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Abstract: In recent years, multiple disturbances have significantly altered terrestrial ecosystems in
arid and semi-arid regions, particularly on the Mongolian Plateau (MP). Net primary productivity
(NPP) of vegetation is an essential component of the surface carbon cycle. As such, it characterizes the
state of variation in terrestrial ecosystems and reflects the productive capacity of natural vegetation.
This study revealed the complex relationship between the natural environment and NPP in the
ecologically fragile and sensitive MP. The modified Carnegie–Ames–Stanford Approach (CASA)
model was used to simulate vegetation NPP. Further, the contributions of topography, vegetation,
soils, and climate to NPP’s distribution and spatiotemporal variation were explored using the
geographic detector model (GDM) and structural equation model (SEM). The study’s findings
indicate the following: (1) NPPs for different vegetation types in the MP were in the order of broad-
leaved forest > meadow steppe > coniferous forest > cropland > shrub > typical steppe > sandy land >
alpine steppe > desert steppe. (2) NPP showed an increasing trend during the growing seasons from
2000 to 2019, with forests providing larger vegetation carbon stocks. It also maintained a more stable
level of productivity. (3) Vegetation cover, precipitation, soil moisture, and solar radiation were the
key factors affecting NPP’s spatial distribution. NPP’s spatial distribution was primarily explained
by the normalized difference vegetation index, solar radiation, precipitation, vegetation type, soil
moisture, and soil type (q-statistics = 0.86, 0.71, 0.67, 0.67, 0.57, and 0.57, respectively); the contribution
of temperature was small (q-statistics = 0.26), and topographic factors had the least influence on
NPP’s distribution, as their contribution amounted to less than 0.20. (4) A SEM constructed based
on the normalized difference vegetation index (NDVI), solar radiation, precipitation, temperature,
and soil moisture explained 17% to 65% of the MP’s NPP variations. The total effects of the MP’s
NPP variations in absolute values were in the order of NDVI (0.47) > precipitation (0.33) > soil
moisture (0.16) > temperature (0.14) > solar radiation (0.02), and the mechanisms responsible for
NPP variations differed slightly among the relevant vegetation types. Overall, this study can help
understand the mechanisms responsible for the MP’s NPP variations and offer a new perspective for
regional vegetation ecosystem management.

Keywords: net primary productivity; geographic detector model; structural equation model; modi-
fied CASA model; Mongolian Plateau

1. Introduction

Terrestrial ecosystems are important parts of the Earth’s ecosystems. They contribute
considerably to the global carbon balance, as they perform the role of carbon sinks [1–3]. As
an essential component of the terrestrial ecosystem, vegetation helps with carbon fixation,
thanks to photosynthesis, which may be said to be the starting point of the carbon cycle [4].
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The net primary productivity (NPP) of vegetation is the amount of total organic compounds
accumulated in vegetation per unit area and time. NPP is usually expressed in terms of the
gross carbon fixed as a result of vegetation photosynthesis minus that which is consumed
for vegetation respiration [5,6]. Vegetation NPP effectively reflects the productivity of
vegetation under natural conditions and is inextricably linked to the status of vegetation
growth, which may characterize the quality of terrestrial ecosystems. NPP is often used as
an indicator of carbon sources and carbon sinks [7]. Currently, despite the combined effect
of global warming and anthropogenic disturbances, vegetation has recovered globally, and
the number of carbon sinks has increased [8]. The factors affecting vegetation variation are
more complex [9]. Therefore, investigating NPP’s spatiotemporal evolution characteristics
and complex driving mechanisms can provide empirical evidence for optimizing ecosystem
management and protection, as well as improving the adaptive capacity of vegetation to
climate change.

Currently, the data generated using remote sensing technology are extensively utilized
in several disciplines, especially ecology and meteorology. Thus, it is obvious that the data
generated/collected by using remote sensing technology/tools provide rapid, accurate,
and comprehensive descriptions concerning the structure of the terrestrial ecosystem. No
wonder then that such data play an increasingly important role in the model estimation of
vegetation NPP, such as in climate-related models [10], plant physiological and ecological
processes models [11], and light-use efficiency models [11,12]. The use of remotely sensed
products enhances the potential for the development of large spatial-scale NPP observations.
The Carnegie–Ames–Stanford Approach (CASA) model, based on maximum light–use
efficiency, has become the most widely used model for NPP estimation, as it fully considers
the environment-related conditions of an ecosystem as well as vegetation’s influence on
NPP estimation [13–15].

Some scholars have tried to use and modify the CASA model to investigate vegetation
NPP in different areas. For example, Sun et al. [12] used Moderate Resolution Imaging
Spectroradiometer (MODIS) data to drive the CASA model for estimating vegetation NPP
on the Tibetan Plateau and concluded that the estimation accuracy would be more than
adequate if this approach were adopted. Luo et al. [16] modified the CASA model by
considering the time-lag effect of meteorological factors on NPP simulations; the model
was then applied to simulate vegetation NPP of the Tibetan Plateau. In combination with
their research on the MP’s vegetation characteristics, Bao et al. [17] modified the maximum
light-use efficiency parameter to devise a more applicable CASA model for estimating the
MP’s vegetation NPP.

Research methods and contents on the interaction between vegetation and the natural
environment have also grown in sophistication as NPP estimation models have been
enhanced and statistical models have been enriched. By utilizing statistical models such
as the geographic detector model (GDM), a large number of studies have been conducted
concerning the NPP’s spatial patterns and variations and their driving variables [18].
The GDM created by Wang et al. [19] has been widely used to describe how different
variables affect the spatial pattern of vegetation NPP from a spatial perspective. The
GDM has also helped determine the combined effect of meteorological elements, soil type,
topography, geomorphologic type, vegetation type, and human activities (for example,
population density and number of livestock) on the spatial heterogeneity of vegetation
NPP [20,21]. For example, Guo et al. [22] investigated the causes of the spatiotemporal
NPP patterns on the Tibetan Plateau based on the GDM; they discovered that the primary
drivers of vegetation NPP varied depending on the study periods and ecological zones. Yin
et al. [10] used multiple regression and the partial correlation method to analyze the relative
effects of climate change and human activities on NPP at spatial scales in the Hengduan
Mountain region. However, there is no consensus about the role and importance of each
of these factors that affect NPP’s regional spatial distribution at various scales. In terms
of precipitation and temperature (as vital components of the natural environment) also
being drivers of NPP’s dynamics, it is widely acknowledged that they are the primary
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climatic variables determining NPP variations [23]. Additionally, several studies have
demonstrated that evapotranspiration and vegetation cover impact NPP dynamics [24].
The processes determining NPP dynamics, however, are intricate, and each contributing
element has the potential to not only function on its own but also interact with other factors.
Traditional correlation analysis has only taken into account how certain factors directly
affect NPP, which might occasionally vary from the situation on the ground. Hence, it
is critical to measure both the direct and indirect effects of different variables on NPP
dynamics to assess the total impact.

