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Abstract: Grasslands provide essential forage sources for global livestock production. Remote sensing
approaches have been widely used to estimate the biomass production of grasslands from regional
to global scales, but simultaneously mapping the forage biomass and quality metrics (e.g., crude
fiber and crude protein) is still relatively lacking despite an increasing need for better livestock
management. We conducted novel gradient grass-cutting experiments and measured hyperspectral
reflectance, forage biomass, crude fiber per area (CFarea), and crude protein per area (CParea) across
19 temperate grassland sites in the Xilingol region, Inner Mongolia, China. Based on these measure-
ments, we identified sensitive spectral bands, calculated nine potential spectral indices (Normalized
Difference Vegetation Index, Enhanced Vegetation Index, Red Edge Normalized Difference Vegeta-
tion Index, Red-Edge Inflection Point, Inverted Red-Edge Chlorophyll Index algorithm, Normalized
Difference Red Edge Index, Nitrogen Reflectance Index, Normalized Greenness Index, Land Sur-
face Water Index) and established Random Forest (RF) models that well predicted forage biomass
(R2 = 0.67, NRMSE = 12%), CFarea (R2 = 0.59, NRMSE = 14%), and CParea (R2 = 0.77, NRMSE = 10%).
Among these nine indices, Land Surface Water Index (LSWI, calculated by R785-900 and R2100-2280)
was identified to be the most important predictor and was then used to establish empirical power law
models, showing comparable prediction accuracies (forage biomass, R2 = 0.53; NRMSE = 14%; CFarea,
R2 = 0.40, NRMSE = 17%; CParea, R2 = 0.72, NRMSE = 11%) in comparison to Random Forest models.
Combining the empirical power law models with the LSWI calculated from Sentinel-2 observations,
we further mapped the forage biomass and quality and estimated the livestock carrying capacity. The
predicted forage biomass, CFarea, and CParea all showed a significant increase with higher mean an-
nual precipitation, but showed no significant correlations with mean annual temperature. Compared
with the estimates based on crude protein, the conventional approach solely based on forage biomass
consistently overestimated livestock carrying capacity, especially in wetter areas. Our work provides
an approach to simultaneously map the forage biomass and quality metrics and recommends a
LSWI-based power law model for rapid and low-cost assessment of regional forage status to guide
better livestock management.

Keywords: biomass; crude fiber; crude protein; spectral reflectance; Sentinel-2; temperate grassland

1. Introduction

Grasslands cover more than one third of the global land area and provide essential
forage sources for livestock production and food systems [1,2]. The livestock carrying
capacity of grasslands theoretically depends on both forage biomass production and its
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quality (e.g., contents of crude fiber and crude protein) [3]. Accurately and timely map-
ping forage biomass and integrated quality metrics on a landscape scale is increasingly
needed for better livestock management, especially in grasslands that are sensitive to
climate variability and human activities [4,5]. Vegetation indices derived from broadband
satellite images, such as the Normalized Difference Vegetation Index (NDVI) and Enhanced
Vegetation Index (EVI), have been conventionally used to estimate vegetation biomass
and productivity from regional to global scales [6–9], but these indices perform poorly in
estimating forage quality [10]. However, easy-to-use approaches for simultaneous and
timely estimates of forage biomass and quality are relatively lacking.

Ground-based, airborne, and/or satellite spectroscopy provide potential tools for
rapid and non-destructive estimation of forage quality. Spectral bands in the Visible Near
Infrared (VNIR) regions and the Short-Wave Infrared (SWIR) regions have been found to
be indicative of leaf Nitrogen (N) due to spectral absorptions by chlorophyll pigments and
chlorophyll binding proteins in the VNIR and by other proteins in the SWIR [11,12]. Canopy
foliar N content, which is closely related to crude protein (CP), was thus found to show
strong positive correlations with canopy spectral reflectance in cultivated grasslands and
pastures [13,14]. Crude fiber (CF) content has also been found to show a good relationship
with the SWIR spectral bands [15,16] because these bands can reflect the overtones of the
chemical groups C-H related to fiber components [17]. However, CF likely shows a weaker
correlation with canopy reflection in comparison with CP and biomass [16,18].

The recent development of remote sensing technologies (e.g., UAV hyperspectral
imagery) and machine learning algorithms enables more accurate estimation of forage qual-
ity [19–21]. However, the high cost to acquire hyperspectral data hinders the application-
oriented mapping of forage quality and biomass for large areas. Freely available satellite
data with fine spatial resolution, such as the Sentinel-2 (S2) multispectral instrument
images, provide potential alternative data for evaluating forage quality and biomass in
grasslands [16,22,23]. These approaches rely on a labor-intensive and time-consuming field
survey across natural gradients in combination with satellite data to establish models for
prediction. There is thus a need for alternative approaches to create gradients and establish
predictive models. Additionally, compared with the method of machine learning algo-
rithms, single spectral indices are easier to use for rapid and low-cost forage assessment,
but such approaches are lacking for simultaneously mapping forage biomass and quality.

