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Abstract: The water cycle around the globe is significantly impacted by the moisture in the soil.
However, finding a quick and practical model to cope with the enormous amount of data is a difficult
issue for remote sensing practitioners. The traditional methods of measuring soil moisture are
inefficient at large sizes, which can be replaced by remote sensing techniques for obtaining soil
moisture. While determining the soil moisture, the low return frequency of satellites and the lack
of images pose a severe challenge to the current remote sensing techniques. Therefore, this paper
suggested a novel technique for Soil Moisture Retrieval. In the initial phase, image acquisition is
made. Then, VI indexes (NDVI, GLAI, Green NDVI (GNDVI), and WDRVI features) are derived.
Further, an improved Water Cloud Model (WCM) is deployed as a vegetation impact rectification
scheme. Finally, soil moisture retrieval is determined by the hybrid model combining Deep Max Out
Network (DMN) and Bidirectional Gated Recurrent Unit (Bi-GRU) schemes, whose outputs are then
passed on to enhanced score level fusion that offers final results. According to the results, the RMSE
of the Hybrid Classifier (Bi-GRU and DMN) method was lower (0.9565) than the RMSE of the Hybrid
Classifier methods. The ME values of the HC (Bi-GRU and DMN) were also lower (0.728697) than
those of the HC methods without the vegetation index, the HC methods without the presence of
water clouds, and the HC methods with traditional water clouds. In comparison to HC (Bi-GRU and
DMN), the HC method without vegetation index has a lower error of 0.8219 than the HC method
with standard water cloud and the HC method without water cloud.

Keywords: Bidirectional Gated Recurrent Unit; Deep Max Out Network; improved water cloud
model; improved fusion; remote sensing; soil moisture

1. Introduction

Drought is a significant factor in minimizing the production of food worldwide. In
agriculture, a lack of soil water directly causes crop water stress, which inhibits crop
development and lowers production [1,2]. Therefore, during the first growing phases of
the crop, it is crucial to precisely and promptly measure the soil water content. Research on
soil moisture content estimations is becoming more and more crucial as a result of the rapid
progress of remote sensing technologies [3,4]. Radar sensor transmits EMW to the surface
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of the ground and then collect data that are reflected from nearby objects [5]. Radar waves
are susceptible to the moisture level of the soil and have a significant penetration into
the plant cover. Determining soil moisture contents at the field level using radar remote
sensing is, therefore, extremely important [6].

Some empirical models for retrieving soil water content are provided by examining the
linear relation among ground-recorded soil water content and radar backscatter coefficient
on a log scale [7,8]. Empirical models have been frequently employed in earlier studies
because of their simplicity. The reliability of empirical studies is, however, not very high.
ML techniques were developed in order to increase the precision of empirical studies for
retrieving soil water content [9–11]. ML techniques, particularly DL techniques, which offer
significant prediction outputs, are required for training the networks. These approaches do
not work well when taught to extract soil water content when there are just a few ground
sample locations [12–14].

Semi-empirical schemes were presented for soil moisture retrieval across vegetative
regions as a middle ground between empirical and complicated techniques [15–17]. An
approximate model for the contribution of vegetation is the WCM. The model is appropriate
for many types of plant layers and simplifies the intricate scattering effects among the
vegetation layer and the soil layer [18]. The WCM makes the assumption that the vegetative
layer is a homogeneous medium, and it defines a parameter to characterize the properties
of the vegetation layer [19]. In previously published work, the researchers used WCM and a
mix of radar and optic remote sensing data to predict soil moisture content over vegetative
regions at the regional scale [20]. In this existing research, backscatter coefficients from
radar images were coupled with the soil water content to derive vegetation indices, which
served as the vegetative descriptor of WCM.

The contributions are specified below:

• In the initial phase, image acquisition is completed; after that, improved WCM is
employed as a vegetation impact rectification scheme.

• Retrieves soil moisture using DMN and Bi-GRU schemes, whose outputs are then
passed on to enhance score-level fusion that offers final results.

• DMN contains sufficient training data, which enables the networks to easily discrimi-
nate between different classes. While Bi-GRUs address the vanishing gradient problem
are faster than other Deep learning models such as LSTM. Therefore, the combination
of DMN and Bi-GRU has provided better results than other deep learning models.