Fortunately, the widespread application of the structural equation model (SEM) in
ecology provides a new perspective for investigating the relationship between NPP’s
variables and changes. This method allows for not only the accurate quantification of the
combined effects of the many factors influencing NPP variations, but also the identification
of direct and indirect causal relationships between these factors [9,12]. Using a SEM,
Sun et al. [12] investigated the relationship between NPP on the one hand and soil types,
vegetation phenology, and climate change on the other, indicating a potential driving
mechanism for NPP variations. The SEM constructed by Yang et al. [9] showed that
vegetation dynamics were linked to continuous climate change and human activities and
that fundamental environmental variables, such as topography, may indirectly influence
vegetation change given that they affect human activities.

The Mongolian Plateau (MP), located in the northeastern part of Asia, is a typical
arid and semi-arid climate region. This region is ecologically vulnerable and sensitive to
climate change [25,26]. Undeniably, climate change and frequent drought episodes that
have altered ecosystems’ carbon cycles have also altered the MP’s vegetation dynamics in
recent years [27]. How the MP’s vegetation dynamics, characterized by the Normalized
Difference Vegetation Index (NDVI), respond to the natural environment there has attracted
more attention because of the unique characteristics of this ecosystem. Previous studies
in this regard have used the linear regression method to explain the relationship between
vegetation dynamics and their different drivers [28,29]. The effects of vegetation phenology
on NPP variations were also investigated by Bao et al. [14]. They used the partial correlation
analysis method for this purpose. The MP’s vegetation NPP has, however, changed recently
because of various disturbances. Additionally, the GDM and SEM have seldom been used
together in previous studies that examined the interaction between these drivers and
vegetation NPP. For this study, it was decided that the GDM and SEM should be combined
to fully explain the response mechanisms of NPP’s spatial patterns and changes in it owing
to complex natural environments.

With this background in mind, this study aimed to quantify the driving forces of variations
in NPP’s distribution and dynamics in the MP. This study used a modified CASA model to
calculate NPP during the growing season (from April to October) for different vegetation types;
the contributions of various environmental factors to NPP’s spatial patterns and dynamics
were further evaluated by using the GDM and SEM. The specific objectives of this study were
to achieve the following: (1) simulate the MP’s NPP by using the improved CASA model
and explore its spatiotemporal variations; (2) explore the influence of topography (elevation,
slope, aspect), vegetation (NDVI, vegetation type), soil types, and climate (solar radiation,
precipitation, temperature, and soil moisture) on NPP’s spatial pattern; (3) reveal the direct
and indirect effects of NDVI, solar radiation, precipitation, temperature, and soil moisture on
NPP variations in different vegetation types.

2. Study Area and Materials
2.1. Study Area

The MP (87◦43′–126◦04′E, 37◦22′–53◦23′N), consisting of Mongolia and the Inner
Mongolia Autonomous Region of China (hereafter Inner Mongolia), is an inland plateau in
the northeastern part of Asia. Its total area is 2.75 million km2, and its altitude ranges from
92 m to 3971 m [26]. The MP’s terrain is complex; it has relatively flat hills in the middle
and is mostly surrounded by mountains; it has the Gobi Desert to its southwest, the Altai
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and Hangay Mountains to its northwest, the Sajan and Kente Mountains to its north, the
Greater Khingan Mountains to its east, and the Yin Shan to its south (Figure 1a). The MP
falls in the typical temperate continental climate zone; it has cold and dry winters and hot
and humid summers. The average annual temperature there ranges from −10 ◦C to 11 ◦C.
Precipitation in most areas is less than 200 mm, and in some northern and northeastern
mountainous parts, it is relatively abundant. The hydrothermal conditions have led to
a diverse range of ecosystems across the MP. These include the meadow steppe, typical
steppe, desert steppe, alpine steppe, sandy land, desert, broad-leaved forest, coniferous
forest, shrub, cropland, and water body (Figure 1b).
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Figure 1. The MP’s topographic map (a) and the distribution of surface cover type (b). Note: MSP
(meadow steppe), TSP (typical steppe), DSP (desert steppe), ASP (alpine steppe), SLD (sandy land),
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2.2. Data Sources and Preprocessing
2.2.1. Topographic Dataset

To investigate the impact of topography on NPP’s spatial heterogeneity during the
growing season, the Advanced Spaceborne Thermal Emission and Reflection Radiometer
Global Digital Elevation Model (ASTER GDEM) topographic dataset, adopted by the
National Aeronautics and Space Administration (NASA), was used for this study (Table 1).
This topographic dataset has a spatial resolution of 30 m. The slope and aspect were also
calculated by drawing on this dataset.

Table 1. List of datasets used for this study.

Data Temporal
Resolution

Spatial
Resolution Period Dataset Name Source

Elevation, slope,
and aspect - 30 m × 30 m - ASTER GDEM http://Ipdaac.usgs.gov/products/ (accessed on

8 August 2022)

NDVI 16-day 500 m × 500 m 2000–2019 MOD13A1 https://lpdaacsvc.cr.usgs.gov/appeears/
(accessed on 8 August 2022)

NPP yearly 500 m × 500 m 2000–2019 MOD17A2 https://lpdaacsvc.cr.usgs.gov/appeears/
(accessed on 8 August 2022)

Temperature,
precipitation,

and soil moisture
daily 0.1◦ × 0.1◦ 2000–2019 ERA5-land https://cds.climate.copernicus.eu/cdsapp#!/

search?Type=dataset (accessed on 8 August 2022)

Solar radiation daily 0.05◦ × 0.05◦ 2000–2019 BESS https://www.environment.snu.ac.kr/bess-rad
(accessed on 8 August 2022)

Vegetation type - 500 m × 500 m 2009 Vegetation
type

National Atlas of Mongolia and 1:1,000,000 Inner
Mongolia vegetation map [17] (accessed on

8 August 2022)

Soil type - 1 km - FAO-HWSD

http://www.fao.org/soils-portal/soil-survey/
soil-maps-and-databases/harmonized-world-

soil-database-v12/en/ (accessed on
8 August 2022)

http://Ipdaac.usgs.gov/products/
https://lpdaacsvc.cr.usgs.gov/appeears/
https://lpdaacsvc.cr.usgs.gov/appeears/
https://cds.climate.copernicus.eu/cdsapp#!/search?Type=dataset
https://cds.climate.copernicus.eu/cdsapp#!/search?Type=dataset
https://www.environment.snu.ac.kr/bess-rad
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
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2.2.2. MODIS Datasets

The NDVI and NPP datasets were obtained from the MODIS products of MOD13A1
and MOD17A3, respectively, and they were downloaded from NASA’s Land Processes
Distributed Active Archive Center (https://lpdaac.usgs.gov/products/mod17a2hgfv006/
(accessed on 8 August 2022)). MOD13A1 data have spatial and temporal resolutions of
500 m and 16 days, and the maximum value composite method was adopted to generate
annual growing seasons’ time series data, which effectively reduced the influence of atmo-
sphere, solar zenith angle, and cloud pollution on the data. Additionally, the MOD17A3
NPP dataset with a spatial and temporal resolution of 500 m and one year were used for
this study as validation products for comparison with the modified CASA model-simulated
NPP values.

