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Abstract: Multispectral pedestrian detection via visible and thermal image pairs has received
widespread attention in recent years. It provides a promising multi-modality solution to address
the challenges of pedestrian detection in low-light environments and occlusion situations. Most
existing methods directly blend the results of the two modalities or combine the visible and thermal
features via a linear interpolation. However, such fusion strategies tend to extract coarser features
corresponding to the positions of different modalities, which may lead to degraded detection perfor-
mance. To mitigate this, this paper proposes a novel and adaptive cross-modality fusion framework,
named Hierarchical Attentive Fusion Network (HAFNet), which fully exploits the multispectral
attention knowledge to inspire pedestrian detection in the decision-making process. Concretely, we
introduce a Hierarchical Content-dependent Attentive Fusion (HCAF) module to extract top-level
features as a guide to pixel-wise blending features of two modalities to enhance the quality of the
feature representation and a plug-in multi-modality feature alignment (MFA) block to fine-tune the
feature alignment of two modalities. Experiments on the challenging KAIST and CVC-14 datasets
demonstrate the superior performance of our method with satisfactory speed.

Keywords: multispectral pedestrian detection; content-dependent; feature alignment

1. Introduction

Pedestrian detection is a challenging computer vision task and has been widely used
in urban scenes [1,2]. With the rapid development of artificial intelligence technology,
pedestrian detection has become a major research focus in the field of computer vision.
Applications such as autonomous driving [3] and remote surveillance [4] require accurate
detection performance in challenging urban environments, where factors such as insuffi-
cient illumination and occlusion [5] pose significant challenges. Pedestrian detection using
mono-spectral images as the source of information is particularly challenging. For example,
in low-light or foggy conditions, pedestrians in visible images may blend into the back-
ground, while in infrared modality, thermal background noises with similar heat levels
to pedestrians can lead to false detection. Figure 1 illustrates the benefits of using multi-
spectral images over visible-only or thermal-only images in various scenarios, highlighting
their superiority in challenging conditions such as low light or thermal background noise.

At present, with the tremendous advances in convolutional neural networks (CNNs),
two-stream CNN-based detectors are widely used in the field of multi-modality pedestrian
detection [5–9]. The classical CNN-based two-stream detector consists of three parts, which
are a two-branch feature extraction module to extract the modality features, a feature fusion
and augmentation module to blend and enhance the features of both modalities, and a
detection module for decision-making. The system takes pairs of visible-thermal images
as inputs and outputs the joint detection results for each image pair. Given that visible
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and thermal images capture different characteristics of objects, leveraging these modalities
can significantly improve the performance of object detection. On the one hand, visible
cameras capture sophisticated visual nuances (such as color and texture information) in
unobstructed and well-illuminated environments. On the other hand, thermal cameras are
sensitive to temperature variations, which provides a significant advantage for detecting
objects in occluded or poorly-lit environments.

Figure 1. Illustration of inter-modality complementarity and dislocations. (a) modality complemen-
tarity, where thermal features complement the impairments of visible features. (b) Object dislocations,
where the misalignment of the two modes causes the quality of the fused features to be impaired.
Our HAFNet eliminates the misalignment of objects between visible and thermal modalities and
adaptively fuses the corresponding features to boost detection.

Multi-modality feature representations are diverse at the same spatial location, but they
all correspond to the same object. Therefore, fusing the visible features with the thermal
features while utilizing this valuable information can potentially enhance detection perfor-
mance. In well-illuminated settings, visible cameras can capture intricate visual nuances,
such as color and texture information, while thermal cameras can detect objects in ill-lit or
occluded environments by sensing temperature variations. To achieve this, there were two
major challenges: (i) How to obtain ultra-complete feature representations of object without
the interference of noise using visible and thermal essential information? Since the relia-
bility of visible and thermal features varies under different illumination conditions, direct
fusion may not only complement feature information but also fuse noise, which may lead
to degradation of detection performance. Therefore, how to integrate the representations to
fully exploit the inherent complementary information between the modalities and how to
design an effective feature fusion mechanism to achieve maximum performance gain are
still open questions to be investigated. (ii) How to eliminate the misalignment of features
in visible and thermal modalities? If different modality features are fully aligned, we can
directly perform pixel-wise feature fusion to enhance the feature representation. However,
because the multi-modality features are often misaligned, direct fusion operations may not
provide any benefit to improving detection performance and may even hinder detection.
Figure 1a shows an example of modality complementarity to remove noise interference in
the visible and thermal modalities (e.g., object incomplete, occlusion). Figure 1b shows an
example of the dislocation of visible and thermal modalities. The noise and misalignment
in both modalities may be superimposed and worsen the robustness and accuracy, leading
to detection failure.