The organization of this research is mentioned as follows; Section 2 enumerates
existing works on soil moisture retrieval. Section 3 explains the phases in proposed soil
moisture retrieval; Section 4 describes the extraction of vegetation indexes. Improved
WCM techniques are explained in Section 5; Section 6 elaborates on the concept of hybrid
classifiers: DMN and BI-GRU for soil moisture retrieval. The analysis of the results and
their comparisons are demonstrated in Section 7; Lastly, the conclusion is updated in
Section 8.

2. Literature Review
2.1. Related Works

To enhance the water cloud model, Lei et al. [21] published a novel vegetative canopy
water content estimation method in 2022. Our findings demonstrated that the unique calcu-
lation method, which takes into account the canopy’s horizontal and vertical arrangement,
water level, and biomass, is ideal for producing a more precise estimate of the water content
of the vegetation. Additionally, the soil moisture levels of often green wood, tropical forests,
diverse forest, composited shrub grasses, and grassland-enclosed regions were determined
using this IWCM.

By combining the soil’s dielectric constant properties with the radar BC obtained
using SA schemes of RISAT-1 data, Kishan et al. [22] assessed SM in 2017. In order to
overcome the limitations of the land surface model on the accuracy of the SM estimation,
the limitations of point measurement’s spatial coverage, and the limitations of micro-wave
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temporal-spatial sampling, we lowered complexities through a mixture of these schemes.
We looked into the effectiveness of SA in obtaining SM in which the vegetation was not
extremely high.

An SM retrieval system was created in 2016 by Qingyan et al. [23] from multi-source
fused data through the stages of flowering, joinery, sowing, and heading. The association
among impact factors and backscattering simulation, depending on an integration equation
model, revealed that surface roughness might be less of a factor at the sowing stage by
employing the CPD. The creation of a new CPD model further enhanced the Dubois model.
It was very useful to estimate SM contents at the stage of jointing maize.

The flood detection capacities of various types of soil moisture data were examined by
Natthachet et al. [24] in 2021. With a forecast time, window of 8 to 32 days, a NN built from
MODIS and SMOS data is employed to forecast the occurrence of flood. The most accurate
forecast is for the near term (e.g., eight days), with an average recovery rate of about 60%.
The results of this research point to potential use for satellite measurements of soil moisture
in improving flood surveillance and detection systems.

In 2018, Anna et al. [25] used a case study of two Swedish regions, Västra Götaland
and Värml, which experienced catastrophic floods in August 2014, to integrate the temporal
and spatial soil moisture parameters into the research on flood prediction systems. Data on
soil moisture are obtained through remote sensing methods, with concern on the satellites
that specifically measure soil moisture, ASCAT, and SMOS. Additionally, a number of PCDs
are examined, and the findings indicate that generally speaking, higher drainage density
and larger slopes are associated with a higher risk of floods. The findings indicate that the
approach using soil moisture satellite images holds promise for enhancing the accuracy
of flooding.

In 2018, Seongkyun et al. [26] proposed a novel SVR-based downscaling technique
under all sky circumstances based on microwave, optical/infrared, and geo-location data.
Derived estimations of land temperatures and NDVI from MODIS land and atmospheric
products were used to acquire consistent temporal-spatial input datasets to disentangle
SM surveillance. This work makes the case that spatial downscaling, a remote sensing
approach, has the ability to produce higher resolution SM independent of weather and
without the need for additional data. It provides information for examining hydrological,
climatic, and farming variables.

In 2018, Tian et al. [27] estimated surface SM in central Tibetan Plateau, China, using a
novel soil Teff method and the AMSR-E BTs. Our assessment also revealed that the novel
method does not require specially suitable variables or supplemental presumptions that
simplify the data necessities for regional scale appliances. This technique is utilized to
calculate the historic SM for hydrologic process research over the Tibetan regions when
paired with archival BT measurements.

In order to monitor droughts across India in 2022, Likithet al. [28] investigated the
possibilities of remotely sensed VOD, SIF, and SM. Utilizing time series and correlation
analysis, rainfall meters such as the standardized Zscore and rainfall index were utilized to
compare the Zscores of the satellite data with the Zscores of deficiency and normal rainfall
events. According to the findings, SM was capable of recording drought events over all
of India’s geographical areas. All three variables should be used in India’s actual drought
monitoring programs since they have the potential to record drought episodes.