2.2.3. Reanalysis Dataset

It is difficult to describe the spatiotemporal condition of the various meteorological
elements as the MP has limited meteorological stations. Therefore, the monthly temperature,
precipitation, and soil moisture (7–28 cm) data regarding the growing seasons were derived
from the fifth-generation European Center for Medium-Range Weather Forecasts’ (ECMWF)
atmospheric reanalysis dataset of the global climate (ERA5). These data have a spatial
resolution of 0.1◦, and the high accuracy and good application foundation of this dataset in
arid and semi-arid areas have been verified [30].

2.2.4. Breathing Earth System Simulator Solar Radiation

Solar radiation data, with a spatiotemporal resolution of 0.05◦/day, were generated by
the Breathing Earth System Simulator (BESS). Ryu et al. [31] have validated the product against
measured data on a global scale with an R2 of 0.94, which had high application accuracy.

2.2.5. Vegetation Type

Data concerning vegetation types were obtained from a digitized vegetation map that
has a spatial resolution of 500 m [17]. It was rasterized from the National Atlas of Mongolia
(Institute of Geography, Mongolian Academy of Science, 2009, Ulaanbaatar, Mongolia) and
the 1:1,000,000 Inner Mongolia vegetation map. Based on this map, the vegetation types
were further divided into meadow steppe, typical steppe, desert steppe, alpine steppe,
sandy land, broad-leaved forest, coniferous forest, shrub, and cropland.

2.2.6. Soil Type

As soil type determines vegetation changes to a certain extent [21], the soil type data
with a spatial resolution of 1 km maintained by the Food and Agriculture Organization (FAO)
of the United Nations in the Harmonized World Soil Database (FAO-HWSD) were used to
explore the relationship between soils’ and vegetation’s spatial distributions. This dataset
contains mainly the FAO-74, FAO-85, and FAO-90 soil classification systems. This study
divided the soil types into 19 categories by adopting the FAO-90 soil classification system.

3. Methods
3.1. Data Preprocessing

The collected data, with different temporal and spatial resolutions (Table 1), were prepro-
cessed by format conversion, projection transformation, and clipping, and they were further
resampled or interpolated to 0.05◦. In addition, the monthly NDVI was generated by the
maximum value composite method. The monthly precipitation and solar radiation were gen-
erated from the sum composite method, and the monthly temperature and soil moisture were
generated from the mean value composite method. Meanwhile, the multi-annual average
values within the growing season from April to October of NDVI, precipitation, temperature,
soil moisture, and solar radiation data were extracted (Figure S1) and the data were classified
to generated attribute values that were suitable for GDM analysis.

https://lpdaac.usgs.gov/products/mod17a2hgfv006/
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3.2. Modified CASA Model

The monthly vegetation NPP in the MP was estimated using the modified CASA
model from 2000 to 2019 [14], which has been widely applicable to arid and semi-arid
regions. This model was driven by NDVI, solar radiation, precipitation, temperature, and
vegetation type data, etc. The following equations were applied:

NPP(x, t) = SOL(x, t)× FPAR(x, t)× 0.5× ε(x, t) (1)

FPAR(x, t) = min


( 1+NDVI(x,t)

1−NDVI(x,t)

)
−
( 1+NDVI(x,t)

1−NDVI(x,t)

)
min

(
1+NDVI(x,t)
1−NDVI(x,t)

)
max
−
( 1+NDVI(x,t)

1−NDVI(x,t)

)
min

, 0.95

 (2)

where SOL(x, t) and FPAR(x, t) represent the total solar radiation and the proportion of
photosynthetically active radiation absorbed by vegetation, respectively. SOL(x, t) was
substituted using the sum of BESS solar radiation and FPAR(x, t) was calculated based on
MODIS NDVI data. ε(x, t) represents the actual light-use efficiency of pixel x at moment t,
stated as follows:

ε(x, t) = Tε1(x, t)× Tε2(x, t)×Wε(x, t)× εmax (3)

where Tε1(x, t) and Tε2(x, t) reflect the effect of temperature on light-use efficiency at low and
high temperatures, Wε(x, t) represents the stress of moisture on vegetation, and εmax is the
maximum light-use efficiency that can be achieved by vegetation under ideal circumstances.

3.3. Theil–Sen Trend and Mann–Kendall Test

The Theil–Sen trend analysis method is a stable methodology of non-parametric statistics
which is computationally efficient and less affected by outliers [32]. Hence, it is frequently used
to calculate the trend of change in long-term series data. Thus, it was adopted for this study to
calculate the trend of variation in NPP. The relevant equation is as follows:

β = Medien[
(
xj − xi)/(j− i)

]
, ∀ j > i (4)

where xi and xj are the NPP’s pixel values in the growth season of year i and year j,
respectively, with NPP increasing for β > 0 and decreasing for β < 0.

The Mann–Kendall test is a non-parametric statistical test that does not rely on mea-
sured values to follow a normal distribution or linear trend of change; as such it is not
affected by either missing values or outliers. It is usually used in combination with the
Theil–Sen trend analysis method [32]. The pertinent statistical tests are as follows:

Z =


S√

Var(S)
(S > 0)

0 (S = 0)
S+1√
Var(S)

(S < 0)
(5)

S = ∑n−1
i=1 ∑n

j=i+1 sign
(

xj − xi
)

(6)

sing
(
xj − xi

)
=


1 (xj − xi > 0)
0

(
xj − xi = 0

)
−1 (xj − xi < 0)

(7)

Var(S) =
n(n− 1)(2n + 5)

18
(8)

where n represents the length of the time series, and the test statistic S is approximately
normally distributed when n ≥ 8. For the present study, the significance of the changing
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trend of vegetation NPP was tested at a confidence level of 0.05. The time series passed the
significance test if |Z| > 1.96, and the opposite, (|Z| ≤ 1.96), did not pass the significance
test. The results of the Theil–Sen trend analysis and the Mann–Kendall test classified NPP’s
spatial changes as a significant increase (β > 0, |Z| > 1.96), an insignificant increase (β > 0,
|Z| ≤ 1.96), a significant decrease (β < 0, |Z| > 1.96), and an insignificant decrease (β < 0,
|Z| ≤ 1.96).

