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Abstract: Oil spills on the sea surface have caused serious harm to the marine ecological environment
and coastal environment. Oil film thickness (OFT) is an important parameter for estimating oil
spills amount, and accurate quantification of OFT is of great significance for rapid response and risk
assessment of oil spills. In recent years, thermal infrared remote sensing has been gradually applied
to quantify the OFT. In this paper, the outdoor oil spill simulation experiments were designed, and
the bright temperature (BT) data of different OFTs were obtained for 24 consecutive hours in summer
and autumn. On the basis of the correlation analysis of OFT and bright temperature difference
(BTD) between oil and water, the traditional regression fitting model, classical machine learning
model, ensemble learning model, and deep learning model were applied to the inversion of OFT. At
the same time, inversion results of the four models were compared and analyzed. In addition, the
best OFT inversion time using thermal infrared was studied based on 24-h thermal infrared data.
Additionally, the inversion results were compared with the measured results; the optimal OFT range
detectable using thermal infrared was explored. The experimental results show that: (1) Compared
with ensemble learning model, traditional regression fitting model, and classical machine learning
model, Convolutional Neural Network (CNN) has the advantages of high stability while maintaining
high-precision inversion, and can be used as the preferred model for oil film thickness inversion;
(2) The optimal time for OFT detection is around 10:00 to 13:00 of the day, and is not affected by
seasonal changes; (3) During the day, thermal infrared has good detection ability for OFT greater than
0.4 mm, and weak detection ability for thinner oil films; (4) At night, thermal infrared has certain
detection ability for relatively thick oil film, but the accuracy is lower than that in the daytime.

Keywords: thermal infrared remote sensing; oil film thickness inversion; bright temperature difference;
machine learning; oil spill amount estimation

1. Introduction

The frequent occurrence of oil spill accidents at sea has caused serious harm to the
marine environment and marine living resources [1–4]. Timely and accurate determination
of the amount of oil spilt provides a basis for rapid response to oil spill accidents [5,6].
The estimation of the amount of oil spilt includes determining the oil spill range, oil film
thickness (OFT) and oil density, among which the oil spill range and oil density can be well
determined in existing studies, but the quantitative inversion of OFT has always been a
hot spot and frontier problem that domestic and foreign researchers pay attention to and
solve [7–9]. Grasping accurate crude oil film distribution and thickness information is of
great significance for emergency response and risk assessment of oil spills [10].
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The advantages of remote sensing technology in oil spill monitoring are obvious [11–16].
Synthetic aperture radar (SAR) is the most commonly used sensor in oil spill monitoring,
which has the advantages of all-day and all-weather [17–20], but it is easily affected by
oil film analogues and is difficult to use for OFT detection [13,21,22]. Ultraviolet (UV)
remote sensing is sensitive to extremely thin oil films and can detect OFT of less than
0.05 µm, but it is greatly affected by environmental factors and cannot be detected at
long distances [23–25]. Hyperspectral remote sensing has high spectral resolution and
can provide accurate spectral information of ground features [26,27], and has been widely
used in recent years for quantitative analysis of OFT [28,29], but it is vulnerable to solar
flares [5,30–32].

In addition to the above methods, due to the different heat capacity and thermal in-
frared emissivity of oil film and seawater, there is a brightness temperature difference (BTD)
between oil film and background seawater, the detection of oil spills on the sea surface
during the day and night can be realized by thermal infrared remote sensing [10], and the
different OFT presents different light and dark contrast on the thermal infrared images,
and the detection of different OFT can be realized according to this difference [3,33–35].
Thermal infrared remote sensing is not affected by solar flares. However, it cannot identify
nonemulsified oil and oil–water emulsion, and is susceptible to interference with targets
that have similar thermal properties to crude oil. Lu et al. obtained the brightness tempera-
ture (BT) data of the oil film for 26 consecutive hours by designing ground experiments,
and further simulated the BTD between oil and water by using the daily temperature
cycle model; the experimental results showed that the optimal detection time of OFT was
around noon [33]. However, due to the uneven diffusion of the oil film in the experiment,
it was impossible to obtain relatively accurate OFT data for the verification of quantitative
inversion accuracy.

