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Abstract: Deep image prior (DIP) is a powerful technique for image restoration that leverages
an untrained network as a handcrafted prior. DIP can also be used for hyperspectral image (HSI)
denoising tasks and has achieved impressive performance. Recent works further incorporate different
regularization terms to enhance the performance of DIP and successfully show notable improvements.
However, most DIP-based methods for HSI denoising rarely consider the distribution of complicated
HSI mixed noise. In this paper, we propose the asymmetric Laplace noise modeling deep image prior
(ALDIP) for HSI mixed noise removal. Based on the observation that real-world HSI noise exhibits
heavy-tailed and asymmetric properties, we model the HSI noise of each band using an asymmetric
Laplace distribution. Furthermore, in order to fully exploit the spatial–spectral correlation, we
propose ALDIP-SSTV, which combines ALDIP with a spatial–spectral total variation (SSTV) term to
preserve more spatial–spectral information. Experiments on both synthetic data and real-world data
demonstrate that ALDIP and ALDIP-SSTV outperform state-of-the-art HSI denoising methods.

Keywords: hyperspectral image denoising; noise modeling; deep image prior

1. Introduction

Hyperspectral images (HSIs) are a type of remote sensing data that provide enriched
information of the spectral characteristics of a scene. HSIs can be utilized for diverse visual
tasks including object detection [1] and classification [2–8]. However, during the generation
and transmission process, the vast amount of HSIs are often corrupted by severe noise,
making denoising techniques crucial for effectively analyzing and interpreting the images.
Therefore, HSI denoising is vital and has inspired extensive research.

Conventional techniques for HSI denoising, which are often called model-based
methods, can be categorized into two groups: filter-based methods and low-rank-based
methods. For filter-based methods, 3D model-based methods [9,10] first attempted to take
advantage of spatial–spectial information. Then, a variety of methods that utilized penalties
to exploit spatial and spectral information [11–14] were proposed. For low-rank-based
methods, they have been found to be more efficient for HSI denoising, and various methods
were developed based on low-rank matrix recovery [15–19]. Considering HSI data as a
three-order tensor, many low-rank approaches based on tensor decomposition [20–23] have
achieved good effects.

Recently, deep learning has made great progress in a variety of fields. Deep-learning-
based denoising methods are regarded as state-of-the-art and many network architectures
were proposed for HSI denoising work [24–28]. In ref. [25,27], convolutional-neural-
network (CNN)-based architectures were suggested. Generative adversarial networks
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(GANs) were also examined in [28]. These supervised deep-learning-based methods have
a shortcoming that they need a large training set to obtain good effects while HSIs data are
limited. To address this issue, a variety of unsupervised methods were developed [29–31].
These methods can denoise a single observed HSI without external data.

Among these unsupervised methods, ref. [29] uses deep image prior (DIP) [32] for
HSI inverse problems (denoising, inpainting, super-resolution). In ref. [29], 2D convolution
was extended to a 3D one, but the 3D one has a poorer performance. However, neither
of them is as advanced as most state-of-the-art methods. A popular research trend is to
combine DIP with other data priors. For example, reference [30] inserts spatial–spectral
total variation (SSTV) into DIP and achieves state-of-the-art results. Despite their good
performance, most of the DIP-based methods assume HSIs are corrupted by Gaussian noise
or Laplace noise (a.k.a., sparse noise). It is well-known that HSI noise is very complicated,
including Gaussian, impulse, stripe and deadline noise. By no means can HSI noise be
simply modeled by Gaussian or Laplace noise. How to design a proper noise model for
real HSIs plays an important role in HSI denoising and deepens the understanding on the
HSI noise pattern. Hence, there is still room to enhance the performance for DIP if it is
equipped with more suitable and reasonable noise assumptions.