3.4. GDM

The GDM, as a tool for detecting the spatial heterogeneity of geographical variables,
can properly quantify the relationship between the spatial distribution of the independent
and dependent variables [19,30]. The GDM can determine the explanatory power of the
independent variables on the spatial differentiation of the dependent variable on the one
hand and assess whether the interaction between factors strengthens or diminishes the
explanatory power of the dependent variables on the other hand. In this study, therefore,
we applied the GDM to quantify the main driving factors of the spatial distribution of NPP
in the MP in order to reveal the influencing mechanisms behind the distribution of NPP.
The extent to which the influence factor explained the NPP distribution was expressed as
the q statistics:

q = 1−∑l
h=1 Nhσ2

h /Nσ2 (9)

where h= 1, 2, . . . , l is the classification or partition of the NPP or driving factors, Nh and N
denote the number of pixels in layer h and in the region, respectively, and σ2

h and σ2 represent
the total variance of NPP values in layer h and in the region. The q value reflects the strength
of the factor’s explanation of NPP’s spatial distribution, ranging from 0 to 1. The greater the q
statistic, the more the explanatory power of the factor on NPP’s spatial distribution.

Interaction detection is used to identify whether the two factors acting together en-
hance or diminish NPP’s explanatory power or whether the factors act independently of
each other. There were five types of detecting results based on the interaction detection,
including nonlinear weakening, single-factor nonlinear weakening, bivariate enhancement,
nonlinear enhancement, and independent relationship. The results were calculated by com-
paring every single factor’s q-statistics with the interaction q-statistics [q(X1 ∩ X2)], such as
bivariate enhancement {q(X1 ∩ X2) > max[q(X1), q(X2)]} or the non-linear enhancement
{q(X1 ∩ X2) > [q(X1) + q(X2)]} effect. An R version of the GDM was used for this study,
based on the “GD” package in R 4.1.0.

3.5. SEM

The SEM is a complex multivariate modeling approach of nested regressions; it in-
cludes path analysis, factor analysis, and maximum likelihood analysis [33], and it has been
widely used in ecology, psychology, and management [34]. The SEM’s advantages are that
it can determine the interactions between complex multiple variables and identify direct
and indirect causal effects of independent and dependent variables quantitatively [35,36].

The objective variable for this study was NPP’s variations in the MP from 2000 to
2019. Based on the knowledge of the mechanisms that drive NPP variations, this study’s
main hypotheses were as follows: (1) With the MP’s NPP as a starting point, it was hy-
pothesized that the NDVI, solar radiation, temperature, precipitation, and soil moisture
would cause NPP variations directly. (2) Precipitation, temperature, and solar radiation
could have indirect effects on NPP variations with soil moisture and the NDVI as inter-
mediate variables. (3) Soil moisture influences NDVI changes, which in turn influence
NPP variations indirectly. These hypotheses were converted into a graphical conceptual
model describing the interactive relationships between NPP variations and their driving
factors (Figure 2). The goodness-of-fit index (GFI), comparative fit index (CFI) > 0.9, and
standardized root mean square residual (SRMR) < 0.08 were used to determine the optimal
model to explain NPP variations. It was notable that the SEM model was saturated with
GFI = CFI = 1 and SRMR = 0. The fitted coefficients were not focused on as the model
saturated; instead, only the significance and sizes of normalized path coefficients of the
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model were emphasized [37]. All SEM-driven analyses were carried out using the package
“lavaan” in R 4.1.0.
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Figure 2. Conceptual structural equation mode. Note: Arrows between variables to NPP identified
the cause and effect relations. Note: precipitation (PRE), temperature (TEMP), soil moisture (SM),
and solar radiation (SR).

4. Results
4.1. Spatial Distribution of Vegetation NPP in the MP

The simulated yearly NPP and the MODIS NPP product were analyzed through
correlation to verify the accuracy of the modified CASA model (Figure 3). The simulated
NPP was highly correlated with the MODIS NPP, with the coefficient of determination
being 0.78 (p < 0.001) and the mean relative error (MRE) being 0.27, which indicated that
the simulation accuracy of the modified CASA model was 73%. The root mean square error
(RMSE) and mean absolute error (MAE) between simulated NPP values and MODIS NPP
products were 83.33 g·C·m−2 and 63.00 g·C·m−2, respectively. The results indicate that
the simulated NPP, based on the modified CASA model, reflected the real condition of the
MP’s vegetation NPP. Although there is a propensity to overestimate when simulated NPP
is compared with MODIS NPP, the coefficient of 1.06 was within a reasonable range and
can be used for further studies.
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Figure 3. Comparison between the simulated NPP using the CASA model and MODIS NPP.

The average NPP in the growing season showed obvious spatial heterogeneity from
2000 to 2019, with an average value of 256.20 g·C·m−2. Spatially, the MP’s long-term
average NPP ranged from 30.99 g·C·m−2 to 689.40 g·C·m−2, with an increasing trend
from the southwest to northeast (Figure 4a), and it showed high consistency with the
distribution of vegetation types. High values (>330.14 g·C·m−2) of NPP were concen-
trated in the forested and meadow steppe-covered regions in the MP’s northern and
northeastern areas, while low values (<136.30 g·C·m−2) were found in sparsely vegetated
areas along the boundary of non-vegetated regions. As for different vegetation types,
the NPP of broad-leaved forests (515.23 g·C·m−2) was the highest, followed by those of
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meadow steppe (440.13 g·C·m−2) and coniferous forests (344.12 g·C·m−2). The remain-
der of the six vegetation types’ NPPs, ranked from largest to smallest, were as follows:
cropland (297.52 g·C·m−2), shrub (291.30 g·C·m−2), typical steppe (222.97 g·C·m−2), sandy
land (210.85 g·C·m−2), alpine steppe (208.14 g·C·m−2), and desert steppe (86.99 g·C·m−2)
(Figure 4b).
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4.2. Spatiotemporal Variations of NPP in the MP

During the study period, the vegetation NPP in the MP increased from 229.15 g·C·m−2

in 2000 to 251.84 g·C·m−2 in 2019, with a significant rate of increase, i.e., 1.54 g·C·m−2·a−1

(p < 0.05; Figure 5a). As for different vegetation types, all of them showed an increasing trend
in their NPP. Cropland had the highest NPP increase rate (2.92 g·C·m−2·a−1), followed by
sandy land (2.54 g·C·m−2·a−1), meadow steppe (2.51 g·C·m−2·a−1), shrub (2.43 g·C·m−2·a−1),
alpine steppe (2.10 g·C·m−2·a−1), broad-leaved forest (2.04 g·C·m−2·a−1), typical steppe
(2.04 g·C·m−2·a−1), and coniferous forest (1.66 g·C·m−2·a−1). The NPP of desert steppe was
the lowest (0.80 g·C·m−2·a−1) (Figure 5b). Except for the NPP of desert steppe and broad-
leaved forest, the increasing NPP trends of other vegetation types passed the significance
test. Similarly, the changing rate of NPP showed an obvious spatial heterogeneity in
the MP, with the changing rates ranging from −13.85 g·C·m−2·a−1 to 11.87 g·C·m−2·a−1

(Figure 6a). The increasing trend concerning vegetation NPP prevailed in 95.56% of the
plateau’s vegetated area. Of this, 23.52% of the area passed the significance test (p < 0.05),
mainly being distributed near the Altai Mountains, the Hangay Mountains, and south of the
Yin Shan. Only 0.08% and 4.36% of the vegetated area showed trends of significant decrease
and insignificant decrease, respectively, and these regions were sporadically distributed
in the northern and eastern localized regions of Inner Mongolia (Figure 6b). These results
indicate that vegetation areas with increasing NPP are greater in number than those with
decreasing NPP and that the carbon sequestration capacity of vegetation in the MP has
increased over twenty years.