To address these issues, current approaches mainly focus on leveraging the internal
complementarity between modalities to enhance object feature representation through
fusion mechanisms. Previous works [8,10,11] utilized the internal information comple-
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mentarity between the modalities to enhance the feature representation of the object via
a fusion mechanism. The standard fusion framework first extracts the CNN features of
the two modalities separately and then uses the fusion strategy to obtain the features
that contain the features of both modalities. To explore the optimal stage for performing
fusion, researchers from KAIST [12] created a new multispectral pedestrian dataset and
evaluated the detection results of different fusion stages. MBNet [11] introduces a differen-
tial modality-aware fusion module to overcome the unbalance issue between modalities
during fusion. CFT [13] first adopts Transformer for multispectral object detection, which
integrates global contextual information from different modalities in the feature extraction
backbone. These approaches propose solutions from different perspectives. We believe
that the existing methods do not fully exploit the potential of attentional information to
enhance fusion features due to the lack of implicit modeling of correlations between modal-
ities. Furthermore, the crucial issue of pixel-level alignment of multi-modality features is
often ignored, leading to the assumption that the features of both modalities are perfectly
aligned by default. This can weaken the effectiveness of feature fusion as the network
propagates forward.

To overcome the aforementioned problems, we present a novel and efficient frame-
work as shown in Figure 2, named Hierarchical Attentive Fusion Network (HAFNet).
The HAFNet embedded with a hierarchical content-dependent attentive fusion (HCAF)
module and a multi-modality feature alignment (MFA) block to leverage multi-modality
knowledge at the same location after aligning the multi-modality features and to obtain
enhanced pedestrian features. Specifically, inspired by the attention mechanism, the MFA
block exploits the correlation between the two modalities by first fine-tuning the thermal
features to align with the visible features during feature extraction at each stage. Next,
the HCAF merges the top-level feature maps of both modalities and scales them to the
same resolution as the features of each stage to serve as reference features, which is done
to eliminate background noise interference and increment the hierarchical features. The
HCAF then utilizes the reference feature map as a guide to perform pixel-wise blending of
the two modality features at each stage to enhance the quality of the feature representation
in the final detection. Finally, the enhanced fused features from the framework are fed into
the detection module to detect the pedestrians.

Extensive experiments conducted on several benchmarks demonstrate that HAFNet
achieves high detection performance and robustness, especially in challenging scenarios
with occlusion or low-light environments. To sum up, this work makes the
following contributions:

• A novel Hierarchical Attentive Fusion Network (HAFNet) is proposed, enabling the
progressive calibration of features from two modalities, resulting in an improved
fusion representation.

• A novel module called Hierarchical Content-dependent Attentive Fusion (HCAF) is
presented, which utilizes top-level features across modalities to obtain hierarchical
reference features. These features are then used to guide the pixel-wise fusion of
multi-modality features at each stage, resulting in improved feature alignment and
integration.

• A novel Multi-modality Feature Alignment (MFA) block is proposed, which can be
easily integrated into any pre-trained multi-branch backbone, enhancing the learned
feature representations.

• Experimental results on the challenging datasets KAIST [14] and CVC-14 [15] demon-
strate that HAFNet is competitive in terms of robustness and accuracy compared with
the state-of-the-art method, while maintaining satisfactory speed.
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Figure 2. Architecture of the proposed HAFNet. The HAFNet consists of a feature extraction
module plugged into a multi-modality feature alignment (MFA) block, a novel hierarchical content-
dependent attentive fusion (HCAF) module, and a detection head module. (a) Workflow of the
proposed HAFNet. (b) Workflow of the proposed HCAF module, which comprises a Hierarchical
reference generation (HRG) module and correlation-modality attention (CMA) block. (c) Workflow
of the MFA block.

2. Related Work
2.1. Multispectral Pedestrian Detection

The multispectral pedestrian detection field has seen significant advancements in
recent years, with various fusion architectures and techniques proposed. KAIST [14] was the
first to release a large-scale multispectral pedestrian detection dataset, followed by studies
such as Wagner et al. [16], who found that late fusion architecture outperformed early fusion
and traditional aggregated channel features (ACF) methods [10]. Halfway fusion [12] and
Fusion RPN [17] also demonstrated that middle-stage fusion performs better than early or
late-stage fusion. Li et al. [18] proposed a middle-level fusion network that jointly optimizes
pedestrian detection and semantic segmentation tasks to improve detection performance,
while Li et al. [6] and Guan et al. [19] trained a fusion network to estimate the illumination
value for adaptive fusion. Zhang et al. [8] proposed CIAN, which fuses middle-level
thermal and visible features under the guidance of cross-modality interactive attention.
Zhou et al. [11] introduced a feature alignment module and a differential modality aware
fusion (DMAF) module to select features from two-stream images according to illumination
conditions. Recent studies have focused on the misalignment of multispectral pedestrian
image pairs and their labels, with approaches such as AR-CNN [20] and MLPD [21] showing
promising results. However, one aspect that has not been thoroughly explored in previous
studies is modality-specific occlusion, which can significantly impact the performance
of detection systems. However, these methods have not considered modality-specific
occlusion, which can impair the final detection performance.

In this context, our proposed Hierarchical Attentive Fusion Network (HAFNet) ad-
dresses the issue of modality-specific occlusion with a hierarchically content-dependent
attentive fusion (HCAF) module. HAFNet suppresses unwanted features, refines the
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counterpart modality, and improves the unified representations for multispectral
pedestrian detection.