In this paper, through the design of an outdoor oil spill simulation experiment, the BT
data of oil film with different thickness for 24 consecutive hours in summer and autumn
are obtained, and the correlation analysis between OFT and BTD is carried out. On this
basis, the traditional regression fitting model, the classical machine learning model, and
the ensemble learning model are applied to the inversion of OFT, and then the inversion
results were evaluated using the accuracy evaluation index. We would like to answer the
following questions:

• In terms of OFT inversion, does the deep learning model have an advantage over
the traditional regression fitting model, classical machine learning model, and en-
semble learning model? An optimal OFT inversion model is determined through
comparative analysis.

• What is the optimal time for OFT detection using thermal infrared in a day? Does it
change with the seasons?

• For the 17 OFTs set in the experiment, how is the detection ability of thermal infrared
remote sensing?

• At night, how is the OFT detection ability of thermal infrared?

2. Data and Methods
2.1. Data Acquisition and Processing

Two outdoor OFT detection experiments were conducted in summer and autumn;
the experiment period was from 12:00 on 2 August 2022 to 11:00 on 3 August 2022
(24 consecutive moments in summer) and from 16:00 on 5 September 2022 to 15:00 on
6 September 2022 (24 consecutive moments in autumn). The experiments were conducted
on sunny days and wind conditions (1.2–14.7 km/h) less than level 4. The experimental oil
product was Dongying Shengli Oilfield crude oil (component analysis: wax 7.56, gum 18.77,
asphaltene 1.57 wt%; freezing point: −9 ◦C). Due to the weak volatility of crude oil, the
change of OFT and emulsification reaction during the observation period were ignored [33].
Experimental setup (Figure 1): 18 black circles with an inner diameter of 7 cm were used to
form different OFTs; Testo 890-2 portable thermal infrared imager (spectral range: 8–14 µm,
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sensitivity NETD ≤ 0.04 K, photo resolution 640 × 480) was used to obtain the BT images
of water without and with oil film coverage; and an anemometer (Instrument name: Kestrel
5000; Measurement accuracy: 0.1 km/h) was used to record the meteorological conditions
during the experiment.
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Figure 1. Schematic diagram of oil film thickness detection in small scenes.

In the experiment, different masses of crude oil were dripped into the rings to form
different OFTs (Table 1). The rings float on the surface of the water (natural seawater) to
ensure adequate heat exchange between oil and water. Crude oil density was measured in
advance under laboratory conditions. We waited for the oil film to spread evenly over the
entire circle, set up the portable thermal imager next to the tank, adjusted the angle of the
lens so that the entire tank was within the field of view of the lens, and acquired data every
one hour. In the summer experiment, a total of 84 effective thermal infrared images were
acquired, and in the autumn experiment, a total of 75 effective thermal infrared images
were obtained. The experimental site diagram was shown in Figure 2.

Table 1. Oil film thickness setting.

Number OFT Setting
(Summer)/mm

OFT Setting
(Autumn)/mm Number OFT Setting

(Summer)/mm
OFT Setting

(Autumn)/mm

1 0.00 0.00 10 0.61 0.60
2 0.01 0.01 11 0.70 0.70
3 0.04 0.04 12 0.80 0.80
4 0.07 0.07 13 0.90 0.90
5 0.10 0.10 14 1.01 1.01
6 0.20 0.20 15 1.50 1.50
7 0.30 0.30 16 2.00 2.00
8 0.40 0.40 17 2.51 2.50
9 0.50 0.50 18 3.00 3.04
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Figure 2. Experimental site diagram.