Our previous work [19] has revealed that synthetic and real-world HSI noise are both
heavy-tailed and asymmetric. Taking the Urban dataset as an example, Figure 1 analyzes
the statistical distribution of the real-world HSI noise. Band 87, which is degraded by
deadline and horizon stripe noise, is shown in Figure 1a. An approximately clean band is
generated by averaging bands 85, 86, 87, 88 and 89, as shown in Figure 1b. Finally, the noise
of band 87 can be roughly estimated by the observation band minus the corresponding
clean one, as displayed in Figure 1c. We thereafter discuss the noise distribution.

(a) Noisy (b) Clean (c) Noise

(d) Gaussian and Laplace distribution (e) Asymmetric Laplace distribution

Figure 1. Real−world HSI noise analysis. (a) Band 87 of Urban dataset. (b) Generated clean band.
(c) Approximate noise of band. (d) Histogram of approximate noise probability density function
curves fitted by Laplace distribution and Gaussian distribution, respectively. (e) Histogram of
approximate noise and probability density function curve fitted by asymmetric Laplace distribution.

Firstly, traditional DIP’s loss function is mean squared error (MSE, or `2-norm), which
hypothesizes that noise obeys a Gaussian distribution, while Figure 1d demonstrates that
the Laplace distribution better fits real-world HSI noise than the Gaussian distribution.
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This fact suggests that HSI noise is heavy-tailed, so mean absolute error (MAE, or `1-norm)
is the better choice.

Secondly, HSI noise is also asymmetric. For example, the noise frequencies are highly
distinct for n = 0.05 and n = −0.05. Neither Gaussian nor Laplace distribution can
characterize this property. We propose to utilize an asymmetric Laplace (AL) distribution
for modeling real-world HSI noise, and Figure 1e illustrates that the AL distribution is
more suitable to characterize the noise, which is both heavy-tailed and asymmetric.

Based on the analysis above, incorporating DIP with the AL distribution assumption
may enhance the denoising performance for HSI data. ThereforeInspired by this discovery,
an asymmetric Laplace noise modeling deep image prior (ALDIP) method is formulated
to boost performance in HSI mixed-noise removal, where the key idea is to assume that
the HSI noise of each band obeys an AL distribution. Additionally, to fully utilize spatial–
spectral information, we incorporate a spatial–spectral total variation (SSTV) [33] term
to preserve the spatial–spectral local smoothness. To validate ALDIP and ALDIP-SSTV’s
performance, DIP2D-`2 (2D convolution DIP with `2 loss), DIP2D-`1 (2D convolution DIP
with `1 loss), ALDIP, ALDIP-SSTV are applied to the real-world HSI dataset Shanghai. The
result is displayed in Figure 2.

(a) Noisy (b) DIP2D-`2 (c) DIP2D-`1

(d) ALDIP (e) ALDIP-SSTV

Figure 2. Comparison of DIP2D-`2 (2D convolution DIP with `2 loss) and DIP2D-`1 (2D con-
volution DIP with `1 loss) on the real-world HSI Shanghai dataset. Two local areas (red and
blue squares) are demarcated zoomed for easy observation. (a) Real-world noisy HSI Shanghai
(The enhanced pseudo images consisted of the 152nd, 89th and 43rd bands). (b) DIP2D-`2 method
denoising result. (c) DIP2D-`1 denoising result. (d) ALDIP method denoising result. (e) ALDIP-SSTV
method denoising result.

According to Figure 2, it is evident that ALDIP and ALDIP-SSTV preserve more details
than DIP2D-`2 and DIP2D-`1. This confirms our analysis of HSI noise and shows that
modeling HSI noise as an asymmetric Laplace distribution provides superior results for
HSI mixed noise removal. Furthermore, we compare ALDIP and ALDIP-SSTV with other
state-of-the-art methods on two synthetic and three real-world HSI datasets. The result
shows that ALDIP and ALDIP-SSTV outperform other methods. The main contributions of
this paper can be formulated as follows:

1. We propose ALDIP for HSI mixed noise removal. More specifically, we combine a
more suitable and reasonable noise model with DIP. Our model hypothesizes real-
world HSI noise obeys asymmetric Laplace (AL) distribution.
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2. ALDIP-SSTV is presented by incorporating the SSTV term to fully utilize spatial–
spectral information for performance improvement.