2.2. Attention Mechanism

Attention has become a popular technique for enhancing feature representations in
various applications. Channel-attention was introduced in SENet [22], while CBAM [23]
proposed a network with spatial attention. Wang et al. [24] combined CNN with self-
attention in a non-local network. Drawing inspiration from these methods, we treat
features extracted from multi-modal source images as different transformation expressions
for feature enhancement. To address the core challenges of visible-thermal pedestrian
detection, which are the full utilization of differential information in both modalities and the
handling of modality-specific occlusion, we propose a hierarchical cross-modality feature
fusion module, the HCAF module, that leverages cross-attention knowledge. We use a
hierarchical reference generation (HRG) module to tailor and design the reference feature
maps. Our correlation-modality attention (CMA) module specializes in extracting common
features and emphasizing complementary features under the guidance of hierarchical
correlation information, thereby improving the quality of the fused representation.

3. Method

The proposed HAFNet is designed to process a pair of thermal-visible image patches
as input. To address the issue of modality misalignment that could hinder feature fusion,
we introduce a multi-modality feature alignment (MFA) module that fine-tunes the thermal
features to align with visible features during feature extraction at each stage. To enhance the
representation of multi-modality features and take advantage of their inherent complemen-
tary information, we propose a hierarchical content-dependent attentive fusion (HCAF)
module that effectively fuses and recalibrates features of both modalities to obtain quality
features. The overall architecture is illustrated in Figure 2a. Our network mainly consists
of two key components, the HCAF module and the MFA module, which are described in
detail below.

3.1. Hierarchical Content-Dependent Attentive Fusion

The proposed HCAF module is an efficient hierarchical content-dependent attentive
fusion mechanism designed to fuse visible and thermal features guided by top-level infor-
mation. As shown in Figure 2b, the HCAF module pixel-by-pixel selects and blends features
from both modalities with the guidance of top-level features that have rich semantic in-
formation. This content-dependent fusion mechanism enhances the perception of object
information and supports more accurate and stable pedestrian detection by integrating the
features from both modalities.

3.1.1. Formulation

Formally, let V = {V1, . . . , VN} and T = {T1, . . . , TN} denote two sets of multi-
modality feature maps from multiple levels.

Yi = fcma(Zi, Vi, Ti), (1)

Z = fhrg(V, T), (2)

where Zi represents the reference feature map in Z with the same resolution as Vi and Ti.
fcma(·) is a feature fusion function, called correlation-modality attention (CMA), which
is used to encode the reference feature map Z into the multi-modality features to obtain
feature maps with more accurate representation. Equation (2) represents the generation
process of the reference feature map Z, where fhrg(·) denotes the generation function, called
hierarchical reference generation (HRG), which can produce a set of reference feature maps
Z by fusing the spatial features of the two modalities.
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Correlation-modality attention (CMA). Inspired by the non-local network architecture
proposed by Wang et al. [24], we introduce the Correlation-modality attention (CMA) as
a feature fusion block in our proposed method. This approach enables the pixel-by-pixel
fusion of features extracted from both modalities at each stage, allowing for a more robust
and accurate representation of the object being detected. As shown in Figure 2b, the CMA
refines the response at point k in Zi, zk

i , as the query feature, and refines the response of k
points in features of multiple modalities,

{
xk

i
}

x=[v,t], as the key feature.

ϕ(zk
i , vk

i , tk
i ) = ∑

x∈[v,t]

eθ(zk
i )φx(xk

i )
T

∑∀x eθ(zk
i )φx(xk

i )
T φx(xk

i ), (3)

fcma(Zi, Vi, Ti) = ϕ(Zi, Vi, Ti) + Φ(Vi, Ti), (4)

where θ(·) is a linear embedding operation implemented by a 1 × 1 convolution with
learnable weight matrix Wθ : θ(zk

i ) = Wθzk
i . φx(·) is also a linear embedding operation,

which is implemented by 1 × 1 convolution with the learnable weight matrix Wφx for
xk

i : φx(xk
i ) = Wφxxk

i . The fusion function Φ(·) is implemented by concatenation operation,
1× 1 convolution and batch normalization operation.

Hierarchical reference generation (HRG). To obtain reference feature maps with hier-
archical information, we propose the Hierarchical Reference Generator (HRG) module.
The HRG module merges the visible and thermal features at a certain stage and resizes
them to the same shape as the features of each stage. The resulting feature maps are used as
reference maps for the corresponding stage to guide the pixel-by-pixel fusion of the features
from both modalities in the subsequent CMA block. By incorporating the HRG module,
the HCAF module can effectively capture the hierarchical and semantic information of
the input features and adaptively fuse them for more accurate pedestrian detection. Let p
represent the index of the reference feature map:

Zp = g(Vp, Tp), (5)

fhrg(V, T) = ψ(Zp, V, T), (6)

where zp denotes the reference feature map obtained by features at stage p. A transforma-
tion function ψ(·) obtains the reference feature maps Z by resizing Zp to the same shape
as each feature map in V by a bilinear interpolation operation or a dilated max pooling
operation. Whether to utilize reference feature maps with hierarchical information will be
discussed in the ablation study.

The feature fusion function g(·) obtains a reference feature map that contains the
object features enriched from the two modalities. We consider three instantiations of g(·)
as follows:

Spatial attention. First, following the self-attention form [25], g(·) can be defined as
an attention operation to concatenate feature map of the both modalities. In order to
achieve additional modeling of local spatial context, a separable depth-wise convolutional
projection layer ε(·) is performed on the concatenation feature map as query, Q, key, K,
and value, V’.