In this experiment, the BT data of thermal infrared covering the water surface with and
without oil film were obtained, and it was necessary to correct it by using meteorological
data to obtain the thermal infrared BT images shown in Figure 3. Due to the influence
of the solar altitude angle and azimuth angle during the experiment, there would be
shadows inside some circles, the shadows would have a great impact on the BT value on
the thermal infrared images, and it was necessary to use ArcGIS software to select the
available experimental areas. The samples selected were shown by the colored squares in
Figure 4B. The BT values in the selected experimental area for each circle were averaged
to represent the BT values at that thickness. We obtained the BT value corresponding to
each pixel in the selected experimental region and its corresponding actual OFT value, and
made the thermal infrared BT and BTD data sets of different OFT.
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Figure 4. (A) Thermal infrared image on 3 August 2022 at 10:00; (B) Experimental sample (Colored
rectangular squares: Selected experimental samples).

2.2. OFT Inversion and Accuracy Evaluation

In this section, the experiment was to establish the mapping relationship between
the one-dimensional BTD data and the OFT data, so four classic inversion models were
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constructed to invert OFT using the BTD; the training and testing sets of the model were
the same. Additionally, three precision evaluation indicators were constructed to evaluate
and analyze the inversion results.

2.2.1. Inversion Model Construction

(1) Regression Fitting Model
The relationship between OFT and BTD was established by taking the BTD as the in-

dependent variable and the OFT as the dependent variable. The BTD used in the regression
was the average of the BTDs within each circle in the data set. Trying various regression
models revealed that the exponential model was the best fit:

y = Ae
x
b + c (1)

where x is the BTD (◦C); y is the OFT (mm); and A, b, c is the regression coefficient.
The data measured at 10:00 the next day of the summer and autumn experiments

were regressed and fitted to obtain the curve shown in Figure 5. There was an exponential
relationship between the BTD between oil and water and the thickness of the oil film. This
conclusion was consistent with the conclusion reached in [33], but the fitting coefficient was
different; this should be attributed to differences in experimental environmental conditions,
time, and oil quality.
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Regression analysis is performed at any point in time, and the regression coefficients
needs to be determined for each time point:

y = A(t)e
x

b(t) + c(t) (2)

where A(t), b(t), c(t) is the regression coefficients at moment t of the day, varying with time.
(2) Random Forest (RF) model
RF is an algorithm that integrates multiple trees through the idea of ensemble learning,

which is based on the decision tree, and the result with the largest number of votes is
used as the output by voting on the results of the decision tree [36]. In the OFT inversion,
400 sample points were randomly selected for each thickness to participate in training, and
the remaining sample points were involved in testing. The BTD corresponding to each
sample point was used as input and the measured OFT value was used as output, and by
constantly adjusting the model parameters, it was found that the model effect was best
when the number of leaf nodes was 1 and the number of optimal trees was 500.

(3) Support Vector Regression model (SVR)
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SVR is used to solve regression problems with Support Vector Machine (SVM). Vapnik et al.
introduced an insensitive loss function on the basis of the SVM to obtain SVR, and its basic
idea was to find an optimal classification surface so that all training samples had the
smallest error from the optimal classification surface [37]. The input sample x is mapped to
a high-dimensional space by a nonlinear map, and a linear model is built in this feature
space to estimate the regression function [37]:

f (x, w) = w · φ(x) + b (3)

where w is the weight vector, b is the threshold value. Using the insensitive loss function,
the constraint optimization problem can be expressed as [37,38]:

min 1
2 ‖ w ‖2 +C

l
∑

i=1

(
ξi + ξ∗i

)
s.t


yi − w · φ(xi)− b ≤ ε + ξi

−yi + w · φ(xi) + b ≤ ε + ξ∗i , i = 1, 2, . . . , l
ξi ≥ 0, ξ∗i ≥ 0

(4)

where ‖w‖ is the magnitude of the normal vector to the surface that is being approximated.
ξi, ξ∗i are the slack variables. Through multiple trainings, it was found that the kernel
function of SVR was RBF, and the value of the insensitive loss function was set to 0.01, the
gamma function setting and penalty factor c were obtained by using the libsvm function to
automatically optimize the parameters in the MATLAB environment, so that the effect of
the model was optimized.