3. A variety of experiments are conducted that rigorously validate the effectiveness of
our methods. The result shows that our methods outperform many state-of-the-art
methods.

The rest of this paper is structured as follows: Section 2 contains a brief overview of
the related work. Section 3 introduces the methods we propose. Section 4 introduces the
experiments we conduct. Finally, Section 5 concludes the paper.

2. Related Works
2.1. Low-Rank Models for HSI Denoising

As is known, HSIs contain high correlations in the spectral dimension and clean HSIs
tend to have many minor singular values, which means clean HSIs are mostly low-rank.
For a HSI with B bands and M× N pixels denoted by Y ∈ RMN×B, the low-rank matrix
factorization (LRMF) is modeled as follows:

min
U∈RMN×R ,V∈RB×R

‖Y−UV>‖2
2, (1)

where U and V are of rank R. Singular value decomposition (SVD) [34] can solve
Equation (1). The above model hypothesizes noise obeys the Gaussian distribution while
real-world HSI noise is complicated. To achieve higher robustness, modeling can be ap-
proached from another perspective. We assume that a noisy HSI Y can be regarded as a
combination of a low-rank clean HSI X and unknown sparse noise S, i.e.,

Y = X + S. (2)

Robust principal component analysis (RPCA) can be utilized to recover low-rank clean
HSI X and sparse noise S from Y, and the corresponding optimization issue is written as

min
X,S
‖X‖∗ + λ‖S‖1, s.t. Y = X + S, (3)

where ‖ · ‖∗ denotes the nuclear norm of a matrix and λ denotes the parameter for regular-
ization terms. Ref. [16] utilized the above model to recover HSIs and performed well when
removing Gaussian noise, impulse noise, deadlines and stripes.

Besides LRMF and RPCA, tensor decomposition algorithms including Tucker and
CANDECOMP/PARAFAC (CP) [34] have been developed [21–23,35] by regarding the
HSI data cube as a three-order tensor, and have made a remarkable achievement on
HSI denoising.

Low-rank denoising methods can be improved by adding different regularizations.
To preserve more spatial details, the non-local similarity (NLS) property is widely combined
with low-rank models [34,36,37]. Total variation regularization can help keep local smooth-
ness to a certain degree. It has been widely used in low-rank-based methods [22,38,39].
A TV-regularized low-rank (LRTV) matrix factorization method [39] was proposed and has
impressive performance.

2.2. Deep Learning Based Methods for HSI Denoising

Deep-learning-based methods have shown great promise in HSI denoising. It has been
proved that convolutional neural networks (CNNs) can approximate any complex, non-
linear relationships between the input and output data [40], which indicates that CNNs can
handle complicated mixed noise. Ref. [28] first introduces CNNs in HSI denoising, which
uses 2D filters to capture spatial and spectral structures. In ref. [41], two parallel branches
for feature extraction are used to obtain spatial and spectral information. To further exploit
the spectral correlations, a 3D U-net is proposed for HSI denoising [24]. With regard to
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the directivity and spectral difference of the spatial structure, Ref. [42] is proposed for HSI
mixed noise removal. Ref. [43–46] utilize attention to reduce redundant information.

Although deep-learning-based methods have state-of-the-art performance, they de-
pend on large amounts of data. Paired real-world HSIs are limited and difficult to obtain
while models trained on synthetic data are difficult to generalize to real data.

2.3. Noise Modeling for HSI Denoising

Noise modeling in denoising tasks can be regarded as a type of prior knowledge.
For HSI denoising, the insightful understanding towards noise distribution provides valu-
able information to better remove the noise and preserve the underlying clean signal.