Temperate grasslands in the Inner Mongolia Autonomous Region (IMAR) of China
are located at the southernmost edge of the Eurasian steppe and provide important ecosys-
tem services, including livestock production [24]. Climate change and overgrazing have
resulted in vegetation degradation over the past few decades [25,26]. Consequently, the
stability of grassland productivity has decreased significantly and potentially threatens the
sustainability of local livestock production systems [27]. In this context, the development
of a low-cost and real-time monitoring system for forage biomass and quality is crucial for
the conservation and management of regional grassland resources.

In this study, we conducted novel gradient grass-cutting experiments and measured
spectral reflectance, forage biomass, crude fiber per area (CFarea), and crude protein per area
(CParea) across 19 temperate grassland sites in Xilingol region, IMAR, China. The gradient
grass-cutting experiments can facilitate a quick establishment of models to predict regional
forage production and quality. Based on the field measurements, we then established
Random Forest models and empirical power law models using a single indices to predict
forage biomass, CFarea, and CParea. By combining optical remote sensing data (field spectral
data and S2 images) with empirical power law models, we further mapped the forage
quality and biomass of temperate grasslands in the Xilingol region, IMAR, China. The
specific objectives of this study were to: (1) identify the sensitive spectral bands and indices
for forage biomass and quality estimation based on gradient grass-cutting experiments,
(2) predict forage biomass and quality on the field scale, by establishing spectroscopy-based
models (e.g., Random Forest model and empirical regression model), and (3) propose an
easy-to-use approach to map the regional forage biomass and quality by combining S2
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data with ground-based measurements. Our study estimated CFarea and CParea in a mass
per unit area (g/m2, density) because of their important implications for carrying capacity
analysis and regional grazing management [12,28].

2. Material and Methods
2.1. Study Area

The study was conducted in temperate grasslands in the Xilingol region of IMAR,
northern China (Figure 1). This region is characterized by a continental semi-arid climate,
with a mean annual precipitation of 267 mm and mean annual temperature of 1.0 ◦C [27].
Precipitation occurs predominately in summer (June–August) in synchrony with high
temperatures. Four types of grassland communities, either dominated by single species
such as Leymus chinensis, Stipa grandis, and Stipa Krylovii, or co-dominated by L. chinensis and
needlegrass (e.g., S. Krylovii), account for more than 82% of the total vegetation coverage in
this region [29]. Three to six replicated sites were randomly selected for each community
type, and there were 19 sites in total (Figure 1).
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Figure 1. The study area of temperate grasslands in Xilingol region of IMAR, northern China.
Sampling sites with different dominant species are indicated by different colors.

2.2. Gradient Grass-Cutting Experiments and Field Measurements

To facilitate a quick establishment of models to predict forage biomass, CFarea, and
CParea, we conducted gradient grass-cutting experiments at 19 sites during the peak grow-
ing season in August 2021 (Table S1). At each replicated site (3–6 replicates for each
community type), we selected one 10 m × 10 m plot within a larger homogeneous area.
In each plot, one 60 cm × 60 cm quadrat was randomly selected to conduct the gradi-
ent grass-cutting experiments. Plant shoots were cut randomly with scissors to create
5 to 8 gradients of vegetation coverage until all the aboveground biomass was removed
(see an example in Figures 2 and S1). The amount of cutting in each quadrat depended
on the initial vegetation coverage in the quadrat (Table S1). The removed biomass of each
cutting was labelled separately for further measurements of dry mass and forage quality
in the laboratory. Other information, including the latitude, longitude, elevation, plant
species, and coverage, was recorded simultaneously.
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Figure 2. An example of the gradient grass-cutting experiment. The gradual grass-cutting here
created seven coverage gradients.

In each quadrat, ground-based spectral reflectance was measured separately for the
initial status and after each cutting under clear sky conditions. Spectral measurements
were conducted using an SR-5400 Hi-Res Portable Spectroradiometer (Spectral Evolu-
tion Inc., Lawrence, MA, USA) that can detect a light spectral range from 350 to 2500 nm.
The spectrometer collects data at 2.5 nm, 5.5 nm, and 5.8 nm sampling interval in the
350–700 nm, 700–1500 nm, and 1500–2500 nm spectral regions, respectively. The spec-
tral data were obtained at a 1 nm spectral interval. Prior to each spectral measure-
ment, a calibration was conducted using a white reference panel, and thus the measured
data represented the absolute reflectance. Spectral measurements were conducted at ca.
1.50 m above the grassland canopy for an area of 60 cm × 60 cm. The device was set to
automatically conduct ten single measurements and average these measurements into one
reflectance curve for further analysis. Low-quality data due to bad weather (e.g., windy or
cloudy) or instrument failures were removed prior to further analysis.