Q, K, V’ = ε(V’i ⊕ Ti), (7)

g(Vp, Tp) = So f tmax(
QKT
√

d
)V’, (8)

where d denotes the dimension of the key. ⊕ indicates a concatenation operation of visible-
thermal features in the channel dimension.
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L1-norm. We also consider fusing features between modalities though a l1-norm
strategy [26]. g(·) can be defined as a combination of l1-norm and softmax operation:

g(Vp, Tp) =
ξ(Vp)×Vp + ξ(Tp)× Tp

ξ(Vp) + ξ(Tp)
, (9)

where the l1-norm operation ξ(·), evaluates the spatial-wise average value: ξ(·) = e‖(·)‖1 .
Concatenation. Alternatively, one can also define g as a direct fusion operation.

g(Vp, Tp) = τ(Vi ⊕ Ti), (10)

where the feature fusion function τ(·) is implemented by a concatenation operation and a
linear embedding operation. Whether to utilize reference feature maps with hierarchical
information will be discussed in the ablation study.

The multiple available instantiation forms of g(·) illustrate the flexibility of the gen-
eration of the reference feature maps, and the performance of each instantiation will be
discussed in the ablation study.

3.1.2. Implementation Design

We implement HCAF as an adaptive feature fusion module that blends and reinforces
features from both modalities. In this way, it can be flexibly stitched behind a two-branch
backbone to extract an information-rich feature representation of the object.

Extending ResNet [27] to a visible-thermal branch backbone as an example, Figure 2b
shows the architecture of an instance of the HRG module implementing g(·) as spatial
attention. We obtain V and T by collecting the feature maps from the feature extraction
module at stages 2 to 5, denoting {V2, V3, V4, andV5}, and {T2, T3, T4, andT5}, respectively.
The stages of the reference feature map fusion are dynamically selected based on the
semantic information, and we perform Stage 5 as an example to obtain the reference feature
map Z5. The setting of the fusion stage to obtain the reference feature map will be discussed
in ablation studies. The reference feature map Z5 is then resized to obtain the reference
feature maps Z, where each feature map has the same resolution as that in V. Finally,
the refined fusion feature maps Y are fed into the detection module by fusing the feature
maps in V and T at the same stage, under the guidance of the reference feature map Z.

3.2. Multi-Modality Feature Alignment

To address the issue of feature mismatch in multispectral images that may affect
the effectiveness of pixel-level feature fusion, we propose a novel modality alignment
mechanism. This mechanism modulates thermal and visible features by generating a
semantic flow that contains cross-modality properties. By aligning the features at the pixel
level, the fusion process can be performed more effectively. Our proposed mechanism can
be incorporated into the backbone network to align the features of both modalities before
they are passed to the fusion module.

Based on the above considerations, we design an efficient plug-in multi-modality
feature alignment (MFA) block, as shown in Figure 2c, that will be inserted into the feature
extraction module, replacing the original thermal features with aligned ones to support
accurate and stable detection.

3.2.1. Formulation Details

Specifically, given the intermediate convolution feature maps of two modalities
V = {V1, . . . , VN} and T = {T1, . . . , TN}. The aligned thermal features T’ can be expressed
as follow:

T’i = ϑ(ζV(Vi ⊕ Ti), ζT(Vi ⊕ Ti)), (11)

where⊕ denotes a concatenation operation of visible-thermal features in channel dimension.
ζ(·) represents a convolution operation with a 3× 3 kernel, where different superscripts
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represent different convolution kernel parameters. The warp function ϑ(·) indicates the
position adjustment operation of the feature [28] and T’i denotes the calibrated thermal
feature maps of stage i.

3.2.2. Block Design

To enhance the alignment of features from different modalities, we introduce the MFA
module as a plug-in block that can be easily integrated into any pre-trained multi-branch
backbone. The MFA module, as shown in Figure 2c, is designed to align the thermal features
with visible features using a content-dependent approach. We initialize the convolutional
weights of the MFA module with a Gaussian distribution with a zero mean at the start of
training to ensure that the module can perform identity mapping without changing the
behavior of the pre-trained backbone.

3.2.3. Integration into Backbone CNNs

A MFA block can be flexibly plugged into arbitrary pre-trained multi-branch back-
bones to lift their learned feature representation. Extending ResNet [27] as an exam-
ple, we obtain V and T by collecting the feature maps before the last residual block in
stages 2 to 5, denoted {V2, V3, V4, andV5}, and {T2, T3, T4, andT5}, respectively. In Stage 4,
for example, we adopt V4 as the aligned target feature map to adjust T4 since the visible
features contain richer position information of the object. The block outputs a aligned
feature map T′4, upon which subsequent feed-forward computations in the backbone are
conducted normally.

3.3. Optimization

To generate the reference feature map Zi, we optimize the top reference feature map
ZN in an end-to-end manner using a binary cross-entropy loss function called Lbce. This
loss function approximates the mask map obtained from the ground truth bounding box.
The ground truth mask map ~Zref and the reference loss function Lref can be formulated
as follows:

~Zref = ψ(δ(yv, yt, ZN), (12)

Lref = Lbce(~Zref, ZN), (13)

where yv and yt represent labels from visible and thermal images. The label merging
function, δ(·), combines the multi-modality labels corresponding to the same image without
duplicating the labels to generate the final truth bounding box. An interpolate operation
ψ(·) resizes the label and generates a mask map ~Zref with the same resolution as ZN.