Most methods simply model HSI noise as a Gaussian distribution. In this case, `2
norm is used for the fidelity term. This can simplify the optimization problem and make
it more tractable. However, in most cases, it may not accurately reflect the complicated
mixed noise in real-world HSIs.

Complex mixed HSI noise can be modeled as a mixture of Gaussians (MoG), which can
approximate any continuous distributions. Based on this theory, ref. [47] developed MoG-LRMF.
In the following works, MoG is combined with low-rank tensor decomposition [48–50]. How-
ever, the MoG’s universal approximation property holds only if the number of Gaussian
components increases to an infinite amount, which is not feasible in real-world applica-
tions. Ref. [51,52] model unknown noise as a mixture of exponential power distributions
(MoEP), which alleviates MoG’s limitations. These methods are based on independent and
identically distributed (i.i.d.) noise assumptions, so they neglect diverse noise patterns
for different bands. The non-i.i.d. MoG (NMoG) proposed in [50] breaks through this
bottleneck by assigning all bands with different forms of MoG noise.

The asymmetry of HSI noise is ignored in the above noise modeling methods. In
ref. [19], HSI noise is modeled as an AL distribution and they proposed a bandwise-AL-
noise-based matrix factorization (BALMF) method for achieving better performance.

2.4. Deep Image Prior

The recent work by [32] is an unsupervised deep-learning-based method. It found that
the structure of a generator network can be used as a handcrafted prior to solve standard
inverse problems, e.g., denoising and inpainting. The knowledge implicit contained in
the network is called deep image prior (DIP). Hereafter, ref. [29] applied DIP to HSI
restoration. In ref. [29], 2D convolution was extended to a 3D one, but the 3D one has
poorer performance.

DIP for HSI solves the following optimization problem:

min
θ
‖ fθ(z)− x0‖2

2, (4)

where z is a randomly sampled input, x0 is a corrupted image, and f is a CNN with
parameters θ. The restored result is

x∗ = fθ∗(z), where θ∗ = arg min
θ

‖ fθ(z)− x0‖2
2. (5)

Apparently, the optimization will eventually result in a degraded image, which is the
same as x0. Ref. [32] found that the CNN will learn the signal first and learn noise slowly.
Therefore, the number of iterations is restricted to a certain number. This operation is called
early stopping.

To improve the performance of DIP, many studies have incorporated various regu-
larization terms into the loss function [53–55]. For HSI denoising, ref. [30] incorporates a
spatial–spectral total variation (SSTV) term to preserve the spatial–spectral local smoothness
of HSI.
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3. Proposed Model
3.1. Model Formulation

Given a noisy HSI with B bands and M× N pixels denoted by Y ∈ RM×N×B, it can
be considered as a clean HSI X ∈ RM×N×B plus the mixed noise N ∈ RM×N×B, which can
be formulated as follows:

Y = X +N . (6)

For each pixel, it can be formulated as

Yi,j,k = Xi,j,k +Ni,j,k, (7)

where Yi,j,k,Xi,j,k and Ni,j,k denote the (i, j, k)-th element of Y ,X and N , respectively.
To effectively characterize the self-similarity of HSIs, we employ the DIP method.

Specifically, based on Equation (5), a clean HSI X can be generated by a network:

X = fΘ(Z), (8)

where Θ is the parameters of network and Z ∈ RM×N×B is the network input, which is
randomly sampled from Uniform(0, 0.1). This form implicitly contains the prior captured
by the neural network.

According to the loss function in Equation (4), the DIP model only considers the
Gaussian noise. To overcome this drawback, we assume the HSI noise of each band obeys
an AL distribution. In more detail, we consider that the real-world HSI noise of each band
is different, but is distributed as the same kind of distribution. Mathematically, there is

Ni,j,k ∼ ALk
(
Ni,j,k|0, λk, κk

)
, ∀k = 1, 2, · · · , B, (9)

where λk and κk are the k-th element of λ and κ, respectively. The probability density
function (pdf) of AL is as

fAL(x, µ, λ, κ) = λκ(1− κ) exp
(
− |x− µ|λη

)
, (10)

where − inf < µ < inf is the location parameter, λ > 0 is the scale parameter and 0 < κ < 1
is the skew parameter. η = κI(x > µ) + (1− κ)I(x < µ) and I(e) is the indicator function
defined as follows:

I(e) =
{

1 if e is true
0 if e is false .