2.2. Review

The water cycle, ecology, and energy exchanges between the soil and the environ-
ment are all profoundly impacted by SM, an essential state variable. A variety of sectors,
including meteorology, hydrology, climate, and agriculture, benefit from the use of SM
data [29,30]. The advancement of remote sensing techniques has opened up new prospects
recently in the large-scale arena. The focus of a recent study has been surfacing SM in-
version using remote sensing technologies. Clouds and rain are easily blocked by distant
optical sensing, which is thus easily constrained by weather and sunlight conditions. As a
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result, it is not possible to see the Earth under all weather conditions in the thermal and
optical spectral range. Microwave remote sensing, on the other hand, is not impacted by
weather or lighting condition and can detect surface SM in all seasons and at all times of
the day [31].

Additionally, because of its capacity to penetrate some types of vegetation, it has the
potential to continuously monitor surface SM across a vast region. SAR was the main active
electromagnetic remote sensing tool for SM monitoring throughout the last few decades.
However, in places with vegetation, the signal also experiences weakened backscatter
from the ground as well as direct scattering from vegetative cover. As a result, it is very
challenging to extract SM when there is a plant cover since the detected backscattering
signal simultaneously contains the vegetation, the surface, and the interactions among the
vegetation and the surface.

The influence of surface roughness and vegetative cover must thus be eliminated in
order to accurately estimate SM vegetation coverage. Different answers to the problem of
how vegetation affects radar backscattering in vegetative regions have been put forth by
numerous academics. The WCM is frequently used in studies as an inversion scheme to
calculate SM in greenery regions. However, the accuracy of the inversion will be impacted
by the absence of soil smoothness and other pertinent information owing to the terrain,
real measures (SM, soil smoothness, etc.), and other variables.

3. Phases in Proposed Soil Moisture Retrieval

Image acquisition is carried out in the initial stage. Following that, the VI indexes
(NDVI, GLAI, Green NDVI (GNDVI), and WDRVI features) are determined. Additionally,
an improved Water Cloud Model (WCM) is implemented as a plan to correct the effect
of vegetation. Finally, a hybrid model combining Deep Max Out Network (DMN) and
Bidirectional Gated Recurrent Unit (Bi-GRU) schemes determines soil moisture retrieval.
The outputs of this model are then passed on to enhanced score-level fusion, which provides
the findings.

Implementing the WCM has the benefit of allowing complicated scattering character-
istics in a vegetated region to be expressed with straightforward vegetation descriptors.
The ideal collection of vegetation descriptors, although it has not been widely accepted
or understood. In this paper, the original and improved expressions of WCM are evalu-
ated, and the optimal vegetation descriptors are presented by examining the relationship
between WCM vegetation parameters and the backscattering model predictions.

After this process, soil moisture retrieval is determined by the hybrid model combining
DMN and Bi-GRU schemes. DMN contains sufficient training data, which enables the
networks to easily discriminate between different classes. While Bi-GRUs address the
vanishing gradient problem are faster than other Deep learning models such as LSTM.
Therefore, the combination of DMN and Bi-GRU has provided better results than other
deep learning models.

The steps in the adopted Soil Moisture Retrieval scheme are as follows:

• In the initial phase, image acquisition is made.
• Then, VI indexes (NDVI, GLAI, Green NDVI, and WDRVI features) are derived.
• Further, improved WCM is deployed as a vegetation impact rectification scheme.
• Finally, soil moisture is retrieved using DMN and Bi-GRU schemes, whose outputs

are then passed on to enhanced score level fusion that offers final results.

The depiction of the new Soil Moisture Retrieval model is shown in Figure 1.
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Figure 1. Diagrammatic representation of Soil Moisture Retrieval model.

Image Acquisition

The image for analysis was collected from [32] Sentinel-1 Data on 15 July 2017 from
the city of Mumbai, India. Sentinel-1 offers high and medium-resolution land, sea ice,
and coastal observations with dual and single polarization, fast revisiting cycles, and
high interfering capabilities for worldwide high-resolution surveillance. Sentinel-1 has
all-weather imaging abilities. Additionally, it offers technical assistance for long-term soil
moisture management within the same region. From the Input image IM, VI indexes,
namely, NDVI, GLAI, Green NDVI, and WDRVI, are derived as the features, which are
explained in the subsequent section.