2.3. Laboratory Measurements of Forage Biomass and Quality

The plant samples were oven-dried at 65 ◦C for 72 h, weighed, and ground. Con-
centration of forage crude protein was quantified by multiplying N concentrations by
6.25 (reference to a national standard GB/T6432-2018, General administration of quality
supervision, People’s Republic of China). N concentration was measured using an ele-
mental analyzer (vario MACRO cube, Elementar, Germany). Concentrations of crude fiber
were measured using an automatic fiber analyzer (ANKOM 2000i, ANKOM Technology,
Macedon, NY, USA). The forage biomass (g m−2) before each cutting was calculated as
the summed dry mass of all following cuttings. The amounts of CFarea and CParea (g m−2)
were calculated based on forage biomass and corresponding concentrations of crude fiber
and crude protein, respectively.

2.4. Identifying Sensitive Spectral Bands

We conducted an analyses of ground-measured spectral data to identify the sensitive
spectral bands, which further helped to select potential spectral indices for model construc-
tion (See Section 2.5). Raw spectrum reflectance data were preprocessed before further
analysis. Two water vapor absorption bands (1400 nm and 1900 nm) were first removed due
to strong noise. Random noises were further eliminated by Savitzky-Golay (SG) filtering to
derive denoised raw spectral curves of each measurement [30]. Previous studies showed
that, compared with the raw spectral reflectance, the first derivative transformation of
spectrum can reduce or eliminate the influence of background and atmospheric scattering
and thus improve the contrast of different spectral absorption features [14]. In addition,
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the envelope elimination method can effectively strengthen the absorption and reflection
characteristics of spectral curves and normalize data to a consistent spectral background,
thereby improving the comparison of eigenvalues with other spectral curves [31]. There-
fore, derivative transformation and envelope removal were conducted for the denoised
spectral curves. Correlation analyses with forage biomass and quality were conducted
separately using raw, derivative transformed, and envelope removal spectral data. The
sensitive bands were further recognized based on the correlations (r > 0.6) between spectral
reflectance and forage biomass, CFarea, and CParea, respectively.

2.5. Empirical Models for Forage Biomass and Quality Predictions

Nine spectral indices (Table 1) were selected as potential predictors of forage biomass
and quality based on three criteria. First, the spectral indices were derived from sensitive
spectral bands (see Section 2.4). Second, the spectral indices were theoretically indicative of
forage biomass and/or quality-based previous studies (Table 1). Third, only common bands
of ground-measured and S2 reflectance were used for the analysis. Field in situ measured
data of spectral reflectance were resampled to the S2 spectral configuration. The average
reflectance values of corresponding bands were calculated according to S2 wavelength
(Table S2) and further used to calculate the nine spectral indices, including NDVI, EVI,
NDVI705, REIP, IRECI, NDRE, NRI, NGI, and LSWI (see more details in Table 1).

Two modelling approaches were used to predict forage biomass, CFarea, and CParea.
Machine learning algorithms such as Random Forest (RF) analyses have been successfully
applied to develop spatially explicit estimates of forage biomass and quality [16,22,32].
We first conducted RF model analyses using all nine spectral indices as predictors [33].
The permutation-based variable importance for each predictor was estimated as the re-
duction in Root-Mean-Square Error (RMSE) [34,35]. We further conducted regression
model analyses using the most important predictor identified by the RF model analyses.
Model accuracies of the regression models were estimated using the Leave-One-Out Cross
Validation (LOOCV) approach and reported as the coefficient of determination (R2), the
Root Mean-Square Error (RMSE) and Normalized Root Mean Squared Error (NRMSE),
respectively [36]. The LOOCV approach is a special case of k-fold cross-validation that
divides the raw data into k (k = n, n is the number of samples) training subsets of equal
size, and the overall accuracy is calculated as the average of the accuracy values computed
for each subset. It has been widely used to estimate model accuracies, especially for data of
a small sample size [37–39]. The model accuracies of the RF models and regression models
were further compared. We aim to derive regression models with good accuracies because
they are easier to use for monitoring and management purposes.

Table 1. Indices used as potential predictors of forage biomass and quality.