(4) Convolutional neural network model (CNN)
Convolutional Neural Network (CNN) is a typical deep learning algorithm. The

experiment was to establish a mapping relationship between one-dimensional BTD with
OFT; so, we chose 1D-CNN model, which consisted of an input layer, hidden layer, and
output layer, of which the hidden layer included a convolutional layer, RELU layer, and
fully connected layer. The data of the input layer was the normalized one-dimensional
BTD data and the output data was the normalized OFT data. The model constructed in this
paper included one input layer, two convolutional layers, two fully connected layers, and
one output layer, where the output layer was set to regressionLayer.

The accuracy of the CNN model was related to the selection of parameters, which
was determined by continuous experiments in the case of fixed training and test sets.
The parameters to be determined included the number of convolution kernels of the first
convolutional layer, the size of the convolution kernel of the first convolutional layer, the
number of convolution kernels of the second convolutional layer, the size of the convolution
kernel of the second convolutional layer, the number of neurons of the two fully connected
layers, the number of batch training, the number of iterations, and the learning rate.

On the summer dataset, the model parameters were set to the number of convolution
kernels of the first convolutional layer was twenty, the size of the convolution kernel was
twelve, the number of convolution kernels of the second convolutional layer was thirteen,
the size of the convolution kernel was one, the number of neurons of the first fully connected
layer was forty, the number of neurons of the second fully connected layer was seventeen,
the number of batch training was sixteen, the number of iterations was thirty-nine, and the
learning rate was 0.008. On the autumn dataset, the parameters were set to fifteen, one, six,
one, thirty-eight, eighteen, forty-eight, forty-three, and 0.003, respectively.

2.2.2. Model Accuracy Evaluation Index

In order to compare the OFT inversion accuracy of the four models, and explore the
suitable OFT detection interval and the optimal OFT detection time of the day from the
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inversion results, the accuracy evaluation indexes used in this paper include root mean
square error (RMSE), mean relative error (MRE), and coefficient of determination (R2).

RMSE =

√
∑n

i=1 (yi − ŷi)
2

n
(5)

MRE =
1
n

n

∑
i=1

|yi − ŷi|
ŷi

(6)

R2 = 1− ∑n
i=1 (yi − ŷi)

2

∑n
i=1

(
yi −

−
y
)2 (7)

where, yi is the inverse OFT value (mm); ŷi is the measured OFT value (mm);
−
y is the

average value of the inverted OFT (mm); and n is the number of test samples. RMSE and
MRE reflect the degree of difference between the predicted value and the measured value,
and the smaller the RMSE and MRE, the higher the accuracy; R2 reflects the fitting degree
of the model: the larger the value, the better the fitting effect.

3. Results and Analysis

This section first analyzes the observation results of ground experiments and analyzes
the correlation between the OFT and the BTD. Then, based on the data of the moment with
the greatest correlation, the inversion results of the four models are compared and analyzed
to determine the suitable OFT inversion model. Based on this model, the inversion results of
each moment are compared and analyzed, and the most suitable time period for detecting
the OFT is determined.

3.1. The Relationship between BTD and OFT
3.1.1. Variation of BTD of Oil Film with Different Thickness in a Day

The BT changes in the water surface with and without oil film cover were divided into
two groups to show the observations more clearly; there were four groups in autumn and
summer (Figure 6). BTDs were, likewise, divided into four groups (Figure 7).
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As the temperature rose, the BT value on the surface of the oil film also increased,
reaching a maximum at noon; the temperature decreased and the BT value decreased,
except for small fluctuations in the middle. During the day, it conformed to the law that
the thicker the oil film surface, the greater the BT value and the greater the BTD between
oil and water, and this law was most obvious at noon. This is mainly because the thicker
the oil film absorbed more solar heat, and the oil film covered the surface of the water,
reducing the heat exchange between the water and the atmosphere and reducing heat loss.
This is consistent with the conclusion in [33].