4. Extraction of Vegetation Indexes

Vegetation Index values were independently calculated using ascending and descend-
ing modes on SAR data time series. One index value is calculated for each group of four
consecutive SAR images for every acquisition mode. The noise in vegetation index compu-
tation was expected to be reduced by using four SAR dates to calculate one mean value. By
using those mean values, NDVI and other features are calculated.
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4.1. NDVI Features

NDVI features are particularly helpful for tracking vegetation from continental to
global scales, because it accounts for shifting lighting circumstances, surface slope, and
viewing angle. NDVI features are selected because it is an important index in agricultural
organizations and academic research and evaluates vegetation health, predicts agricultural
output, and maps desertification. From IM, the volume and strength of vegetation on
the earth’s surface are measured by the NDVI, and NDVI spatial composite pictures are
created to more clearly discern between the green vegetation and barren soils. The NDVI
Sensors have spectral ranges of 650 nm ± 5 nm with 65 full-width half-maximum (Red)
and 810 nm ± 5 nm with 65 full-width half-maximum (NIR). The visible red band and
the near-infrared band are used in NDVI [33]. These values range between −1.0 to 1.0,
with negative values denoting clouds and water and +ve values around 0 denoting bare
soil. High +ve values of NDVI range from sparsely vegetated (0.1–0.5) to denser green
vegetations (0.6 and greater than that). It is assessed using Equation (1). Equation (1) nir
and R points out the near IR portion of the EMS and the red area of EMS.

f sndvi = nir− Red/nir + Red (1)

The result of an NDVI calculation for a given pixel is always a number between minus
one (−1) and plus one (+1); however, the absence of green leaves yields a value that is
very near to zero. A value of zero denotes the absence of vegetation, while a value near +1
(0.8–0.9) denotes the greatest potential density of green leaves. In NDVI, researchers need
to examine the different colors (wavelengths) of visible and near-infrared sunlight reflected
by the plants in order to calculate the density of green on a plot of land. The spectrum of
sunlight is made up of many distinct wavelengths, as seen through a prism. When sunlight
hits an object, some of this spectrum’s wavelengths are absorbed while others are reflected.
Chlorophyll, a pigment found in plant foliage, effectively absorbs visible light (between
0.4 and 0.7 µm) for photosynthesis. On the other hand, the cell structure of the leaves
significantly reflects near-infrared light (between 0.7 and 1.1 µm). These light wavelengths
are each influenced to varying degrees by the number of leaves.

4.2. GLAI Features

GLAI features help to understand the density of green coverage in comparison with
ground data. Moreover, it supports the level of photosynthesis activity of a plant and
the evaporation of water from leaves. The interception of radiation and precipitation,
energy conversion, and water balance are all essential factors that GLAI measures. In the
end, it is an accurate measure of plant development. The GLAI [34] defines the one-sided
greenish portion of leaves for every unit lateral ground surface area as a measure of green
leaf area. In order to increase grain output and adapt a genotype to a certain habitat
and climatic condition, its oscillations all through the crop cycle are regarded as a critical
characteristic. Furthermore, knowing the dynamics of GLAI is crucial to comprehending
how crops work. Important features for breeders include the rates of leaf area development
and senescence, the time of the lowest and highest GLAI, and the associated magnitude.
Numerous strategies, including in-situ methodologies, remote sensing techniques, and
crop models, were created to calculate GLAI [33] as in Equation (2), where ρs is the soil
reflectance, γ is the radiance, LAD is the leaf angle distribution, ρλL, τλL are canopy leaf
optical properties.

f sGLAI = f (ρs, γ, LAD, ρλL, τλL) (2)

The dynamics of GLAI are of prime importance to understanding the functioning
of crops. Breeders should pay close attention to traits such as the leaf area’s growth
and senescence rates, the timing of the minimum and maximum GLAI, and the related
magnitude. In order to quantify canopy reflectance, which is susceptible to changes in
the GLAI, remote sensing techniques use multispectral or hyperspectral sensors. The
GLAI has been statistically related to the reflectance measured in multiple bands, which is
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typically combined in vegetation indices using empirical techniques. The effectiveness of
this method depends on the chosen vegetation indices’ sensitivity to the GLAI as well as
on confounding variables such as leaf orientation, lighting conditions, and soil properties.

4.3. Green NDVI Features

Here, these Green NVDI features are chosen because they can be used in crops with
dense canopies or in more advanced stages of development. At the same time, NDVI is
useful for estimating crop vigor in the early phases only.