Indices Name Abbrev. Calculation Formula Reference

Vegetation indices Normalized Difference Vegetation Index NDVI (NIR − R)/(NIR + R) [40]

Enhanced Vegetation Index EVI NIR−R
(NIR+6 × R−7.5 × B+1) × 2.5 [41]

Indices with red-edge
wavelengths

Red Edge Normalized Difference Vegetation Index NDVI705 (RE1 − RE2)/(RE1 + RE2) [42]

Red-Edge Inflection Point REIP 705 + 35 ×
(
( R+RE3

2 )−RE1
RE2−RE1

)
[43]

Inverted Red-Edge Chlorophyll Index algorithm IRECI (RE3−R)
(RE1/RE2)

[44]

Normalized Difference Red Edge index NDRE (NIR2 − RE2)/(NIR2 +RE2) [45]

Indices with green
wavelength

Nitrogen Reflectance Index NRI (G − R)/(G + R) [46]
Normalized Greenness Index NGI (RE2 − G)/(RE2 + G) [47]

Moisture sensitive
index Land Surface Water Index LSWI (SWIR − NIR)/(SWIR + NIR) [48]

Note: B represents the blue band (band 2 of Sentinel-2), G represents the green band (band 3 of Sentinel-2), NIR
and NIR2 represent the near-infrared bands (band 8 and band 8A of Sentinel-2), R represents the red band (band 4
of Sentinel-2), RE1, RE2, and RE3 represent the three vegetation red edge bands (band 5, band 6, and band 7 of
Sentinel-2), SWIR represents the shortwave infrared band (band 12 of Sentinel-2).
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2.6. Mapping Forage Biomass and Quality, and Livestock Carrying Capacity

For large-scale mapping, we used S2 data as previous studies have shown that mod-
els developed based on spectroradiometer data, resampling to the S2 configuration, can
coincide well with S2 images [49]. Because S2 data only reported averages for each band
number, we thus calculated average reflectance values of corresponding bands according to
S2 Wavelength (Table S2). Our results showed that the spec-field LSWI agreed well with S2
LSWI data (r = 0.52, p = 0.02) (Figure S2), further guaranteeing that these two datasets could
be combined to perform reliable predictions of forage status. We collected all the available
S2 L2A data (spatial resolution 10 m) within a temporal window of 7 days before the
sampling period (1–7 August 2021) from the Google Earth Engine (GEE) platform. Images
with cloud and cloud-shadow contamination were removed, and finally two images on
31 July 2021 (S2-B) and 2 August 2021 (S2-A) were selected for the analysis in this study.
Based on the empirical regression models in Section 2.5 and corresponding S2 images, we
mapped the forage biomass, CFarea, and CParea. We used the empirical regression model
because it is easier for practical application and only showed slightly weaker performance
than RF models (see Section 3.2). We further analyzed the relationships between predicted
forage biomass, CFarea, and CParea and climate variables, including mean annual precipita-
tion (MAP) and mean annual temperature (MAT). MAP and MAT data were obtained from
meteorological stations of the China Meteorological Administration and were interpolated
to grid cells with a spatial resolution of 10 km using ANUSPLINE software [50].

In the study area, forage was only harvested once a year in the temperate grassland
areas. The stocks of peak biomass, CFarea, and CParea can thus roughly indicate the annual
forage production, which can be further used to estimate carrying capacity [24]. Biomass
alone is not exactly indicative of edible feed for herbivores as the quality of the feed is also
an important determinant of grassland carrying capacity [51]. In this study, the livestock
carrying capacity was estimated using the predicted forage biomass and CParea. Based
on a national standard sheep unit conversion of grass-fed livestock, an animal units (AU)
refers to sheep with a mass of 50 kg that consume 1.4 kg of dry matter (forage biomass)
and 182 g crude protein per day (reference to the national standard NY/T635-2015 and
NY/T3647-2020; Ministry of Agriculture and Rural affairs of the People’s Republic of
China). Livestock carrying capacity was then calculated by forage biomass and CParea
divided into annual herbage consumption per AU. All statistical analyses were conducted
in MATLAB for Windows (Version 2016b, The MathWorks, Inc., Natick, MA, USA) and
ArcGIS (Version 10.7, ESRI, Inc., Redlands, CA, USA).

3. Results
3.1. Sensitive Spectral Bands for Forage Biomass and Quality Predictions

Vegetation coverage prior to grass-cutting experiments ranged from 45% to 90%
(mean ± sd: 62 ± 13%) across the nineteen plots. Forage biomass, CFarea, and CParea
ranged from 179 to 996 (411 ± 194) g m−2, 53 to 366 (128 ± 71) g m−2, and 18 to 88
(42 ± 18) g m−2, respectively (Table S1). Generally, five to eight cuttings were conducted in
each quadrat, creating six to nine gradients of vegetation coverage (Table S1). The gradient
grass-cutting experiments created clear changes in spectral reflectance after each cutting
(Figure S3).