(11)

According to Equations (7) and (9), each pixel of noisy HSI Y has the
following distribution:

Yi,j,k ∼ ALk
(
Yi,j,k|Xi,j,k, λk, κk

)
, ∀k = 1, 2, · · · , B. (12)

Given this assumption, the log-likelihood function can be written as follows:

l(X , λ, κ) = ∑
i,j,k

log ALk
(
Yi,j,k|Xi,j,k, λk, κk

)
= ∑

i,j,k
−
∣∣Yi,j,k −Xi,j,k

∣∣λkηi,j,k + log
(
λkκk(1− κk)

)
= −

∥∥W � (Y −X )∥∥1 + MN
B

∑
k=1

log
(
λkκk(1− κk)

)
,

(13)

where the (i, j, k)-th element ofW is defined byWi,j,k = λkηi,j,k = λk
(
κkI(Yi,j,k > Xi,j,k) +

(1− κk)I(Yi,j,k < Xi,j,k)
)
.

According to the maximum likelihood estimation (MLE) principle, the parameters Θ,
λ and κ can be iteratively updated by maximizing the likelihood function `(X , λ, κ). There-
fore, the optimization model is as follows:
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min
Θ,λ,κ

∥∥W � (Y −X )∥∥1 −MN
B

∑
k=1

log
(
λkκk(1− κk)

)
s.t. X = fΘ(Z).

(14)

After removing the equality constraint, the issue is cast as the following problem:

min
Θ,λ,κ

∥∥W � (Y − fΘ(Z)
)∥∥

1 −MN
B

∑
k=1

log
(
λkκk(1− κk)

)
. (15)

To further preserve the spatial–spectral local smoothness, we incorporate a spatial–
spectral total variation (SSTV) term for an ALDIP model. The SSTV term is shown below:

‖X ‖SSTV = ‖DhXD‖1 + ‖DvXD‖1, (16)

where Dh and Dv are horizontal and vertical 2D finite differencing operators, respectively.
D is a 1D finite differencing operator on the spectral signature of each pixel. After incorpo-
rating the SSTV term to ALDIP, we will have the ALDIP-SSTV model as:

min
Θ,λ,κ

∥∥W � (Y − fΘ(Z)
)∥∥

1 −MN
B

∑
k=1

log
(
λkκk(1− κk)

)
+ τ‖ fΘ(Z)‖SSTV, (17)

where τ is the parameter for the SSTV term.

3.2. Solving Algorithm

For ALDIP (Equation (15)) and ALDIP-SSTV (Equation (17)), the solving algorithms
are similar. The following derivation is based on ALDIP-SSTV. The loss function of ALDIP-
SSTV is as the following:

L(Θ, λ, κ) =
∥∥W � (Y − fΘ(Z)

)∥∥
1 −MN

B

∑
k=1

log
(
λkκk(1− κk)

)
+ τ‖ fΘ(Z)‖SSTV. (18)

The parameters of AL noise (λ and κ) and network (Θ) can be iteratively updated by
minimizing Equation (18).