At night, due to the lack of sunlight, the BT value of the water surface covered
by oil film decreased, it was found that there was not a simple monotonic relationship
between OFT and BTD. As the OFT increased, the OFT was less than 0.30–0.40 mm and
the BTD between oil and water became smaller; on the contrary, the OFT was greater than
0.30–0.40 mm, the conclusion was the opposite. This is mainly due to the smaller amount of
oil per unit area of the thinner oil film. The main factors affecting the temperature variation
of thinner oil films are evaporative cooling and solar heating. For thinner oil films, the
thinner the oil film, the faster the evaporative cooling; on the contrary, the thicker the oil
film, the slower the evaporative cooling. For thicker oil film, the thermal properties of the
oil film play a major role: the BT value changed with the change of light; the greater the
OFT, the more serious the heat lose. This indicates that 0.3–0.4 mm may be the dividing
line of a thin and thick oil film.

3.1.2. Correlation Analysis between OFT and BTD

The optimal time of day to detect oil film depends on the correlation between OFT
and BTD, and the greater the correlation, the better the detection of OFT. The correlation
coefficient was used as a measure of the degree of linear correlation between the values of
the study variable to analyze the relationship between OFT and BTD; the correlation coeffi-
cient between OFT and BTD was calculated for 24 moments in summer and 24 moments
in autumn.

As shown in Figure 8, it could be seen from the summer results that during the
day, the OFT and BTD showed a positive correlation. As the light intensity increased,
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the correlation coefficient value increased. The correlation coefficient between OFT and
BTD was the largest at 10:00 the next day, which was consistent with the conclusion
obtained [33]. From 18:00 of the day to 5:00 of the next day (lack of sunlight), the OFT
and the BTD showed a negative correlation, with the largest negative correlation value at
20:00 of the day. The conclusions reached in the autumn and summer were basically the
same. From the correlation calculation results, it could be concluded that there was a strong
correlation between OFT and BTD, so it was feasible to use BTD for OFT inversion.
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3.2. Analysis of OFT Inversion Results
3.2.1. The Most Suitable Inversion Model

The data of the maximum correlation moment calculated in Section 3.1.2 (10:00 the
next day in summer and autumn) was selected, the inversion results were divided into three
OFT intervals and all OFTs for comparative analysis, and the model inversion accuracy and
model stability were evaluated. The inversion accuracy of the model was the average of
the results of ten runs.

On the summer and autumn datasets, the inversion accuracy of the four models were
compared (Table 2). It could be seen from the inversion results of the entire OFT, and the
CNN model performed best. In summer, the RMSE of the CNN model was 0.093 mm,
which was 0.019 mm better than the regression fitting model, 0.018 mm higher than the RF
model, and 0.016 mm higher than the SVR model. In autumn, the RMSE was 0.144 mm,
which was 0.03 mm higher than the regression fitting model, 0.062 mm higher than the RF
model, and 0.004 mm higher than the SVR model. Although it was found that the MRE
of the RF model was smaller than that of the CNN model, the fitting effect of the CNN
model was better than that of the RF model. For the inversion results of the three thickness
intervals, the CNN model, the SVR model, and the RF model showed better inversion
accuracy than the regression fitting model. Comparing the results of 10 runs of the three
models (Figure 9), it was concluded that the CNN model and SVR model had strong model
stability and high model operation efficiency while maintaining high inversion accuracy.
Considering the oil film of the whole and individual thickness ranges, the CNN model was
regarded as the best inversion model.

Table 2. Model inversion accuracy evaluation.

OFT

Model

Accuracy
Evaluation
Indicators

Summer Autumn
Regression

Fitting RF SVR CNN Regression
Fitting RF SVR CNN

0.01–0.07 mm
RMSE/mm 0.085 0.011 0.019 0.010 0.059 0.006 0.013 0.006

MRE 5.079 0.063 0.462 0.251 2.040 0.019 0.506 0.204
R2 −11.037 0.792 0.430 0.866 −4.768 0.941 0.681 0.896

0.10–1.00
mm

RMSE/mm 0.095 0.136 0.104 0.094 0.143 0.175 0.125 0.113
MRE 0.241 0.169 0.174 0.153 0.279 0.265 0.239 0.201

R2 0.893 0.749 0.854 0.860 0.755 0.615 0.801 0.818
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Table 2. Cont.