The correlation coefficients for forage biomass, CFarea, and CParea varied across spec-
trum wavebands. One or more of the three spectrum (raw spectra, first derivative spectra,
and envelope removal spectra) showed high correlation coefficients (r > 0.6, p < 0.01)
with forage biomass, CFarea, and CParea in the red (650–680 nm), red-edge (698–713 nm,
733–748 nm, 773–793 nm), near-infrared (NIR, 785–900 nm), and short-wave infrared bands
(SWIR, 1565–1655 nm and 2100–2280 nm) (Figure 3).The correlation was weak for forage
biomass and CFarea in the blue (458–523 nm) and green bands (543–578 nm), while it was
fairly strong for CParea. Compared with forage biomass and CFarea, CParea showed stronger
correlations with raw spectra, in both the red and SWIR bands, while the correlation coeffi-
cients for all these three variables were similar in the NIR region (Figure 3a–c). Similarly,
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compared with forage biomass and CFarea, CParea showed a stronger correlation with the
first derivative spectra in the red band and parts of the NIR bands, and a stronger corre-
lation with the envelope removal spectra in the SWIR bands (Figure 3a–c). Based on the
analysis of sensitive spectra bands, we selected nine spectral indices as potential predictors
for forage biomass, CFarea, and CParea, including two vegetation indices, four indices with
red-edge bands, two indices with a green band, and one moisture-sensitive index (LSWI)
(see Section 2.5; Table 1).
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Figure 3. Correlation coefficients for forage biomass (a), crude fiber (CFarea, b) and crude protein
per area (CParea, c) with raw spectra (after denoising), first derivative spectra, and envelope removal
spectra, respectively. The gray shaded areas indicate the spectral settings and resolutions of S2
images that can be potentially used to estimate forage biomass, CFarea, and CParea. The visible spectra
bands (blue: 458–523 nm, green: 543–578 nm, red: 650–680 nm); RE, Red-Edge bands (698–713 nm,
733–748 nm, 773–793 nm); NIR, Near Infrared Bands (785–900 nm); SWIR, Shortwave Infrared Bands
(SWIR-1: 1565–1655 nm, SWIR-2: 2100–2280 nm).
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3.2. Performances of Random Forest Models and Power Law Models

Random Forest models using all nine indices well predicted forage biomass
(R2 = 0.67, RMSE = 74.7 g m−2), crude fiber (R2 = 0.59, RMSE = 27.1 g m−2), and crude
protein per area (R2 = 0.77, RMSE = 6.6 g m−2) (Figure 4a,c,e). Intriguingly, LSWI was the
most important predictor for all three models (Figure 4b,d,f), implying a potential approach
that simply uses LSWI to predict forage biomass, CFarea, and CParea. Our further analysis
showed that forage biomass (R2 = 0.70, p < 0.01), CFarea (R2 = 0.61, p < 0.01), and CParea
(R2 = 0.79, p < 0.01) all increased significantly with LSWI in the form of a power law model
(Figure 5a,c,e). The power law models well predicted the forage biomass (RMSE = 91.9 g m−2),
crude fiber (RMSE = 33.1 g m−2), and crude protein per area (RMSE = 7.6 g m−2)
(Figure 5b,d,f). The Random Forest and power law models both predicted CParea bet-
ter than forage biomass and CFarea (Figures 4 and 5). Although the power law models
showed slightly lower prediction accuracies than those of the Forest models, the power
law models using LSWI as the single predictor has an advantage for a rapid assessment of
regional forage status. An additional analysis showed that residuals of power law models
showed no significant difference from 0, implying no overestimation or underestimation of
the measured values (forage biomass, p = 0.87; CParea, p = 0.88; CFarea, p = 0.84).
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Figure 4. Accuracies and predictor importance of Random Forest models for forage biomass (a,b),
crude fiber per area (c,d), and crude protein per area (e,f). Percentages in brackets indicate NRMSE.
%IncMSE indicates the percent increase in MSE (Mean Squared Error) of predictions as a result of
the variable being permuted (values randomly shuffled). Variables with higher %IncMSE values are
more important.



Remote Sens. 2023, 15, 1973 9 of 17

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 18 
 

 

the variable being permuted (values randomly shuffled). Variables with higher %IncMSE values are 
more important. 

 
Figure 5. Power law models (using LSWI as the predictor) and prediction accuracies for forage bio-
mass (a,b), crude fiber per area (c,d), and crude protein per area (e,f). Note that the independent 
variable of a power law function cannot be a negative value; we addressed this issue by adding a 
constant 1 to the LSWI (values ranging from −1 to 1). 