Our classification and localization loss terms are based on the ones used in Reti-
naNet [29]. Specifically, we employ sigmoid focal loss (Lcls) for classification and L1 loss
(Lreg) for localization. Finally, the final loss term L is the weighted sum of the three loss
terms, as follows:

L = λ1Lref + λ2Lcls + Lreg, (14)

where λ1 and λ2 are weight factors to balance three loss terms, and Lcls and Lreg denote the
loss terms for classification and localization. We set λ1 to 0.1 and λ2 to 1 in our experiments.

4. Experiments
4.1. Implementation Details

Parameter setting. Our detector extends the ResNet [27] backbone and utilizes the
5 residual blocks and batch normalization layers of its pre-trained model on ImageNet as
the initial parameters for our visible-thermal branch. The remaining convolutional layers
are initialized with a normal distribution, with the value of the standard deviation set to
0.01; the other parameters of our model are initialized using the Xavier approach [30]. For
the reason that the vast majority of pedestrians can be represented by a vertical bounding
box, we set the anchor box as 1/1 and 1/2 for aspect ratios, [20, 21/3, 22/3] for fine scales
and 40, 80, 160, 240 for scales levels. We train the network on 4 Nvidia GTX 1080Ti with a
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batch size of 8. Furthermore, we use Stochastic Gradient Descent (SGD) as the optimizer,
setting the initial learning rate as 0.0001, momentum as 0.9 and weight decay as 0.0005. As
for data augmentation, the input image size is resized to 512× 640 and we use the random
horizontal flips, random crops, and to increase diversity.

Evaluation metric. We use the standard miss rate (MR−2) as a representative score.
This is the most popular metric for pedestrian detection tasks, with lower scores indicating
better performance. This metric only focuses on a high-precision region rather than a low-
precision region, and as such, it is more appropriate for commercial solutions. Furthermore,
to better illustrate the performance of our proposed method, we also follow the standard
evaluation of the false positive per image (FPPI) [10], which is sampled in the range of
[10−2, 100].

4.2. Results on KAIST Dataset

Data and setup. The KAIST Multispectral Pedestrian Dataset [14] consists of 95,328 fully-
overlapped visible-thermal pairs under different illumination conditions. The provided
ground truth consists of 103,128 pedestrian bounding boxes in 1182 instances. Considering
the faulty annotations in the training dataset, we follow the standard criteria provided by
ref. [31] that a total of 25,076 frames are used for training. For evaluation, we utilize the
sanitized annotations [18], which contains 2252 frames consisting of 1455 frames in day
time and 797 frames in night time. This is the standard criterion for a fair comparison with
recent related works. Additionally, only pedestrians taller than 50 pixels are considered.

Main results. The proposed HAFNet is evaluated and compared with 12 state-of-the-art
methods in nine subsets of the KAIST dataset (i.e., all, day, and night for the time subsets,
near, medium, and far for the scale subsets, and none, partial, and heavy for the occlusion
subsets). For a fair comparison with recent works, we apply the same protocol to all
methods. As illustrated in Table 1 and Figure 3, the HAFNet shows better performance
compared with other competing methods.

Table 1. Miss rate comparison on nine subsets of the KAIST dataset [16]. Sca. and Occ. denote scale
and occlusion, respectively.

Method
Miss Rate (%) MR-Scale (%) MR-Occlusion (%)

All Day Night Near Medium Far None Partial Heavy

ACF [14] 47.32 42.57 56.17 28.74 53.67 88.20 62.94 81.40 88.08
Halfway Fusion [12] 25.75 24.88 26.59 8.13 30.34 75.70 43.13 65.21 74.36

Fusion RPN + BF [17] 18.29 19.57 16.27 0.04 30.87 88.86 47.45 56.10 72.20
MSDS-RCNN [18] 11.63 10.60 13.73 1.29 16.19 63.73 29.86 38.71 63.37

IAF-RCNN [6] 15.73 14.55 18.26 0.96 25.54 77.84 40.17 48.40 69.76
IATDNN + IAMSS [19] 14.96 14.67 15.72 0.04 28.55 83.42 45.43 46.25 64.57

CIAN [8] 14.12 14.77 11.13 3.71 19.04 55.82 30.31 41.57 62.48
AR-CNN [31] 9.34 9.94 8.38 0.00 16.08 69.00 31.40 38.63 55.73
MBNet [11] 8.13 8.28 7.86 0.00 16.07 55.99 27.74 35.43 59.14
MLPD [21] 7.58 7.95 6.95 - - - - - -

BAANet [32] 7.92 8.37 6.98 0.00 13.72 51.25 25.15 34.07 57.92
RISNet [33] 7.89 7.61 7.08 0.00 14.01 52.67 25.23 34.25 56.14

HAFNet (Ours) 6.93 7.68 5.66 0.00 13.68 53.94 26.31 30.10 55.16

Moreover, the proposed framework ranks first in six of the nine subsets. For instance,
in the night subset, our HAFNet (5.66%) surpasses MLPD (6.95%) by 1.29%, which demon-
strates the robustness of HAFNet against noise in low-light environments at night. This
also demonstrates that the framework can effectively suppress low-light noise in visible fea-
tures and obtain superior quality features by fusing efficient object information in thermal
features. In addition, the HAFNet also outperforms in all subsets of pedestrian occlu-
sion. Especially in the partial occlusion scenario, the HAFNet (30.10%) surpasses BAANet
(34.07%) by 3.97%, which indicates the remarkable ability of our HAFNet to address oc-
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clusion in multispectral pedestrian detection. These results evidence that the proposed
HAFNet is able to generate high-quality fused features by preserving rich mode-specific
information and excluding noise.