Updating λ: The loss function with respect to λ is written as:

L(λ) =
∥∥W � (Y − fΘ(Z)

)∥∥
1 −MN

B

∑
k=1

log λk. (19)

For λk, k = 1, 2, · · · , B, the loss function is shown as:

L(λk) = λk ∑
i,j

ηi,j,k
∣∣Yi,j,k − fΘ(Z)i,j,k

∣∣−MN
B

∑
k=1

log λk. (20)

The gradient of the above equation can be obtained as follows:

∂L(λk)

∂λk
= ∑

i,j
ηi,j,k

∣∣Yi,j,k − fΘ(Z)i,j,k
∣∣− MN

λk
. (21)

Let Equation (21) be zero, and the updating formula can be obtained as follows:

λk =
MN

∑i,j ηi,j,k
∣∣Yi,j,k − fΘ(Z)i,j,k

∣∣ , k = 1, 2, · · · , B (22)

Updating κ: The loss function with regard to κj is

L(κk) = λk ∑
i,j

ηi,j,k
∣∣Yi,j,k − fΘ(Z)i,j,k

∣∣−MN
B

∑
k=1

log
(
κk(1− κ)

)
. (23)
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For ηi,j,k, take the partial derivative with respect to κk:

∂ηi,j,k

∂κk
=

∂
(

κkI(Yi,j,k − fΘ(Z)i,j,k > 0) + (1− κk)I(Yi,j,k − fΘ(Z)i,j,k < 0)
)

∂κk

= I(Yi,j,k − fΘ(Z)i,j,k > 0)− I(Yi,j,k − fΘ(Z)i,j,k < 0)

= sign(Yi,j,k − fΘ(Z)i,j,k).

(24)

Thus, the gradient of Equation (23) is written as follows:

∂L(κk)

∂κk
= λk ∑

i,j

(
Yi,j,k − fΘ(Z)i,j,k

)
− MN

κk
+

MN
1− κk

. (25)

Let the above equation be zero, and we can obtain the following quadratic equation:

ξkκ2
k − (ξk + 2MN)κk + MN = 0, (26)

where ξk = λk ∑i,j
(
Yi,j,k − fΘ(Z)i,j,k

)
. This quadratic equation can be solved directly using

the quadratic formula. The following root satisfies the constraint 0 < κ < 1 [19]:

κk =
ξk + 2MN −

√
ξ2

k + 4M2N2

2ξk
, k = 1, 2, · · · , B. (27)

Updating Θ: After updating the parameters of AL noise model λ and κ, we update
the network parameter Θ. The loss function with respect to Θ is

L(Θ) = ‖W � (Y − fΘ(Z))‖1 + τ‖ fΘ(Z)‖SSTV. (28)

Adaptive moment estimation (ADAM) algorithm is used for this step, which includes
momentum and bias correction terms to accelerate the learning process and stabilize
the updates.

The solving algorithm is summarized in Algorithm 1.

Algorithm 1: ALDIP or ALDIP-SSTV.

Input: Observed noisy HSI Y ∈ RM×N×B, maximum iterations tmax;
Output: Clean HSI X , AL noise model (λ, κ);
begin

t← 0
while t < tmax do

Update λ by Equation (22)
Update κ by Equation (27)
Update Θ by optimizing Equation (28) using ADAM algorithm
t← t + 1

end
X ← fΘ(Z)
return X , (λ, κ)

end

4. Experiments

To validate the effectiveness and performance of ALDIP and ALDIP-SSTV, we conduct
experiments on both synthetic and real-world HSI data. To further demonstrate the superi-
ority of our methods, following eight state-of-the-art methods are selected for comparison:

• Low-rank methods: fast hyperspectral denoising (FastHyDe) [56], which is based on
low-rank and sparse representations.
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• TV regularized low-rank methods: TV regularized low-rank matrix factorization
(LRTV) [39] and TV regularized low-rank tensor decomposition (LRTDTV) [22], and
three-dimensional correlated total variation regularized RPCA (CTV) [57].

• Noise modeling methods: non-i.i.d. mixture of Gaussians modeling low-rank ma-
trix factorization (NMoG) [50] and a bandwise-AL-noise-based matrix factorization
(BALMF) [19].

• DIP-based methods: 2D convolution DIP with `2 loss (DIP2D-`2) [29], 2D convolution
DIP with `1 loss (DIP2D-`1) [29] and spatial–spectral constrained unsupervised deep
image prior (S2DIP) [30].