3.3. Regional Patterns of Forage Status and Livestock Carrying Capacity 
Using the empirical power law models and corresponding LSWIs calculated from S2 

imagery, we separately mapped the forage biomass, CFarea, and CParea in the study area 
(Figure 6a,c,e). Forage biomass, CFarea, and CParea all showed lower values in the northwest 
and higher values in the southeast (Figure 6a,c,e), being significantly correlated with MAP 
(R2 = 0.34, p < 0.01; Figure 6b,d,f), but showed a weak correlation with MAT (R2 = 0.02, p < 
0.01; Figure S4a). The average of forage biomass, CFarea, and CParea in the study area were 
75.5 ± 61.8 g m−2, 23.0 ± 18.0 g m−2, and 8.38 ± 6.59 g m−2, respectively. 

The estimates of livestock carrying capacity based on forage biomass and crude pro-
tein showed similar spatial patterns (Figure 7a,b). However, livestock carrying capacity 
was generally overestimated when using forage biomass in comparison with estimates 
based on crude protein (1.46 ± 1.32 vs. 1.25 ± 0.93 AU per ha). This overestimation showed 
significant spatial heterogeneity: it was overestimated by 12–15% in the northwest region 
with a drier climate, while it was overestimated by more than 20% in the southeast region 

Figure 5. Power law models (using LSWI as the predictor) and prediction accuracies for forage
biomass (a,b), crude fiber per area (c,d), and crude protein per area (e,f). Note that the independent
variable of a power law function cannot be a negative value; we addressed this issue by adding a
constant 1 to the LSWI (values ranging from −1 to 1).

3.3. Regional Patterns of Forage Status and Livestock Carrying Capacity

Using the empirical power law models and corresponding LSWIs calculated from
S2 imagery, we separately mapped the forage biomass, CFarea, and CParea in the study
area (Figure 6a,c,e). Forage biomass, CFarea, and CParea all showed lower values in the
northwest and higher values in the southeast (Figure 6a,c,e), being significantly correlated
with MAP (R2 = 0.34, p < 0.01; Figure 6b,d,f), but showed a weak correlation with MAT
(R2 = 0.02, p < 0.01; Figure S4a). The average of forage biomass, CFarea, and CParea in the
study area were 75.5 ± 61.8 g m−2, 23.0 ± 18.0 g m−2, and 8.38 ± 6.59 g m−2, respectively.
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area and their correlations with MAP (b,d,f).

The estimates of livestock carrying capacity based on forage biomass and crude protein
showed similar spatial patterns (Figure 7a,b). However, livestock carrying capacity was
generally overestimated when using forage biomass in comparison with estimates based
on crude protein (1.46 ± 1.32 vs. 1.25 ± 0.93 AU per ha). This overestimation showed
significant spatial heterogeneity: it was overestimated by 12–15% in the northwest region
with a drier climate, while it was overestimated by more than 20% in the southeast region
with wetter climate (Figure 7c). Overall, the ratio of livestock carrying capacity based
on forage biomass versus that based on crude protein increased significantly with MAP
(R2 = 0.34, p < 0.01; Figure 7d) but only showed weak correlation with MAT (R2 = 0.03,
p < 0.01; Figure S4b).
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Figure 7. Livestock carrying capacity (AU per ha) estimated using forage biomass (a) and crude
protein (b), the ratio between these two estimates (c), and shifts of the ratio with MAP (d). AU
refers to a national standard sheep with a mass of 50 kg that consumes 1.4 kg of dry matter (for-
age biomass) and 182 g crude protein per day (reference to the national standard NY/T635-2015
and NY/T3647-2020; Ministry of Agriculture and Rural affairs of the People’s Republic of China).
(a,b) has the same scale as in (c).

4. Discussion
4.1. Sensitive Spectral Bands and Spectral Indices for Forage Status

Our analysis showed that the spectra of the red-edge, NIR, and SWIR bands were
significantly correlated with forage biomass and quality. Similarly, previous work in
New Zealand temperate grasslands [14] and in highly diverse Mediterranean permanent
grasslands [16] found that the spectra of the red-edge and SWIR bands were the best
predictors of CParea. Compared with the first derivative spectra and envelope removal
spectra, which can only be calculated from hyperspectral data, we found that the raw
spectra in the NIR and SWIR bands (especially 2100–2280 nm) correlated well with forage
biomass and quality. These correlations suggest that it is possible to use multispectral
datasets to assess forage biomass and quality. Recent studies have explored the potential of
S2 multispectral data to assess grassland biomass [22,52] and pasture quality [16,53]. The
results showed that the spectra of the red-edge bands from S2 with fine resolutions (10-m)
offer an unprecedented opportunity to predict forage quality [23]. In accordance with those
previous studies, our results demonstrate that predicted forage biomass using in situ S2
bands resampled from field spectral data agreed well with observed values (LOOCV mean
R2