It is related to NDVI [35] except that it analyzes the greenish spectrum in the region of
0.54 to 0.57 microns rather than the red spectrum. As per multi-spectral data that lacks an
intense red channel, this is a measure of the photosynthesis rate of the natural vegetation,
and it is most frequently used to determine the moisture levels and nitrogen sources in
plant leaves. It is more responsive to chlorophyll content than the NDVI index. It is utilized
to evaluate old and depressed vegetation. It follows the model in Equation (3).

f sgndvi = nir− green/nir + green (3)

4.4. WDRVI Features

The WDRVI features are selected for a thorough characterization of crop physiological
and phenological characteristics by increasing the dynamic range while using the same
bands as the NDVI.

NDVI and WDRVI both measure near IR and red-light levels, but WDRVI is at least
three times more precise because it can detect minute variations in plant canopy in moderate
to high plant density, which is crucial for mature crops and crops with thick canopies [36].

The WDRVI, termed as f sWDRVI allows for a more thorough evaluation of crop physi-
ologic and morphological properties by raising the dynamic range by employing identical
bands as NDVI.

This research calculated four different NDVI, GLAI, Green NDVI, and WDRVI features.
During the early stages of the senescence period, the canopy starts to lose water content
while photosynthetic activity is still increasing. As a result, VOD, which measures the water
content of the vegetation, starts to decline, while NDVI, which measures the photosynthetic
activity of the vegetation, increases or stabilizes.

Accordingly, the derived NDVI, GLAI, Green NDVI, and WDRVI features are pointed
out as f svi; f svi =

[
f sndvi f sGLAI f sgndvi f sWDRVI

]
.

5. Improved WCM Technique

Along with the f svi features, improved water cloud model-based features considered
as v0

soil(θ) will be extracted. In general, the roughness, soil wetness, salt content, and
vegetation all have an impact on the backscattering coefficient measured from the top of
soil salinity covered in vegetation. Therefore, the plant influence needs to be eliminated in
order to correctly extract the soil surface’s properties of radar backscattering. The sparse
vegetation covering area is greater than the farming area in the real scenario of the radar
area’s surface coverage. The vegetation impact correction model was thus chosen to be the
semi-empirical WCM [37]. The vegetative layers are homogenous and comparable in shape
and size. Thus, according to two hypotheses in the water-cloud model, several scattering
among plants and the surface of Earth is ignored. Equations (4)–(6) represent the WCM,
respectively.

v0
con(θ) = v0

veg(θ) + χ2v0
soil(θ) (4)

v0
veg(θ) = B.vwc. cos θ

[
1− χ2(θ)

]
(5)

χ2(θ) = exp
[
−2A.

vwc
cos θ

]
(6)
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Equations (3)–(5) v0
con(θ) refer to BC of vegetative radar layer, v0

veg(θ) refers to veg-
etative radar BC of the soil, χ2v0

soil(θ) refers to 2-way vegetative radar BC at surfaces
oil following attenuation, χ2(θ) refers to double layer attenuation feature of radar band
piercing the vegetative layer, vwc refers to the mean water level of every vegetation in
the pixels, and B as well as A refers to improvement values of vegetative moisture level
constraints of diverse basic surfaces. Conventionally, the experimental constraints of all
vegetation formulations were elected, such as A = 0.0009 and B = 0.032 [38]. Based on an
improved WCM model, B and A is evaluated using a sine map-based chaotic function.

The impact of vegetation on radar BC is exposed in Equation (7).

v0
veg(θ) = 0.0009.vwc. cos θ[1− exp(−0.064.vwc/cos θ)] (7)

Conventionally, Equation (8) represents the BC of the soil subsequent to the removal
of the vegetative effect.

v0
soil(θ) =

v0
con(θ)− 0.0009. cos θ[1− exp(−0.064.vwc/cos θ)]

exp(−0.064.vwc/cos θ)
(8)

Based upon the improved WCM model, the BC of the soil subsequent to the removal
of vegetative effect is modeled based on weight we as shown in Equation (9). Here, we is
computed using the mean of VI, as shown in Equation (10).

v0
soil(θ) =

v0
con(θ)− 0.0009. cos θ[1− exp(−0.064.vwc/cos θ)]

exp(−0.064.vwc/cos θ)
∗ we (9)

we =
4

∏
i=1

(VIi)

1
4

(10)

Finally, the feature set F =
[

f svi v0
soil(θ)

]
are subjected to a hybrid classifier with

DMN and Bi-GRU for soil moisture retrieval.