4.3. Main Factors Affecting NPP’s Spatial Pattern

To investigate the influence of different environmental factors on the spatial distribu-
tion of NPP in the MP, the q-statistics of ten drivers were calculated using the GDM. As
shown in Figure 7, all these factors had significant effects on the spatial heterogeneity of
NPP in the MP (Figure 7). This result suggests that the NDVI, precipitation, soil moisture,
and solar radiation play a dominant role in the spatial heterogeneity of NPP, with q-statistics
higher than 0.50. The NDVI (0.86) has the highest q-statistics for the spatial heterogeneity
of NPP, followed by solar radiation (0.71), precipitation (0.67), vegetation type (0.67), soil
moisture (0.57), and soil type (0.57). Notably, temperature and topography affected NPP’s
spatial distribution to some extent, with a q-statistic less than 0.30. This indicates that their
contribution to NPP’s spatial distribution was relatively weak. Among the topographic
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elements, the q-statistic of elevation (0.19) was significantly higher than that of slope (0.11)
and aspect (0.006).
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The interaction of the bi-factors enhanced the explanatory power of different environ-
mental factors on NPP’s spatial distribution (Figure 8). The q-statistics for the interaction
between the NDVI and other factors happened to be greater than those of most other
interactions, indicating that the NDVI, as the dominant factor in the distribution of NPP,
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has the greatest influence on NPP when interacting with the other factors. It was clear
that precipitation, soil moisture, and solar radiation were the essential determinants for
the productivity of vegetation. Thus, all of the interactions between the variables, where
solar radiation, precipitation, and soil moisture have a greater influence, were bivariate
enhancements. The explanatory power of elevation, slope, and aspect for NPP was no
more than 0.20, with single-factor effects. Further, even for these interactions, the effect on
NPP’s distribution was low and showed more non-linear enhancements.
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4.4. Spatio-Temporal Variations of Different Driving Factors

Figure 9 shows the spatial variations of the NDVI, solar radiation, precipitation, tem-
perature, and soil moisture during the growing seasons from 2000 to 2019 in the MP. In
general, an increasing trend of the NDVI prevailed in the MP, and the areas of increase and
decrease were similar to NPP variations’ regional distributions, with these areas showing
increased and decreased NDVI values that account for 67.63% and 32.37% of the whole veg-
etated areas, respectively (Figure 9a). Almost the entire plateau showed an increase in solar
radiation (90.81%), while only 9.19% exhibited a reduction in solar radiation (Figure 9b). De-
creased solar radiation was mainly located to the south and north of the Hangay Mountains
and on the eastern side of the Sajan and Greater Khingan Mountains. Further, increased and
decreased temperature accounted for 83.11% and 16.89% of the vegetated area, respectively.
Temperature decreased near the Sajan Mountains to the east of Mongolia and the eastern
areas of Inner Mongolia (Figure 9c). Similar spatial variations existed in precipitation and
soil moisture, with an obvious spatial heterogeneity. This is consistent with the fact that
soil moisture is closely related to precipitation. Precipitation and soil moisture decreased
in the Altai Mountains, the Sajan Mountains, the Yin Shan, and areas north of the Greater
Khingan Mountains as well as in the elevated areas of the Kente Mountains, and the pro-
portions were 33.63% in precipitation and 42.97% in soil moisture. The changing rates
of precipitation and soil moisture ranged from −6.27 mm·a−1 to 10.34 mm·a−1 and from
−0.002 m3·m−3·a−1 to 0.009 m3·m−3·a−1, respectively (Figure 9d,e). In general, NDVI
restoration was reported in the MP, with an overall warmer and humid trend. However, the
moisture content decreased in Mongolia’s central and western regions and Inner Mongolia’s
central-western and northeastern regions.
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As for different vegetation types, NDVI values increased significantly for each one of
them, with the increasing rate ranging from 0.002 to 0.005 (Figure S2). As for solar radiation,
desert steppe received the most solar radiation and showed high variability, while solar
radiation in broad-leaved forests remained at a relatively stable level. It was also found
that there has been a continuous increase in solar radiation over the years; however, no
significant upward trend was observed except in alpine steppe’s case (Figure S3). Similarly,
temperature showed an insignificant increasing trend for different vegetation types in the
MP (Figure S4). Except for desert steppe, precipitation and soil moisture displayed an
upward trend for the vegetation types (Figures S5 and S6).

4.5. Pathway Analysis of the Impact of Driving Factors on NPP Changes

To better understand the influence of climate change on NPP in the MP, a pathway
analysis of the impact of the changes of environmental factors on NPP was carried out
(Table 2). The finally fitted SEM for the MP is presented in Figure 9a. The performance of
the fitted model was satisfactory, with CFI = GFI = 1 and SRME = 0. The SEM that was
constructed with the selected variables (NDVI, solar radiation, temperature, precipitation,
and soil moisture) explained 37% of the MP’s NPP variations (R2 = 0.37). Generally, the
NDVI was the natural variable that best reflected NPP change, with its total effect being
0.47. As an intermediary variable, all other driving factors had an indirect effect on NPP
given their influence on the NDVI. Solar radiation’s indirect effect through the NDVI
(0.04) on NPP change (solar radiation→ NDVI→ NPP) was even higher than the direct
effect (−0.03). Precipitation was also highly related to NPP change, with a total influence
coefficient of 0.33. Other than precipitation’s direct effect, it also indirectly affected NPP
change through the NDVI and soil moisture, with the influence coefficients being 0.09 and
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0.08, respectively. Temperature displayed a negative effect on NPP change, with a total
influential coefficient of −0.14, indicating that the continuously warming climate is not
conducive to the enhancement of vegetation’s carbon sequestration capacity.

Table 2. The direct, indirect, and total effects of PRE, SR, TEMP, NDVI, and SM on NPP variations in
the MP based on the SEM.