test = 0.67, NRMSE = 11.7%) (Figure 4a). The prediction of forage quality also showed
high accuracy (CFarea: LOOCV mean R2

test = 0.59, NRMSE = 13.6%; CParea: LOOCV mean
R2

test = 0.77, NRMSE = 10.3%) (Figure 4c,e).
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In particular, the LSWI with the spectral information from NIR and SWIR regions
was found to be the most important predictor of forage biomass and quality. We fur-
ther compared the empirical power law models using LSWI alone with the RF models.
The results suggested that the empirical power law models showed comparable per-
formance for predicting forage biomass and quality, with slighter accuracies (biomass:
NRMSE = 14.0%; CFarea: NRMSE = 16.6%; CParea: NRMSE = 11.0%) than that of the RF
models using nine spectral indices. This result suggests that spectral information from NIR
and SWIR regions is optimal for retrieving forage biomass and quality. A recent study in a
wet region (MAP = 1200 mm) also suggests that LSWI was the optimum index to determine
fescue plant health as compared with NDVI and EVI, especially during dry years [54].
The good performance of prediction may be attributable to the fact that SWIR bands con-
tain critical information for canopy N% and leaf water content estimation, while spectral
features from the NIR region might have advantages to disentangle canopy structural
characteristics [55,56].

4.2. Better Prediction of Forage Protein Than Biomass and Forage Fiber

Random Forest models and the empirical power law models both predicted CParea
better than forage biomass and CFarea (Figures 4 and 5). Many studies have reported that the
VIS-NIR spectral region correlates well with the CP concentration that is usually estimated
from total N concentration in forages [14,15,57]. In view of the fact that the photosynthetic
enzymes, especially Rubisco, are major N-containing biochemical constituent within the leaf
cells [58], leaf N shows a strong correlation with chlorophyll content that can be reflected
by the NIR spectral regions. Moreover, proteins can also be reflected using the SWIR
bands [12–14] due to the absorption characteristics of protein-associated X-H bonds in the
SWIR regions [10]. Therefore, foliar traits related to leaf biochemical and photosynthetic
processes could be better estimated and mapped using optical remote sensing data [59].
However, it should be noted that the relationship between canopy chlorophyll content and
N decreased in the reproductive growth stage, which limits the capability of estimating N
from chlorophylls at the end of the growing seasons [12,60].

Furthermore, LSWI was initially proposed to indicate vegetation liquid water con-
tent [61] and vegetation water stress based on the water absorbing SWIR bands [48].
Because LSWI correlates well with both vegetation liquid water content and soil moisture
content, it might well capture changes in vegetation healthy signals, especially in dryland
systems due to lower soil moisture [62]. Our results suggest that CParea is retrieved more
accurately from LSWI than from other vegetation indices (Figure 4f), potentially because it
is sensitive to leaf water stress, which limits the leaf biochemical process and loss of leaf N
concentration [63].

4.3. Regional Mapping of Forage Status and Management Implications

As discussed above, satellite images at a coarser resolution than in situ measure-
ments can provide information for mapping forage biomass and quality at large spa-
tial scales [10,49]. We first established empirical models using field canopy reflectance
resampled to the S2 configuration and then applied these models to S2 images for re-
gional mapping of forage biomass and quality. The rank correlation analysis illustrated
that both datasets, Spec-field and S2 LSWI, showed good consistency (r = 0.52, p = 0.02)
(Figure S2), which confirmed that these two datasets could be combined to perform the
reliable predictions of forage status. Our estimates of forage biomass, CFarea, and CParea
agree well with previous assessments based on field sampling in the study area [64].

The spatial distribution of forage biomass, CFarea, and CParea across the research area
appeared similar due to intrinsic correlations among these variables (Figure 6a,c,e). In view
that plant growth in grasslands is limited by precipitation [65], spatial variations in forage
status were significantly associated with changes in precipitation (Figure 6b,d,f). Although
spatial heterogeneity in forage quality can be affected by micro-topography [10,20] or field
management [16] at a local scale, it was significantly controlled by annual precipitation
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at large scales in temperate arid grasslands, where precipitation was the major limiting
factor [66]. Compared to CP content expressed in mass units (%), our study focused on the
estimation of CParea, which was upscaled as the total mass of protein on an area basis and
was more suitable for management purposes [12,28].