6. Hybrid Classifiers: DMN and Bi-GRU for Soil Moisture Retrieval

As specified before, the proposed hybrid model combines the models such as DMN
and Bi-GRU, where the final outcome is determined by the improved score level fusion.

6.1. DMN

The input to the DMN is F. DMN is a type of NN is DMN [39] which finds usage
in a number of applications. Each neuron contains u candidate parts that make up a NN.
For neuron activation, a max value extensible u component is planned to be used. Mark Ji

l

hidden layer’s mth node and each of its parts as Oij
m. Equations (11) and (12) illustrate their

interrelationship. Oij
m is modeled as in Equation (12).

Ji
m = max

j∈1,2,...,u
Oij

m (11)

Om = W∗G
m−1 Jm−1 + fm (12)

Here, O1 ∈ LO points out lth layer vector
fm ∈ LO refers to bias vector of mth layer.
Jm−1 ∈ LH and W∗m−1 ∈ LH×O points out max-out activation vector and weight of

m− 1 layer.
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6.2. Bi-GRU

Meanwhile, F is subjected as the input to Bi-GRU. It [40] is a particular RNN type
that helps in managing data from subsequent and earlier time steps in order to provide
projected outputs depending on the present state. Equations (13)–(16) show the sigmoid
function, hidden, and input vectors as σ, hit and vt in that sequence, thus revealing the
BI-GRU calculation. The reset data are denoted by rt, the terms WG points out weight, t
points out time interval, and Ct−1 points out cell condition at the preceding time stamp.

Ft = (WGi ∗ [vt, hit−1,])σ (13)

rt = (WGi ∗ [vt, hit−1])σ (14)

hit = (WGc ∗ [rt.vt, hit−1])tanh (15)

hit = .Ct−1(1− Ft) + hitFt (16)

The Bi-GRU and DMN outputs rt and Om are passed to improved score-level fusion
to obtain a final result.

6.3. Improved Score Level Fusion

The Bi-GRU and DMN outputs rt and Om are passed to improved score level fusion to
obtain the final result, which is formulated as shown in Equation (17).

ISL = (W1U1 + W2U2)/2 (17)

Equation (18) U1 and U2 refers to scores obtained from Bi-GRU and DMN. Here, W1
and W2 refers to weights that are computed using EER as shown in Equation (17). Overall,
lowering the ERR value will increase the accuracy of the system. Finally, ISL determines
the retrieval results, which are obtained using Equation (18),

Wi =
EERi ∗m

∑m
n=1 EERn

(18)

7. Results and Discussion
7.1. Simulation Procedure

The deployed HC (Bi-GRU and DMN) for soil moisture retrieval was made in MAT-
LAB. From [32], the dataset was gathered. The evaluation was performed over Long
Short-Term Memory (LSTM), Support Vector Machine (SVM), Convolutional Neural Net-
work (CNN), Recurrent Neural Network (RNN), Naive Bayes (NB), Improved Water Cloud
Model (IWCM) [21], Solar-Induced chlorophyll Fluorescence and Vegetation Optical Depth
(SIF-VOD) [28], Basin-Scale Flood Monitoring System BSFMS [24], AIEM model [37] and
Dubois model [41] for diverse measures. The samples of certain collected satellite images
are represented in Figure 2.
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Figure 2. Samples for critical type of images (a) Dryland image (b) Capillary moisture image (c)
Hygroscopic moisture image (d) Gravitational moisture image (e) Atmospheric moisture image.