Figure 3. Comparison of the detection results with the state-of-the-art methods on the KAIST dataset
under the sanitized subset.

Qualitative results. The detecting examples of our HAFNet with other detectors are
shown in Figure 4. It can be seen that HAFNet performs outstandingly during both the day
and night. In cases of poor illumination or partial occlusion pedestrians, the HAFNet still
locates the pedestrians accurately. Figure 5 demonstrates the superiority of our proposed
method over the baseline. In the first two lines of the figure, it is evident that the baseline
method can only detect relatively large targets in a well-lit environment with no occlusion,
while our method can detect relatively small objects in a low-light environment. The at-
tention maps in the third and fourth lines of the figure show that our method accurately
captures the features of the pedestrian even in the presence of partial occlusion. Notably,
even in the case of heavy occlusion, as shown in the sixth line of the figure, our method
can extract pedestrian features and accurately detect targets by leveraging the internal
connection between the two modalities.

Speed. The speed comparison of HAFNet and other state-of-the-art methods is shown
in Table 2. Compared with other detectors at the same level of miss rate, the speed of
HAFNet still performs satisfactorily. The speed versus miss rate of all methods is illustrated
in Figure 6, which shows the proposed methods perform remarkably well in balancing miss
rate and speed. Compared with previous methods, we achieve an advantage in accuracy
and show satisfying results in terms of speed.
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Table 2. Speed comparison between HAFNet and state-of-the-art methods. It should be noted
that ACF and Fusion RPN+BF did not provide information on the hardware platform used in the
original paper.

Methods MR-All (%) Platform Speed (s)

ACF [14] 47.32 MATLAB 2.730
Fusion RPN + BF [17] 18.29 MATLAB 0.800

CIAN [8] 14.12 GTX 1080Ti 0.070
AR-CNN [31] 9.34 GTX 1080Ti 0.120
MBNet [11] 8.13 GTX 1080Ti 0.070
MLPD [21] 7.58 GTX 1080Ti 0.012

BAANet [32] 7.92 GTX 1080Ti 0.070

HAFNet(Ours) 6.93 GTX 1080Ti 0.017

Figure 4. Qualitative evaluation of HAFNet with three top ranked methods, i.e., CIAN [8], MBNet [11]
and MLPD [21]. The green rectangles denote the ground truth, while the red ones denote the detection
results. (a) Ground truth. (b) Results of the CIAN [8]. (c) Results of the MBNet [11]. (d) Results of the
MLPD [21]. (e) Results of our HAFNet.
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Figure 5. Visualizing the performance comparison of baseline and proposed HAFNet detection
models under three distinct occlusion scenarios: none, partial, and heavy. (a) Ground truth of the
visible-thermal image pairs. (b) Results of the baseline. (c) Results of our HAFNet. (d) Attention
maps of our HAFNet.

Figure 6. Miss rate versus the speed of our proposed HAFNet. HAFNet achieves excellent perfor-
mance in terms of speed and miss rate.
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4.3. Results on CVC-14 Dataset

Data and setup. The CVC-14 [15] dataset is a multispectral pedestrian dataset taken
with a stereo camera configuration. The dataset contains visible (gray scale) and thermal
paired images, of which 7, 085 and 1, 433 frames are for training and test sets, and provides
individual annotations in each modality. However, the authors of the dataset release the
cropped image pairs without the non-overlapped areas. Therefore, we treated this dataset
as a fully-overlapped (paired) dataset, but it still suffers from the pixel-level misalignment
problem. Moreover, there are some other issues, such as inaccurate ground truth boxes,
incorrect extrinsic parameters, and unsynchronized capture systems. Nevertheless, this
dataset has been used by many in works [8,11,21,34,35] because it is one of the few practical
datasets captured in a stereo setup.

Main results. Similar to previous methods [11], we perform fine-tuning using the
KAIST pretrained model during the training phase on the CVC-14 dataset. To evaluate
the robustness under paired conditions, we adopt this dataset and compare our results
with other methods [8,11,21,34,35]. In order to ensure a fair comparison, we adhere to the
protocol established in MACF [34], which has also been adopted by other studies.

By fusing information from both modalities, our method can leverage the unique
strengths of each modality to mitigate noise interference and obtain more accurate object
information. This is particularly important in real-world scenarios where single modal-
ity information may be incomplete or inaccurate due to environmental factors such as
occlusions or low lighting conditions. As presented in Table 3, the results indicate that
the modalities-fusion approach generally outperforms the unimodal approach. Compared
with the other multi-modality methods listed in Table 3, our method achieves the highest
detection accuracy in all-weather and daytime scenarios. By selectively screening and
fusing the unique features of both modalities, our method is able to obtain more accu-
rate object information. Although our nighttime detection performance is slightly lower
than that of MBNet [11], this still demonstrates that our network effectively leverages
object features and mitigates noise interference by fusing information from both modalities.
Additionally, our method demonstrates robustness in the face of a significant number of
feature misalignments in the CVC-14 dataset. This highlights the ability of our approach to
overcome real-world challenges that may significantly affect detection performance.