Livestock carrying capacity is conventionally assessed based on forage biomass pro-
duction, while forage quality (e.g., CParea) is rarely considered, despite its importance for
animal nutrition [2]. Integrating information on forage quality might provide a more rea-
sonable estimation for livestock carrying capacity [3,18]. By comparing estimates separately
based on forage biomass and crude protein, we found that livestock carrying capacity
was consistently overestimated, and the overestimation was higher in regions with wetter
climates (Figure 7). As metabolizable energy could be the limiting factor determining
the carrying capacity, we thus calculated the carrying capacity based on local estimate of
metabolizable energy from Shi et al. (2013) and found that the result (1.27 AU per ha) was
similar to our estimate from CP (1.25 AU per ha) (Table S6). However, the estimate of
carrying capacity based on forage biomass was much higher (1.46 AU per ha). These results
further confirm that our prediction of carrying capacity based on CP is more reasonable
than that based on forage biomass in the study area. Therefore, the risk of overgrazing will
likely increase when using the conventional estimates of livestock carrying capacity based
on forage biomass to guide local livestock management.

4.4. Uncertainties and Future Research Needs

The regional mapping of forage status conventionally replies on empirical models es-
tablished from a labor-intensive and time-consuming field survey across large-scale natural
gradients in combination with satellite observations [14,16,19,20]. A more cost-effective
and easy-to-use approach is thus needed for the rapid assessment of forage status and
livestock management. To this end, we conducted novel gradient grass-cutting exper-
iments at a small number of sites to facilitate a quick establishment of models to map
regional forage production and quality. Despite the good performance of prediction, pos-
sible uncertainties likely remain in our study. For example, there might be a potential
effect of autocorrelation due to gradient cuttings at each site. Additional analyses indi-
cate that grass-cutting had insignificant interactions with site and LSWI, implying that
the potential autocorrelation would not strongly influence the robustness of our models
(Tables S3–S5). The optimal prediction models established in this study may also be lim-
ited to the temperate grasslands (e.g., Xilingol region), where plant growth is limited by
precipitation. It remains to be tested whether such models are applicable to the regions
dominated by temperature and other factors. Moreover, the spectral indices obtained from
canopy reflectance can be influenced by soil background conditions. Our further analysis
showed no significant difference between the LWSI obtained by canopy reflectance and the
corrected LWSI without soil background (p = 0.59) (Figure S5). Additionally, there could be
differences between LSWI values calculated from in situ measurements and satellite obser-
vations. This difference might result in uncertainties when applying models for regional
mapping. To reduce such uncertainties, we established the empirical models using field
canopy reflectance resampled to the S2 configuration. A correlation analysis also showed
that both datasets, spec-field and S2 LSWI, showed good consistency (Figure S2), further
confirming that these two datasets could be combined to perform reliable predictions of
forage status.

5. Conclusions

By conducting novel gradient grass-cutting experiments and corresponding ground-
based measurements in temperate grasslands in Inner Mongolia, we evaluated sensitive
spectral bands, derived nine potential spectral indices, and established Random Forest
models that well predicted forage biomass, CFarea, and CParea. LSWI was found to be the
most important predictor, and empirical power law models using LSWI alone showed
comparable prediction accuracies to the Random Forest models. Regional patterns of forage
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biomass and quality were thus mapped by combining the empirical power law models with
LSWI calculated from S2 observations. The predicted forage biomass, CFarea, and CParea
all showed a strong increase with mean annual precipitation. Livestock carrying capacity
was overestimated based on forage biomass in comparison to the estimates using crude
protein, implying a risk of overgrazing in regional grasslands when using conventional
estimates for livestock management guidance. These approaches provide useful tools to
simultaneously map the forage biomass and quality metrics using remote sensing data,
and the LSWI-based power models can be used for a rapid assessment of forage status to
support livestock management.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15081973/s1, Table S1: A summary of initial vegetation status and
gradient-cutting experiments of all 19 grassland sites. Table S2: Spectral specifications of the Sentinel-
2 MSI instrument. Table S3: A summary of multiple regression analysis for forage biomass. Table
S4: A summary of multiple regression analysis for forage CFarea. Table S5: A summary of multiple
regression analysis for forage CParea. Table S6: Livestock carrying capacity (AU per ha) estimated
using forage biomass (DM), crude protein (CP), and the metabolizable energy (ME) respectively.
Figure S1: The amount of grass biomass (above-ground biomass, AGB) corresponding to each grass-
cutting in an example quadrat. Figure S2: Correlations between LSWI retrieved from field spectral
data and in-situ S2 dataset (2021/07/31) for 19 sampling plots. Figure S3: An example of spectral
changes after each grass-cutting. Figure S4: Changes in predicted forage biomass, CFarea and CParea
(a) and the ratio between biomass based and CParea based carrying capacity (b) with mean annual
temperature (MAT). Figure S5: Correlations between LSWI retrieved from canopy reflectance with
soil background (LSWI) and without soil background (LSWIveg) for 19 sampling plots.
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