7.2. Performance Analysis

The performance of the HC (Bi-GRU and DMN) scheme for soil moisture retrieval is
evaluated over LSTM, SVM, CNN, RNN, NB, AIEM model [37], IWCM [21], SIF-VOD [28],
BSFMS [24] and Dubois model [41] for error metrics in Figures 3 and 4. The analysis of HC
(Bi-GRU and DMN) over conventional methods for estimated error, MAPE, and MARE is
shown in Figure 3. The analysis of HC (Bi-GRU and DMN) over conventional methods
for estimated error, ME, and RMSE is shown in Figure 4. “The mean absolute percentage
error (MAPE), also known as mean absolute percentage deviation (MAPD), is a measure of
prediction accuracy of a forecasting method in statistics. The relative error is a measure of
the uncertainty of measurement compared to the size of the measurement. The mean error
is an informal term that usually refers to the average of all the errors in a set. An error in
this context is an uncertainty in a measurement or the difference between the measured
value and the true/correct value. The RMSE is a frequently used measure of the differences
between values (sample or population values) predicted by a model, or an estimator and
the values observed. The RMSD represented the square root of the second sample moment
of the differences between predicted values and observed values or the quadratic mean of
these differences”.
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The estimated error of the adopted HC (Bi-GRU and DMN) approach is lesser than
LSTM, SVM, CNN, RNN, NB, AIEM model [37], IWCM [21], SIF-VOD [28], BSFMS [24]
and Dubois model [41] for all LPs. On the other hand, the estimated error is higher for the
Dubois model [41] for all LPs. The MAPE of HC (Bi-GRU and DMN) model 90th LP is less
than the MAPE values attained at 60th, 80th, and 70th LPs. Conversely, the MAPE error
is higher for the Dubois model [41] for all LPs. Next to the 90th LP, the MAPE using HC
(Bi-GRU and DMN) scheme is less at the 70th LP, while MAPE using LSTM, SVM, CNN,
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RNN, NB, AIEM model [37], IWCM [21], SIF-VOD [28], BSFMS [24] and Dubois model [41]
is higher for all LPs. The MARE is much negligible when using HC (Bi-GRU and DMN)
scheme at the 80th LP, while the MARE is high at the 60th and 90th LPs. On the other hand,
the MARE is higher than the Dubois model [41] for all LPs. The ME using HC (Bi-GRU and
DMN) scheme is much negligible at 80th LP. Next to the 80th LP, the ME is low at the 60th
LP. Here, high ME is attained during the 70th LP. The RMSE at 90th LP using HC (Bi-GRU
and DMN) scheme has gained a lower value of 0.65. The worst RMSE value is observed at
90th LP. The RMSE using HC (Bi-GRU and DMN) scheme is less at 90th LP. The next less
value of RMSE using HC (Bi-GRU and DMN) scheme is observed at 70th LP and 60th with
0.72. The attainment of these outcomes is mainly because of HC and improved score level
fusion with improved WCM.

7.3. Statistical Analysis

Table 1 shows the statistical analysis of the employed HC (Bi-GRU and DMN) model
over LSTM, SVM, CNN, RNN, NB, AIEM model [37], IWCM [21], SIF-VOD [28], BSFMS [24]
and Dubois model [41]. From Table 1, the employed HC (Bi-GRU and DMN) system
established fewer error outcomes when distinguished over LSTM, SVM, CNN, RNN, NB,
AIEM model [37], IWCM [1], SIF-VOD [28], BSFMS [4] and Dubois model [41] schemes
for every case. Mainly, the adopted HC (Bi-GRU and DMN) method offered lesser errors
than LSTM, SVM, CNN, RNN, NB, and AIEM models [37] and the Dubois model [41].
This reveals that the performance of classifiers (LSTM, SVM, CNN, RNN, NB, AIEM
model [37], IWCM [21], SIF-VOD [28], BSFMS [24], and Dubois model [41]) was not better
as our HC (Bi-GRU and DMN) since the compared ones pose high error values. The
attainment of fewer error values is mainly because of improved WCM with HC and
improved score-level fusion.

Table 1. Statistical Analysis.

Metrics Best Worst Mean Median Standard

LSTM 0.085 0.365 0.185 0.145 0.108
SVM 0.084 0.344 0.180 0.147 0.100
CNN 0.029 0.053 0.040 0.038 0.009
RNN 0.109 0.117 0.113 0.112 0.003
NB 0.256 0.53 0.457 0.522 0.116

AIEM model [37] 0.113 0.124 0.119 0.121 0.004
Dubois model [41] 0.249 0.550 0.396 0.393 0.143

IWCM [1]] 0.084 0.344 0.180 0.147 0.100
SIF-VOD [28] 0.069 0.093 0.840 0.838 0.069

BSFMS [4] 0.193 0.297 0.138 0.182 0.093
HC (Bi-GRU and DMN) 0.0138 0.025 0.019 0.020 0.004