Table 3. Evaluation results comparison on the CVC-14 dataset. We use the reimplementation of ACF,
Faster R-CNN, MACF, and Halfway Fusion in literature [34].

Modalities Input Methods
Miss Rate (%)

Day Night All

Visible only

SVM [15] 37.6 76.9 -
DPM [15] 25.2 76.4 -

Random Forest [15] 26.6 81.2 -
ACF [34] 65.0 83.2 71.3

Faster R-CNN [34] 43.2 71.4 51.9

Visible + Thermal

MACF [34] 61.3 48.2 60.1
Choi et al. [35] 49.3 43.8 47.3

Halfway Fusion [34] 38.1 34.4 37.0
Park et al. [34] 31.8 30.8 31.4

AR-CNN [8] 24.7 18.1 22.1
MLPD [21] 24.18 17.97 21.33
MBNet [11] 24.7 13.5 21.1

HAFNet (Ours) 23.9 14.3 20.7

4.4. Ablation Study

To verify the effectiveness of our proposed HAFNet, comprehensive ablation studies
that are conducted on the KAIST multispectral pedestrian dataset are performed in this
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subsection. We first validate the effectiveness of the components in our framework, then
we analyze the structure and parameter settings of each component.

4.4.1. Ablations on Network Components

We analyze the effectiveness of different network components, i.e., Hierarchical
Content-dependent Attentive Fusion (HCAF) and Multi-modality Feature Alignment (MFA)
in Table 4. We design a baseline model consisting of an extending ResNet50 [27] as a two-
branch backbone and a simple fusion module [31], which achieves 12.68% miss rate. For
a fair comparison, as with the baseline, we performed the same training parameters and
pre-processing on the same hardware platform. First, we replace the simple fusion module
with our HCAF module with a 3.24% performance improvement, which demonstrates the
effect of our content-dependent fusion in the feature merging and augmentation steps.
Furthermore, the miss rate improved by 2.35% after only adopting MFA blocks plugged
into the two-branch backbone (10.33%), which indicates that the feature alignment during
feature extraction contributes to the quality of subsequent modality fusion features. The en-
tire HAFNet, consisting of HCAF and MAF, achieves more significant performance, with a
boost of 5.75% to the miss rate at 6.93% over baseline results. The results demonstrate that
both proposed modules benefit multispectral pedestrian detection through the correlation
between both modalities, and their combination achieves even greater results.

Table 4. Ablations on HAFNet. HCAF: Hierarchical content-dependent attentive fusion. MFA:
Multi-modality feature alignment. CMA: Correlation-modality attention. HRG: Hierarchical
reference generation.

HCAF MFA Miss Rate (%)

CMA HRG All Day Night

12.68 13.70 10.76
X X 8.31 9.03 6.67

X 10.33 12.18 7.53
X X 7.93 9.87 8.36

X X 8.70 9.53 7.64

X X X 6.93 7.68 5.66

4.4.2. Discussion on HCAF

The structure of our HCAF consists of a feature fusion function and hierarchical
reference generation, to further verify the effect of the parts of the structure, i.e., correlation-
modality attention (CMA) and hierarchical reference generation (HRG).

Impact of CMA. The CMA is performed as a feature enhancement block guided by a
reference feature map, and its effect is shown in Table 4. The network without CMA blocks
shows a 1.77% reduction in the miss rate, indicating that pixel-by-pixel fusion of features
from both modalities guided by the reference feature map can focus more on the features
of the object, which helps in obtaining quality features.

To further verify the performance of the CMA block, we conducted experiments with
different numbers of CMA blocks, as shown in Table 5. We compare our CAM on the
concatenation of both modalities, with the self-attention (SA) module without pixel-wise
fusion guided by reference features. We realize that more CAM blocks yield better detection
performance. It is shown that guidance by higher-level semantic features to integrate the
features of both modalities pixel by pixel is essential to construct an efficient detector.
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Table 5. Ablation on the quantity of correlation-modality attention (CMA) blocks. The HAFNet
utilizes feature maps from the feature extraction module in stages 2 to 5.

HCAF
Miss Rate (%)

Speed (s)
All Day Night

HAFNet

SA(4) + HRG 8.70 9.53 7.64 0.045
SA(3) + CMA(1) + HRG 8.28 9.35 6.01 0.035
SA(2) + CMA(2) + HRG 7.73 8.35 6.50 0.027
SA(1) + CMA(3) + HRG 7.28 7.92 5.91 0.021

CMA(4) + HRG 6.93 7.68 5.66 0.017

HAFNet * CMA(5) + HRG 7.11 7.68 6.40 0.053
* The CMA in HAFNet utilizes feature maps from the feature extraction module in stages 1 to 5.