OFT

Model

Accuracy
Evaluation
Indicators

Summer Autumn
Regression

Fitting RF SVR CNN Regression
Fitting RF SVR CNN

1.00–3.00 mm
RMSE/mm 0.142 0.083 0.132 0.105 0.249 0.290 0.208 0.206

MRE 0.056 0.011 0.047 0.042 0.100 0.091 0.088 0.095
R2 0.959 0.983 0.955 0.973 0.879 0.823 0.909 0.906

0.01–3.00
mm

RMSE/mm 0.112 0.111 0.109 0.093 0.174 0.206 0.148 0.144
MRE 1.054 0.105 0.169 0.150 0.548 0.182 0.243 0.246

R2 0.983 0.985 0.985 0.989 0.960 0.946 0.972 0.972
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3.2.2. Optimal Detection Time of Day for OFT

According to the conclusion of the previous section, the inversion results of the CNN
model and SVR model at each moment were selected for comparative analysis. The
inversion results of CNN and SVR are shown in Figures 10 and 11, respectively. From the
summer and autumn inversion results, it could be concluded that the inversion results had
high accuracy from 10:00 to 13:00, and the accuracy of the inversion results was the highest
at 10:00 am the next day. In summer, the inversion results of the CNN model and the SVR
model were, respectively, with RMSE values of 0.093 mm and 0.109 mm, R2 values of 0.989
and 0.985, and MRE values of 0.150 and 0.169. In autumn, the inversion results had RMSE
values of 0.144 mm and 0.148, R2 values of 0.972 and 0.972, and MRE values of 0.246 and
0.243. In summary, whether in summer or autumn, around 10:00–13:00 during the day,
when the oil film absorbs sunlight and begins to heat up and reach the maximum value of
the day (the thermal balance between oil and water), is the optimal time to detect OFT. For
nighttime data, the SVR model performed better than CNN model.

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 10. Comparison of accuracy of CNN inversion of OFT at different times: (A) RMSE and R2 in 
summer; (B) MRE in summer; (C) RMSE and R2 in autumn; (D) MRE in autumn. 

 
Figure 11. Comparison of accuracy of SVR inversion of OFT at different times: (A) RMSE and R2 in 
summer; (B) MRE in summer; (C) RMSE and R2 in autumn; (D) MRE in autumn. 

4. Discussion 
4.1. Detectable OFT Range Using Thermal Infrared Data 

To study the range of OFT detectable by thermal infrared, the data at 10:00 the next 
day in summer and autumn was selected, and the CNN model was used to invert the OFT. 

Figure 10. Comparison of accuracy of CNN inversion of OFT at different times: (A) RMSE and R2 in
summer; (B) MRE in summer; (C) RMSE and R2 in autumn; (D) MRE in autumn.



Remote Sens. 2023, 15, 2018 11 of 18

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 10. Comparison of accuracy of CNN inversion of OFT at different times: (A) RMSE and R2 in 
summer; (B) MRE in summer; (C) RMSE and R2 in autumn; (D) MRE in autumn. 

 
Figure 11. Comparison of accuracy of SVR inversion of OFT at different times: (A) RMSE and R2 in 
summer; (B) MRE in summer; (C) RMSE and R2 in autumn; (D) MRE in autumn. 

4. Discussion 
4.1. Detectable OFT Range Using Thermal Infrared Data 

To study the range of OFT detectable by thermal infrared, the data at 10:00 the next 
day in summer and autumn was selected, and the CNN model was used to invert the OFT. 

Figure 11. Comparison of accuracy of SVR inversion of OFT at different times: (A) RMSE and R2 in
summer; (B) MRE in summer; (C) RMSE and R2 in autumn; (D) MRE in autumn.