7.4. Analysis of Features

The analysis of the presented HC (Bi-GRU and DMN) system over the HC method
without vegetation index, HC method without water cloud, and HC method with con-
ventional water cloud is shown in Table 2. In Table 2, the estimated error of HC (Bi-GRU
and DMN) is lesser than the HC method without vegetation index, HC method without
water cloud, and HC method with conventional water cloud. Next to HC (Bi-GRU and
DMN) scheme, the HC method without vegetation index has achieved less estimated error
outcomes over the HC method without water cloud and the HC method with conventional
water cloud. Moreover, the RMSE of HC (Bi-GRU and DMN) is lesser (0.956) over the
HC method without vegetation index, HC method without water cloud, and HC method
with conventional water cloud. Next to HC (Bi-GRU and DMN), the HC method without
vegetation index has achieved fewer RMSE values than the HC method without water
cloud and the HC method with conventional water cloud. Similarly, the ME values of HC
(Bi-GRU and DMN) are less (0.728) over the HC method without vegetation index, HC
method without water cloud, and HC method with conventional water cloud. Next to HC
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(Bi-GRU and DMN), the HC method without vegetation index has achieved less error of
0.821 over the HC method without water cloud and the HC method with conventional
water cloud.

Table 2. Feature Analysis.

Proposed without
Vegetation Index

Proposed without
Water Cloud

Proposed with
Conventional Water Cloud

HC (Bi-GRU and
DMN)

Estimation error 0.845 0.864 0.915 0.749
MAPE 0.959 0.923 0.976 0.898
RMSE 0.966 0.976 0.986 0.956
MARE 0.811 0.876 0.819 0.769

ME 0.821 0.864 0.849 0.728

8. Conclusions

This paper suggested a novel technique for Soil Moisture Retrieval. In the initial
phase, image acquisition was made. Then, VI indexes (NDVI, GLAI, Green NDVI, and
WDRVI features) were derived. Further, improved WCM was deployed as a vegetation
impact rectification scheme. At last, soil moisture was retrieved using DMN and Bi-GRU
schemes, whose outputs were then passed on to enhanced score-level fusion that offered
final results. From outcomes, the RMSE of HC (Bi-GRU and DMN) was lesser (0.9565)
over the HC method without vegetation index, HC method without water cloud, and HC
method with conventional water cloud. Next to HC (Bi-GRU and DMN), the HC method
without vegetation index has achieved fewer RMSE values than the HC method without
water cloud and the HC method with conventional water cloud. Similarly, the ME values of
HC (Bi-GRU and DMN) were less (0.728697) over the HC method without vegetation index,
HC method without water cloud, and HC method with conventional water cloud. Next to
HC (Bi-GRU and DMN), the HC method without vegetation index has achieved less error
of 0.8219 over the HC method without water cloud and the HC method with conventional
water cloud. In the future, this research will be extended by using novel feature selection
techniques to enhance overall performance.
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Nomenclature

AIEM Advanced Integral Equation Model
Bi-GRU Bidirectional Gated Recurrent Unit
CNN Convolutional Neural Network
DL Deep Learning
HC Hybrid Classifier
PCDs Physical Catchments Descriptor
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DMN Deep Max Out Network
GNDVI Green NDVI
BC Backscattering Coefficient
GLAI Green Leaf Area Index
EMW ElectroMagnetic Waves
IWCM Improved Water Cloud Model
CPD Co-Polarized Difference
LSTM Long Short Term Memory
IR Infrared
EMS Electro Magnetic Spectrum
MARE Mean Absolute Relative Error
SAR Synthetic Aperture Radar
LP Learning Percentage
ML Machine Learning
MAPE Mean Absolute Percentage Error
SMOS Soil Moisture And Ocean Salinity Mission
MODIS Moderate Resolution Imaging Spectroradiometer
WDRVI Wide Dynamic Range Vegetation Index
ME Mean Error
NN Neural Network
NB Naïve Bayes
NDVI Normalized Difference Vegetation Index
SA Simulated Annealing
SM Soil Moisture
EER Equal Error Rate
RISAT Radar Imaging Satellite Based on SAR Technique
RNN Recurrent Neural Network
RMSE Root Mean Square Error
SVR Support Vector Regression
VOD Vegetation Optical Depth
SIF Solar-Induced Chlorophyll Fluorescence
Teff Effective Temperature
WCM Water Cloud Model
SVM Support Vector Machine
VI Vegetation Index
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