Pathway MP MSP TSP DSP ASP CRF BLF SLD SHR CRP

PRE

PRE→ NPP 0.11 ** −0.20 ** 0.37 ** 0.33 ** −0.12 ** −0.01 −0.32 ** 0.19 ** −0.04 0.41 **
PRE→ NDVI→ NPP 0.09 ** 0.01 0.06 ** −0.01 0.24 ** 0.02 ** −0.03 ** 0.15 ** 0.28 ** −0.31 **

PRE→ SM→ NPP 0.08 ** 0.22 ** 0.02 ** −0.11 ** 0.23 ** 0.13 ** 0.22 ** 0.16 ** 0.17 ** 0.00
PRE→ SM→ NDVI→ NPP 0.05 ** 0.05 ** 0.05 ** −0.08 ** 0.14 ** 0.19 ** 0.08 ** 0.07 ** −0.08 * 0.33 **

Total 0.33 ** 0.08 ** 0.50 ** 0.13 ** 0.49 ** 0.33 ** −0.05 0.57 ** 0.33 ** 0.43 **

SR

SR→ NPP −0.03 ** −0.04 ** −0.03 ** −0.05 ** −0.08 ** 0.07 ** 0.15 ** 0.05 ** 0.11 ** 0.10 **
SR→ NDVI→ NPP 0.04 ** −0.02 ** 0.02 ** −0.11 ** 0.09 ** −0.02 ** −0.03 ** 0.04 ** 0.30 ** 0.19 **

SR→ SM→ NPP 0.01 ** 0.02 ** 0.00 0.00 0.06 ** 0.03 ** 0.07 ** 0.00 −0.01 ** 0.00
SR→ SM→ NDVI→ NPP 0.00 ** 0.00 0.00 0.00 0.02 ** 0.03 ** 0.02 ** 0.00 0.01 * 0.01 **

Total 0.02 ** −0.04 ** −0.01 −0.16 ** 0.09 ** 0.11 ** 0.21 ** 0.09 ** 0.41 ** 0.30 **

TEMP

TEMP→ NPP −0.19 ** −0.30 ** −0.14 ** −0.02 ** 0.17 ** 0.01 −0.09 ** 0.15 ** 0.10 ** 0.16 **
TEMP→ NDVI→ NPP 0.08 ** 0.04 ** 0.08 ** 0.04 ** −0.01 0.08 ** 0.05 ** 0.00 0.10 ** −0.15 **

TEMP→ SM→ NPP −0.02 ** −0.02 ** −0.01 ** 0.05 ** −0.04 ** −0.03 ** −0.05 ** −0.10 ** −0.06 ** 0.00
TEMP→ SM→ NDVI→ NPP −0.01 ** 0.00 −0.01 ** 0.02 ** −0.02 ** −0.03 ** −0.01 ** −0.03 ** 0.02 * −0.10 **

Total −0.14 ** −0.28 ** −0.08 ** 0.09 ** 0.10 ** 0.03 * −0.10 ** 0.02 0.16 ** −0.09 **

NDVI NDVI→ NPP 0.47 ** 0.21 ** 0.38 ** 0.54 ** 0.61 ** 0.50 ** 0.25 ** 0.64 ** 0.74 ** 0.69 **

SM
SM→ NPP 0.11 ** 0.28 ** 0.04 ** −0.22 ** 0.36 ** 0.18 ** 0.32 ** 0.27 ** 0.24 ** 0.00

SM→ NDVI→ NPP 0.05 ** 0.05 ** 0.05 ** −0.08 ** 0.14 ** 0.19 ** 0.08 ** 0.07 ** −0.08 * 0.33 **
Total 0.16 ** 0.33 ** 0.09 ** −0.30 ** 0.50 ** 0.37 ** 0.40 ** 0.34 ** 0.16 ** 0.33 **

Note: Significant effects are at p < 0.05 (*) and p < 0.001 (**).

As for different vegetation types, all of the predictor variables together explained
19%, 43%, 38%, and 61% of NPP variation in the four steppe types: meadow steppe,
typical steppe, desert steppe, and alpine steppe (Figure 10b–e). Different steppe types
responded varyingly to all of the factors. It is clear that precipitation directly affects
NPP negatively in meadow steppe (−0.20) and alpine steppe (−0.12), where relatively
abundant precipitation in the environment resupplied soil moisture for vegetation growth
(precipitation → soil moisture → NPP), with coefficients of 0.22 and 0.23, respectively.
For desert steppe, however, the direct and indirect effects of soil moisture on NPP were
both negative. Similarly, there was a negative direct effect of solar radiation on NPP
accumulation for different steppe types, with the direct influence coefficients being −0.04,
−0.03, −0.05, and −0.08 for meadow steppe, typical steppe, desert steppe, and alpine
steppe, respectively. Temperature had an insignificant direct effect in the case of desert
steppe and a significant direct effect in the case of meadow steppe, typical steppe, and
alpine steppe. Except for alpine steppe, temperature was directly and negatively related to
NPP in other steppe types.

About 34% and 17% of NPP variations in coniferous forests and broad-leaved forests
were explained by the constructed SEM (Figure 10f,g, CFI = GFI = 1, and SRME = 0).
Precipitation and temperature mainly and indirectly contributed to the NPP change in
coniferous forests. The direct contribution of precipitation and temperature to NPP changes
in coniferous forests was not significant, with path coefficients of −0.01 and 0.01. This
was not consistent with broad-leaved forests’ influential pathway, which was directly
affected by precipitation and temperature, with influence coefficients of 0.32 and −0.09.
The increase in solar radiation and the NDVI directly resulted in increased NPP in forests.
While controlling for other variables, temperature had an indirect effect on NPP changes in
coniferous forests and broad-leaved forests, mainly by affecting the NDVI. In comparison
to precipitation, forests in the MP were more sensitive to soil moisture changes. Especially
for NPP in broad-leaved forests, soil moisture was the most dominant driving factor, and
the total effect was 0.40. Soil moisture was the second dominant driving factor for NPP in
coniferous forests (0.37), which is less than the effect of the NDVI (0.50) on it.
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(p < 0.05); dotted lines represent insignificant paths.

For sandy land, shrub, and cropland, the SEM explained the relatively high degree of
NPP variation of 64%, 65%, and 58%, respectively (Figure 10h,j, CFI = GFI = 1, and SRME = 0).
The most significant responses of increased NPP to changed NDVI values were found for
sandy land, shrub, and cropland with coefficients of 0.64, 0.74, and 0.69, respectively. Solar
radiation had a significant indirect effect on NPP variations through the NDVI for these
types. Temperature and precipitation indirectly affected NPP variations, on the one hand by
promoting the change of NDVI values and on the other by affecting soil moisture. It was
found that precipitation was the primary moisture factor for NPP variations in sandy land,
shrub, and cropland, with total effects of 0.57, 0.33, and 0.43, respectively.
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5. Discussion
5.1. Interpretation of the Spatial Distribution Characteristics of the MP’s Vegetation NPP

The present study found that a strong spatial heterogeneity existed in vegetation NPP
from 2000 to 2019 in the MP, showing an increasing trend from southwest to northeast,
which was consistent with the conclusions of previous studies [14,38]. The vegetation
types having more complex ecosystems and soil types with higher nutrient contents were
consistent with the distribution of regions with high NPP values. This phenomenon
was inseparable from regional differences in the natural environment. The results of the
GDM showed that the geographical distribution of NPP was mainly influenced by the
vegetation’s NDVI, climate, soil type, and topography. Meanwhile, the various natural
factors often did not work alone; instead, two or more factors acted together. Both factors
interacted with each other to enhance the explanatory power of NPP’s driving factors such
that the distribution of NPP was determined by the interaction of different drivers.