Impact of HRG. The HRG module, consisting of a feature fusion module and a reference
feature map generation module, has a significant impact on the detection performance,
as shown in Table 4. The network without the HRG module shows a 1% increase in the
miss rate, demonstrating the importance of utilizing the reference feature map to improve
the quality of fused features.

To explore the optimal setting of the HRG module, three instantiations of the feature
fusion function were tested to obtain a reference feature map at Stage 5, as shown in Table 6.
The results show that the highest detection accuracy was achieved with spatial attention as
the reference feature generation method, with a 1.34% improvement over the concatenation
method. Further experiments were conducted to explore the generation phase of the
reference feature maps, as shown in Table 7. The results indicate that the higher the stage
at which the reference feature maps are generated, the better the accuracy achieved. This
demonstrates that more semantic information can effectively guide feature fusion on both
modalities. In particular, the miss rate reaches 7.04% when the reference feature maps are
obtained at Stage 4, which is comparable to the performance of the proposed HAFNet at
Stage 5. This suggests that the HRG module can be effectively used to improve feature
fusion in multispectral pedestrian detection.

Table 6. Ablation on the hierarchical reference generation (HRG) module.

HRG
Miss Rate (%)

Speed (s)
All Day Night

HAFNet

concatenation 8.27 8.88 7.07 0.011
concatenation * 8.36 9.88 5.68 0.012

L1 − norm 7.70 8.80 5.69 0.021
L1 − norm * 8.07 9.10 5.82 0.035

spatial attention 6.93 7.68 5.66 0.017
spatial attention * 7.38 7.74 6.45 0.028

* Reference feature maps with hierarchical information are not utilized.

Table 7. Ablation on the Stage to generate the reference feature map.

HRG Reference Stage
Miss Rate (%)

Speed (s)
All Day Night

HAFNet

2 7.71 8.64 5.98 0.026
spatial 3 7.53 8.21 6.08 0.021

attention 4 7.04 7.94 5.82 0.019
5 6.93 7.68 5.66 0.017
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Impact of hierarchical information. To further investigate the impact of hierarchical
information on detection performance, we designed experiments as shown in Table 6.
From the results, it is clear that the HRG module, which utilizes the hierarchical information,
can better guide the feature fusion in each stage (an improved 0.45 % miss rate on the
spatial attention method).

4.4.3. Discussion on Stages of MFA

Observing Table 8, we can see that the HAFNet obtains the highest performance when
4 MFA blocks are plugged into the feature extraction module. The detection performance is
highest when the MFA block is only plugged in the last four stages, which demonstrates
the soundness of our design.

Table 8. Ablation on the multi-modality feature alignment (MFA) block. The MFA block is plugged
into the feature extraction module of HAFNet from stage 2 to stage 5.

Volume of MFA
Miss Rate (%)

All Day Night

HAFNet

1 8.17 8.84 6.97
2 7.69 8.62 5.86
3 7.16 7.56 6.23
4 6.93 7.68 5.66

HAFNet * 5 7.01 7.71 5.54
* The MFA block is plugged into the feature extraction module of HAFNet from stage 1 to stage 5.

4.4.4. Discussion on Modalities Input

We present an experiment to investigate the complementarity of multi-modal fea-
tures in pedestrian detection. Specifically, we conduct detection using only visible light
input, only thermal imaging input, or a combination of both modalities. Our results,
shown in Table 9, demonstrate the superiority of the multi-modal approach over single-
modal approaches. The fusion of visible and thermal images achieves significantly better
performance in pedestrian detection, highlighting the complementary nature of the two
modalities in this task. These findings provide important insights for the development of
effective pedestrian detection systems in real-world scenarios.

Table 9. Results of ablation experiments on single-modality and multi-modality inputs for pedestrian
detection.

Modalities Input
Miss Rate (%)

All Day Night

HAFNet
visible only 26.49 17.76 44.61

thermal only 19.72 23.30 12.53
visible + thermal 6.93 7.68 5.66

5. Conclusions

In this paper, we tackle the challenges of integrating visible and thermal modalities
with distinct characteristics and overcoming modality-specific occlusion in visible and
thermal imaging. To address these issues, we propose a novel and adaptive framework
called Hierarchical Attentive Fusion Network (HAFNet). By incorporating the Hierarchical
content-dependent attentive fusion (HCAF) module and multi-modality feature alignment
(MFA) blocks, HAFNet enables the network to suppress modality-specific occlusion features
and learn the adaptive fusion of multi-modality features. Our experiments demonstrate that
HAFNet achieves outstanding performance in both accuracy and speed. We believe that our
work can make valuable contributions to the advancement of multispectral applications.
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6. Discussion

The proposed HAFNet method for multispectral pedestrian detection effectively
addressing issues such as modal noise and pixel misalignment while improving the qual-
ity of features for modal fusion. The HCAF module and MFA blocks effectively inhibit
modality-specific occlusion features and learn the adaptive fusion of multi-modality fea-
tures, resulting in outstanding accuracy and speed. Moving forward, we believe that our
method can be extended to other multi-modality tasks beyond image and thermal sensing.
For instance, it can be applied to speech-to-text or image-to-text tasks. We envision that our
method can be modified to align and fuse the features of different modalities to enhance the
performance of multimodal models. This can be a promising direction for future research,
especially given the increasing interest in multi-modality applications in various fields.
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