4. Discussion
4.1. Detectable OFT Range Using Thermal Infrared Data

To study the range of OFT detectable by thermal infrared, the data at 10:00 the next
day in summer and autumn was selected, and the CNN model was used to invert the OFT.
The measured OFT value was compared and analyzed with the inverted OFT value. In this
paper, the inversion results were visually represented by plotting scatter plots. The 1:1 scale
line indicated that the measured value was equal to the inversion value, the inversion value
above the 1:1 scale line meant that the inversion value was greater than the measured value,
and the lower value meant that the inversion value was less than the measured value.

The results of the summer experiment were plotted in Figure 12; 0.1 mm error lines
and 0.03 mm error lines were also plotted in Figure 12A. It could be intuitively seen that
the OFT was greater than 1.00 mm, and the inversion result was within the error lines of
0.3 mm. It showed that the thermal infrared data was beneficial to invert the OFT greater
than 1.00 mm. To show the experimental results more clearly, the inversion results of oil
films of 0.01–0.10 mm thickness were plotted in Figure 12B, and those of 0.10–1.00 mm
thickness were plotted in Figure 12C. The 0.01 mm and the 0.03 mm error lines were plotted
in Figure 12B; the results showed that the OFT was less than 0.10 mm, the inversion results
were mainly located outside the 0.03 mm error lines, and the thermal infrared data was not
conducive to inverting the OFT of less than 0.10 mm. The 0.1 mm error lines and 0.02 mm
error lines were plotted in Figure 12C. The inversion results of oil films of 0.20–0.30 mm
thickness were mainly located outside the 0.2 mm error lines, and the thermal infrared
data was not conducive to inverting the OFT of less than 0.3 mm. When the OFT was
greater than 0.4 mm, the inversion result was within the error lines of 0.2 mm; therefore,
the thermal infrared data was conducive to inverting the OFT greater than 0.4 mm. It could
be seen from the summer data that the thermal infrared data was conducive to inverting
the OFT greater than 0.4 mm.
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The results of the autumn experiment are basically consistent with the conclusions of
the summer experiment (Figure 13). In summary, thermal infrared is beneficial for detecting
oil films with a thickness greater than 0.4 mm.
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The OFT greater than or equal to 0.4 mm was selected for inversion of the data at
10:00 the next day in summer and autumn, and the CNN model was selected for the model.
The inversion accuracy was shown in Table 3. For OFT greater than or equal to 0.40 mm,
the MRE was 0.090 mm on the summer dataset; combined with Figure 14A, it could be
seen that the inversion results were mainly located within the 0.1 mm error lines and some
were located within the 0.3 mm error lines. On the autumn dataset, MRE was 0.117 mm;
combined with Figure 14B, it could be seen that the inversion result was mainly located
within the 0.3 mm error lines. Based on the above experimental results, it was concluded
that thermal infrared was beneficial to invert the OFT greater than 0.4 mm, and the OFT
greater than 0.4 mm was defined as a thicker oil film.

Table 3. Evaluation of inversion accuracy.

Season RMSE/mm MRE R2

summer 0.099 0.090 0.986
autumn 0.162 0.117 0.962
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The advantage of thermal infrared over other optical sensors is its ability to detect the
OFT at night. The data with the highest accuracy of the summer nighttime inversion (20:00
on 2 August) were selected; based on this data, the SVR model was used for inversion.
Then, the analysis of the ability of thermal infrared to detect the OFT at night was carried
out. The OFT was divided into three parts for inversion, the first part was to use the entire
OFT for inversion, the second part was to use the thickness of 0.01–0.30 mm for inversion,
and the third part was to use the thickness of 0.40–3.00 mm for inversion. As shown in
Table 4, from the inversion results, it can be concluded that thermal infrared has a good
detection ability for OFT greater than 0.4 mm.

Table 4. Evaluation of inversion accuracy (2 August, 20:00).