The NDVI had the largest contribution (86%) to the distribution of NPP, and explained
the spatial pattern of NPP by interacting with other driving factors to a greater extent (q-
statistics). For one thing, a high NDVI frequently results in vegetation’s high photosynthetic
efficiency during the growing season, better vegetation growth status, and higher carbon
sequestration capacity, thereby accumulating more NPP [23]. Specifically, the NDVI reflects
vegetation greenness, and the photosynthetic efficiency of vegetation enhances with the
increase in greenness [25], thus increasing the accumulation of NPP. For another, the NDVI
could somewhat reflect the amount of vegetation biomass and influence the distribution of
NPP, as it is the best indicator of vegetation growth status and spatial distribution density.
The results of this study were in agreement with the findings of Yang et al. [39], who
discovered that the greater values of NPP were distributed in regions with more vegetation
cover. Moreover, a certain connection between the NDVI and NPP was identified, as the
former was the main parameter for calculating the latter in the modified CASA model.

The intensity of solar radiation contributed to 71% of NPP distribution by affecting
the photosynthesis of vegetation. Solar radiation is the major driving force maintaining
surface temperature and promoting vegetation activity, and its interaction with other
factors should not be neglected since solar radiation usually affects NPP distribution
by influencing vegetation growth and hydrothermal conditions. Vegetation coverage is
typically linked to the amount of solar radiation an area receives, which means that areas
with scant vegetation have less area available for photosynthesis, leading to lower levels
of vegetation productivity despite higher levels of solar radiation. In contrast, in rich
vegetation areas sufficient solar radiation interception by vegetation stimulates vegetation
to photosynthesize and produce more organics [40].

Water condition is one of the most critical factors affecting the growth of vegetation in
arid zones [41]. The primary water exchange channels, precipitation and soil moisture, as
well as their interplay, affected surface evaporation and vegetation transpiration, which
altered regional water balance. Vegetation only flourishes in the presence of enough water
content, particularly in arid and semi-arid regions [42]. Precipitation and soil moisture
explained 67% and 57% of the NPP‘s distribution, respectively. As the main water resource
for the MP, precipitation affected NPP by causing direct effects on vegetation photosynthesis
and respiration on the one hand and by providing additional water for vegetation growth
through soil moisture on the other. In addition, soil moisture was often replenished
from the melting of snow and permafrost in the MP. The moisture condition created by
the combination of precipitation and soil moisture facilitated the vegetation growth and
productivity accumulation.

Further, it was found that vegetation type, another significant component, accounted
for 67% of the spatial distribution of NPP. The northern MP’s broad-leaved forest and
meadow steppe were determined to have the highest NPP, whereas sandy land and high-
elevation alpine steppe had the lowest NPP. This finding was consistent with that of a
previous study, which found that locations with high concentrations of forests see the
highest NPP [23]. This result may be caused by the various vegetation types displaying
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varying sensitivities to general climatic and environmental conditions [21]. Additionally,
some studies have pointed to a strong correlation between NPP and the physiological traits
of the vegetation itself [43,44]. Forests and meadow steppe have higher vegetation cover
compared to other vegetation types, which can lessen the loss of soil moisture, owing to
evapotranspiration, thus improving the conditions for vegetation to develop and carbon
sequestration to take place.

About 57% of NPP’s geographic difference was explained by soil type. The function
of soil is to hold water, retain heat, and store nutrients, thus fostering the growth of
vegetation [21]. Nutrient soils were often found in the MP’s northern and northern-eastern
regions. These soils support the growth of vegetation and offer the necessary conditions
for NPP augmentation [2]. Temperature was also one of the important conditions for
vegetation growth, but its explanatory strength for NPP’s distribution in the MP is only
26%. Topographic elements may affect NPP distribution by altering the availability of
hydrothermal conditions for vegetation growth [36]. For the different topographic factors,
the impact of elevation on NPP was far more significant than that of slope and aspect, but
topography was not the main factor contributing to NPP’s spatial pattern.

5.2. Effect Pathways of Different Driving Factors on NPP Changes

Except for desert steppe and broad-leaved forest, NPP’s interannual variation showed
a significant increasing trend for different vegetation types from 2000 to 2019 in the MP
(Figure 4b). This phenomenon is inseparable from the changes in climate and vegetation
cover. For instance, various forest ecosystems have a complex ecosystem structure and
strong capacity to cope with climate change. This provides large vegetation carbon stocks
and helps maintain a more stable productivity level when compared with other vegetation
types [45]. The largest interannual variation in NPP of cropland can probably be attributed
to the intensity of productivity increases maintained by long-term anthropogenic irrigation
activities [45]. NPP of different vegetation types experienced different responses, depending
on the environmental factors. The NDVI, solar radiation, temperature, precipitation, and
soil moisture were directly affected by NPP changes, while the NDVI and soil moisture
served as intermediary variables that indirectly affected NPP changes, according to the
SEM. The variables that affect variations in NPP interact, as was expected.

For the MP, on the whole, precipitation and soil moisture were highly related to
NPP variations, with increased moisture benefiting vegetation growth [36]. Possibly,
increased temperature had a negative direct and total effect on the MP. It was shown
that soil moisture was increasing in the plateau, which was strongly correlated with the
increase of precipitation. Increased precipitation rapidly replenishes soil moisture to a large
extent during the growing season (Figures 9 and 10a); the negative correlation between
soil moisture and temperature can be explained by the fact that increased temperature
promotes vegetation transpiration and soil evapotranspiration, resulting in loss of soil
moisture. Therefore, even though an increase in temperature would probably encourage
vegetation growth and positively affect NDVI values, it could also result in soil moisture loss
and raise the possibility of local drought, which could negatively affect vegetation carbon
sequestration with continuous rising temperatures [46]. In contrast with the hydrothermal
conditions, solar radiation variation contributes less to NPP variations. However, increased
solar radiation promotes changes in vegetation NDVI values, which act on vegetation
photosynthetic utilization efficiency, thereby enhancing vegetation carbon sequestration.

For different vegetation types, precipitation mostly provided water for NPP accumula-
tion, indirectly through soil moisture, for meadow steppe, alpine steppe, coniferous forest,
broad-leaved forest, and cropland. Even in relatively humid and vulnerable ecosystems
(such as meadow steppe, alpine steppe, coniferous forest, and shrub) where the direct effect
of increased precipitation promoted carbon assimilation and stimulated ecosystem respira-
tion, it could result in carbon loss [24]. However, the increased precipitation was converted
to soil moisture utilized by vegetation for carbon assimilation; the NPP’s increased trend
in these vegetation types made this indirect effect of precipitation on vegetation critical
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as a means of compensation for potential carbon loss [41]. The capacity of vegetation to
photosynthesize strengthened with increased solar radiation (Figure S3), if other conditions
were maintained [47]. Nevertheless, for the four steppe types, the inherently more intense
solar radiation may result in the closure of vegetation stomata during increased solar
radiation (Figure S3) so that photosynthesis would weaken or discontinue, causing directly
negative effects on NPP accumulation [48].

