTransformer, and NgeNet.

6. Challenges and Future Research

The deep-learning-based methods were tested on benchmark datasets, typically in
the studies dedicated to point cloud registration. Although in such studies some methods
exhibited excellent performances, reports of their direct application to real-life situations
are still rare in the literature [122], which also highlights some challenges and directions for
future research.

6.1. Computational Feasibility

The challenge in computational feasibility often results from the fact that real-life point
cloud data may contain a large number of points. To this end, patch-based methods may
be considered as they can process a point cloud patch-by-patch with each patch containing
much less points. However, the feature descriptors of patch-based methods generally lack
context awareness, which hinders registration performance in complex scenes. Therefore,
how to better balance the trade-off between computational feasibility and registration
performance in complex scenes should be further explored.

6.2. Generalization Ability

Although the feature descriptors of KPConv, sparse CNN and PointNet-like MLP
achieved decent performances on the seen datasets, only PointNet-like MLP feature de-
scriptors demonstrated strong generalization ability on the unseen datasets. This suggests
a challenge in their application, i.e., the generalization of the established methods to other
datasets. The challenge in generalization ability is typically caused by the differences
in characteristics between training benchmark datasets and data encountered in real-life
applications. In real-life applications, as the ground-truth registration is unavailable for
training deep learning models, the model parameters of a deep-learning-based method
must be pre-trained on a benchmark dataset(s) (ideally similar to the real-life point cloud
data to be registered).

To facilitate the applications of pre-trained models to real-life applications, more
dedicated benchmark datasets of diverse application scenes should be established. An
interesting question to be considered is how to use diverse datasets to pre-train a deep
learning model. On one side, a large number of datasets in various scenes may be used to
train a ‘large, generic’ model, aiming for greater generalization ability of a single model
for applications in diverse scenes. On the other side, datasets in specific scenes are used to
pre-train a model for multiple sets of model parameters that are more suitable for a specific
scene. In the second case, the pre-trained model using a benchmark dataset of a more
similar scene to a real-life application can be found. If real-life data acquisition is difficult
in certain scenarios, point cloud data generation using simulators (e.g., [123–126]) may be
considered. Further development of such tools to facilitate the generation of simulated
sensor data based on realistic environments is a promising way forward.

6.3. Utilization of Texture Information

Apart from structure information, real-life scenes contain rich texture information,
such as colours, reflectance, and spectra, which can be captured by additional sensors.
The fused data may be used to aid in feature descriptions (e.g., [127,128]) and improve
the overall registration performances. However, the utilization of the texture information
for point cloud registration, which is still rare, as such information is often missing in



Remote Sens. 2023, 15, 2060 18 of 24

most existing benchmarks, may be considered in further studies. In addition, data noises,
clutters, and density variations are often not considered in the current registration methods
and the associated datasets, which should be considered in further developments.

6.4. Evaluation Metrics

In the existing studies, it is a common practice to use a lump-sum single metric(s) to
represent the overall registration quality of all experiments on the benchmark dataset(s),
but the registration quality of individual experiments is not reported. As such, the spatial
variation of the registration errors is unclear, especially in the local areas of relatively large
errors. This information is beneficial for investigating the causes of these errors, which can
be used to improve the registration methods.

Moreover, various evaluation metrics were used in previous research, including FMR,
RR, SR, RE and TE. However, it is rare in the existing studies to consider all these metrics.
In most cases, researchers often choose one or some of these evaluation metric(s). The
choices of performance metrics and benchmark datasets are probably favourable to their
methods. As such, the comparisons between different methods may not be consistent or
fair. As such, it would be useful to use consistent evaluation metrics in future studies.

6.5. Multi-Temporal Data Registration

Registration of multi-temporal point clouds is essential for applications where changes
in a scene over time need to be monitored. Based on the existing studies, the registration
methods were typically tested on the point cloud data obtained in a survey campaign
where the variations in objects in the scenes scanned were very small. However, they
were rarely tested on multi-temporal point clouds that represent dynamic and changing
scenes (e.g., a construction site) over time. Although, feature matching and outlier rejection
algorithms can implicitly mitigate the effects of dynamic scenes on point cloud registration,
it is suggested to explicitly consider this in future studies for developing new benchmark
datasets and registration methods.

In the literature, there are mainly two ways to cope specifically with multi-temporal
registration. One is to establish control point networks external to the point cloud data, and
these control points are ensured to be stable (e.g., [129]). However, this approach generates
additional fieldwork in the data acquisition phase. The other approach (e.g., [130]) is to
first roughly register the multi-temporal point clouds and then to filter out parts of the
point clouds based on the spatial distribution of the registration error. Then the registration
is refined using the filtered point clouds, which can be performed iteratively. However, the
filtering involves manual judgements. It is suggested that future research should address
the problem of multi-temporal registration with data-driven approaches, which would
mitigate the requirement for extensive fieldwork and manual judgements.

6.6. Multi-Modal Data Registration

Multi-modal registration is becoming a new trend in point cloud registration because
fused point clouds from different sensors can be more informative for some tasks, such
as scene reconstruction [131], environment perception [132], and change detection [133].
However, compared to single-source point cloud registration, multi-modal point cloud
registration is more challenging in terms of noise, outliers, partial overlap, density difference
and scale variations since different types of sensors have different imaging mechanisms.
Without considering these challenges, registration algorithms originally designed for single-
source point cloud registration are likely to perform poorly in multi-modal point cloud
registration [52]. Although some researchers [133,134] have recently proposed algorithms
and benchmark datasets specifically for multi-modal point cloud registration, much more
can be done to improve the performance of algorithms and the diversity of benchmark
multi-modal datasets in the future.
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7. Conclusions

This article reviews deep-learning-based methods and the relevant benchmark datasets
(by the end of 2022) for pairwise global registration of same-source point clouds. The
performances of the methods are discussed, in general, from their design perspective, and,
specifically, based on a set of performance metrics on the benchmark datasets considered.

Based on our statistics, the number of publications in deep-learning-based point cloud
registration increased from 2017 to 2021, during which a sharp increase was witnessed
in 2021. However, the relevant publications in 2022 seemed to slow down, likely due to
the extensive work undertaken in previous years (especially 2021) and limited progress in
registration performances since then.

Two types of deep-learning-based methods (i.e., ‘hybrid’ and ‘end-to-end’) were
considered, which share many key steps in the registration pipeline. It was observed that
the deep-learning-based registration methods outperformed the traditional methods by
notable margins in terms of FMR and RR. Comparisons between ‘hybrid’ and ‘end-to-end’
methods are more challenging because the performances of many of these methods on
the considered benchmark datasets were not reported in the literature. For the dataset
3DMatch, on which the performance metric RR of many of the considered methods was
tested, the state-of-the-art performance of the ‘end-to-end’ methods was slightly lower than
that of the ‘hybrid’ methods, as shown in Table 3.

In the ‘hybrid’ methods, deep learning implementations are often considered for
feature extraction, key point detection and outlier rejection. The ‘hybrid’ methods that
are based on pose-invariant features (i.e., GeDi [40], GeoTransformer [70], NgeNet [79],
Lepard [81]) show leading performances on the benchmark datasets. All these methods
adopted deep learning in the feature extraction step, while GeDi adopted deep learning in
only the feature extraction step, which suggests that deep feature descriptors are a critical
factor for determining the overall performance of point cloud registration. There are also
methods that did not use learned key point detections, but achieved strong performance
on the benchmark datasets, which suggests that a learned key point detector is not always
essential. However, the criteria of filtering key points are usually set manually and may
vary when the key point detectors are applied to unseen datasets.
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