OFT Range RMSE/mm MRE R2

0.01–3.00 mm 0.330 0.169 0.859
0.01–0.30 mm 0.069 0.557 0.535
0.40–3.00 mm 0.161 0.105 0.963

The inversion results were compared with the measured OFT value, the 1:1 scale lines
and error lines were also drawn, and then each OFT was analyzed separately. It could
be seen from Figure 15A that for OFT of 0.01–0.30 mm, the inversion results were mainly
located outside the error lines of 0.01 mm and 0.05 mm, and thermal infrared had poor
detection ability for oil films in this thickness range. As shown in Figure 15B, for OFT
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greater than 0.4 mm, most of the inverted OFT values were greater than the measured OFT
values, most of which were within the error line; some would also be located outside the
error line. In summary, at night, thermal infrared can detect OFT greater than 0.4 mm, but
the detection effect will be insufficient compared with daytime.
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4.2. Oil Spill Amount Estimation under Simulated Oil Spill Scenarios

The setting of the OFT experimental scene proved the ability of thermal infrared
to detect the OFT, and the oil spill scene was added to verify the applicability of the
experimental results. In the experiment, 5 g of crude oil was dripped into the water tank,
data from two moments in the same oil spill scenario were used for experiments, and the
SVR model was used to invert the OFT. We estimated the amount of oil spill and plotted
the OFT grade. The data at the first moment was inverted, and the oil spill was estimated
to be 3.423 g (MRE = 0.315); the OFT distribution was shown in Figure 16C. The oil film
was distributed as a thick middle edge and a thin edge, which was in line with the actual
process of oil spill diffusion. The data at the second moment was inverted, and the amount
of oil spill was estimated to be 5.534 g (MRE = 0.107); the OFT distribution was shown in
Figure 17C. The boundary of the oil film distribution was not obvious enough, because
the OFT at this moment was relatively thin; thermal infrared was not sensitive enough to
thinner oil films.
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In the actual oil spill scenario, due to the changeable maritime environment, there
was still a certain gap in the application of the conclusions under laboratory conditions in
reality. It was necessary to establish a large number of thermal infrared data sets of OFT in
different environments for the estimation of oil spills, and it was beneficial to estimate the
oil spill in different scenarios by establishing a physical model to simulate the BT value
combined with environmental conditions.
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5. Conclusions

OFT estimation is of great significance for the emergency treatment and risk assess-
ment of oil spill accidents, and thermal infrared has advantages in OFT detection. Through
the design of ground experiments, the application of thermal infrared in OFT detection
was explored, and the quantitative inversion of OFT was realized by establishing the rela-
tionship between BTD between oil and water and OFT; four inversion methods (Regression
fitting model, SVR model, RF model, and CNN model) were included.

In response to the four questions raised earlier, this paper draws four main conclusions:
(1) In order to verify the inversion accuracy of four models, the data corresponding to the
time with the greatest correlation between OFT and BTD was selected for inversion; the
experimental results show that the CNN model has the advantages of high stability while
maintaining high-precision inversion, and can be used as the preferred model for OFT
inversion. (2) The BT value of the OFT in the day was constantly changing, and the optimal
OFT detection time is about 10:00 to 13:00 in the day, which is not affected by seasonal
changes. (3) In order to explore the OFT ranges that could be inverted by thermal infrared,
the data corresponding to the optimal detection time of OFT was chosen, and the inversion
results obtained by the CNN model were compared with the measured OFT value. The
results show that thermal infrared has good detection ability for OFT greater than 0.4 mm
during the day, but weak detection ability for thinner oil films. (4) The OFT detection
capability of thermal infrared at night was also studied. At night, thermal infrared has a
weak detection ability for thinner oil films and has a certain detection ability for relatively
thick oil films, but the accuracy is lower than that in the daytime.

This experiment was carried out in a relatively controlled environment with sunny
summer and autumn weather. The maritime environment is complex and changeable,
and there are still great uncertainties in applying the experimental conclusions to the
real marine environment. In order to use this constructed model for field experiments,
it is also necessary to obtain thermal infrared OFT datasets in different scenarios for
further examination. In the future, the team will carry out experiments under different
environmental conditions; more complex scenarios are built to achieve more effective oil
film thickness estimation.
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