NDVI values increased in large areas of the MP, and all vegetation types showed a
significant increase in NDVI values (Figures 9 and S2). In the past years, NDVI variation
has been affected by precipitation, temperature, soil moisture, and solar radiation to
different extents. It had greater influence on NPP when it was the intermediate variable
of precipitation and soil moisture, which further illustrates the importance of moisture on
vegetation in arid and semi-arid areas. Furthermore, the previous study showed that the
NDVI was well-correlated with the biomass and leaf area index, which could indirectly
reflect vegetation activity and productivity [20]. NDVI variation expressed the change in
the intensity of vegetation’s photosynthesis, and its total effect was in the top position
among different vegetation types. Similarly, in addition to directly contributing to NPP
because of improved photosynthesis, increased NDVI values also added surface area for
vegetation transpiration, thereby acting on vegetation carbon sequestration by altering the
water vapor content of the vegetation’s growing environment [46].

Although temperature increases can enhance carbon sequestration by strengthening
vegetation photosynthesis, the consequent excessive evaporation and increased vegetation
respiration in a growing season may negatively affect NPP variations [24,49], such as in the
case of meadow steppe, typical steppe, broad-leaved forest, and coniferous forest. While
increased temperature reduced the amount of soil moisture, the supplementation of soil
moisture by increased precipitation properly compensated for this moisture loss (Figure 10).
However, in desert steppe, which was deficient in precipitation, soil moisture loss caused
by increased temperatures was not supplemented by precipitation (Figure S6). Similarly,
vegetation primarily absorbed soil moisture through the root system for vegetation growth
and development [41], while the increased soil moisture of different vegetation types
provided moisture for vegetation growth.

The SEM constructed for this study explained 17–65% of the NPP variations because
the factors that influence NPP variations are not limited to those discussed in this study. It
was concluded that the lower the degree to which the model explained NPP changes in a
certain vegetation type, the greater the possibility that other driving factors existed in the
areas in question. For instance, grazing activities may disturb the changes that would have
taken place in vegetation’s carbon sequestration capacity in meadow steppe and typical
steppe [29]. While forests constitute the main carbon reservoir of terrestrial ecosystems,
the weakening impact of climate change on them in recent years underlines the role of
ecological restoration projects concerning carbon sequestration [50]. It was interesting to
note that some of the indirect effects of the influences on NPP changes had the opposite
direct effects. One explanation for this phenomenon is that there may have been a reduction
in the direct effect of the variables concerned with NPP change through other indirect
pathways [51].

Previous studies have shown that shifting land-use types were most likely influenced
by human activities [52]. From 2000 to 2019, desert to grassland, grassland to forest,
and forest to grassland shifts accounted for 39.60%, 17.29%, and 16.05% of the land-use
conversion in the MP, respectively (Figure S7a), which increased the NPP of land-use
type shifting areas by 38.36%, 16.29%, and 14.40% based on the MCD12Q1 vegetation
classification [52]. The result further demonstrates that a series of ecological management
policies such as sandy land management, afforestation, and return of cropland to grass
in Mongolia and Inner Mongolia have achieved initial success in alleviating soil erosion
and enhancing the carbon sequestration capacity of vegetation during the 21st century [53].
While the grassland to cropland shift accounted for 15.10% of the area, 14.57% of the
increase in NPP was probably caused by anthropogenic irrigation activities. Although
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city expansion may lead to a decrease in NPP, it does not account for the main effect. The
livestock population reflected the trajectory of human activities to a certain extent, and
the areas with high livestock density were mainly located in central Mongolia and most
parts of Inner Mongolia (Figure S7b). It has been shown that livestock population can
increase vegetation productivity by providing nutrients for vegetation growth; however,
this phenomenon only occurred during the transition from light grazing to moderate
grazing intensity [38,54]. Therefore, the development of appropriate grazing policies for the
region is an issue that should not be neglected in improving the ecology and productivity
of vegetation in pastoral areas.

To clarify the mechanisms influencing vegetation NPP’s accumulation, future studies on
this subject should not limit their assessment to the study of climate change alone. Further, the
association of factors in nature may not be explained clearly by correlation analysis alone, and
more complex relationships (e.g., causal relation) also need to be constructed to describe such
interactions. In the near future, quantification of the impact of human activities on nature and
coming up with a better explanation of SEM impact pathways could also be some of the focus
areas in the exploration of vegetation carbon sequestration.

6. Conclusions

This study used the modified CASA model to analyze vegetation NPP during the
growing season in the MP and explore the contributions of topography, soil type, climate,
and vegetation cover on NPP’s spatial distribution. Accordingly, the direct and indirect
effects of climate change and variation of the NDVI on NPP changes were revealed. The
main conclusions are as follows:

(1) NPP’s spatial distribution in the MP during the growing season showed a decreasing
trend from the northeast to the southwest. For different vegetation types covered by this
study, NPP ranked as follows: broad-leaved forest > meadow steppe > coniferous forest
> cropland > shrub > typical steppe > sandy land > alpine steppe > desert steppe.

(2) The NPP during the growing season showed an increasing trend in different vege-
tation types, with significant variations in NPP for different vegetation types except
for desert steppe and broad-leaved forest. In addition to providing larger vegetation
carbon stocks, forest ecosystems also maintain more stable productivity levels.

(3) Vegetation cover, moisture condition, and solar radiation were the dominant factors
in NPP’s spatial distribution, followed by temperature and topographic elements.
These factors contributed to the spatial distribution of NPP in descending order of
explanation: the NDVI (0.86), solar radiation (0.71), precipitation (0.67), vegetation
type (0.67), soil moisture (0.57), soil type (0.57), temperature (0.26), elevation (0.19),
slope (0.11), and aspect (0.006).

(4) The SEM constructed for this study explained 17% to 65% of the NPP variations,
and the NPP change was dominated by the direct effects of the NDVI and moisture
condition (precipitation and soil moisture). The total effects of NPP variations in
the MP in absolute value were as follows: NDVI (0.47) > precipitation (0.33) > soil
moisture (0.16) > temperature (0.14) > solar radiation (0.02). The effects of the NDVI
and climate change on NPP varied by different vegetation types, with soil moisture
being the dominant moisture factor for steppes and forests in determining NPP
variations, while precipitation was the dominant moisture factor in sandy land, shrub,
and cropland. Additionally, NPP variations were less influenced by the temperature
variations for different vegetation types.

Overall, this study discovered that vegetation in the MP has improved and the vegeta-
tion’s carbon sequestration capacity has increased since 2000. Moreover, the application
of the GDM and SEM could in part explain the mechanisms that contribute to NPP’s
distribution and changes. This facilitated a better understanding of the causes of vegetation
variations and the interactions among different driving factors. This study also found
that the management of moisture may be the main problem to be addressed in ecological
restoration processes in the MP.
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