In this paper, we use a four-layer hourglass architecture with skip connections, which
is shown in Figure 3. We use the Adam optimizer with a learning rate of 0.01 for the
network in the following experiments.

Figure 3. Network architecture used for experiments.

4.1. Synthetic Data Experiment

Two HSI datasets are selected to conduct the simulated denoising experiment:

1. Indian Pines: ground truth of the scene gathered by AVIRIS sensor over the Indian
Pines test site in north-western Indiana with 145× 145 pixels and 224 bands.

2. Pavia Centre: a cropped HSI with 200 × 200 pixels and 80 bands acquired by the
ROSIS sensor during a flight campaign over Pavia, northern Italy.

To simulate real-world HSI noise, we firstly set up eight different noise cases that
synthesize various types of noise ranging from simple to complex. Furthermore, four more
cases are set up to simulate the scenario where the signal is more severely corrupted by
mixed noise. On the basis of case 8, these four cases simulate more severe mixture noise
either by adding more severe noise (case 9, case 10) or by having more bands corrupted
(case 11, case 12). Table 1 shows the details of the synthetic noise setting. Cases 3 to 12 are
more consistent with real-world HSI noise.

For fair comparison, the hyper-parameters for all methods are fine-tuned to achieve
their best performance and metrics for evaluation include: PSNR (Peak Signal-to-Noise
Ratio), SSIM (Structural Similarity), SAM (Spectral Angle Mapper) and ERGAS (Erreur
Relative Global Adimensionnelle de Synthèse).

Tables 2 and 3 present the evaluation results for the twelve cases on the Indian Pines
and Pavia Centre datasets. We will analyze the experiment results to gain a deeper under-
standing of the performance of our model.
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Table 1. Synthetic noise setting. σ denotes the standard deviation of Gaussian noise. p denotes the
sampling rate of impulse noise. q is the number of deadlines and stripes.

Case
Gaussian Noise Impulse Noise Deadline Stripe

Bands σ Bands p Bands q Bands q

Case 1 all bands 0.05 - - - - - -
Case 2 all bands 0.01∼0.05 * - - - - - -
Case 3 all bands 0.01 all bands p = 0.1 - - - -
Case 4 all bands 0.01 all bands p = 0.1 10% bands q = 35 - -
Case 5 all bands 0.01 all bands p = 0.1 20% bands q = 35 20% bands q = 35
Case 6 all bands 0.01 all bands p = 0.15 30% bands q = 35 30% bands q = 35
Case 7 all bands 0.01 all bands p = 0.25 40% bands q = 35 40% bands q = 35
Case 8 all bands 0.01 all bands p = 0.3 50% bands q = 35 50% bands q = 35

Case 9 all bands 0.01 all bands p = 0.35 50% bands q = 40 50% bands q = 40
Case 10 all bands 0.01 all bands p = 0.4 50% bands q = 45 50% bands q = 45

Case 11 all bands 0.01 all bands p = 0.3 60% bands q = 35 60% bands q = 35
Case 12 all bands 0.01 all bands p = 0.3 70% bands q =3 5 70% bands q = 35

* In case 2, each band is corrupted by Gaussian noise with σ randomly sampled from 0.01 to 0.05.

Firstly, we will compare our methods with non-DIP-based methods. Although our
methods are not specifically designed for Gaussian noise, ALDIP and ALDIP-SSTV perform
well in case 1 and case 2, and even outperform other methods in some metrics. It should
be attributed to DIP and SSTV terms. However, the effect of AL noise modeling is not
obvious in these cases. As we further add various types of noise and increase the intensities,
the superior performance of our methods becomes more apparent. In cases 3 to 12, our
methods rank first or second in most metrics. In some cases of the Pavia Centre dataset
(case 3, 5, 7, 8), NMoG takes the first place on the PSNR metric, but the structural and
spectral similarity is not as good as our methods.

Secondly, we compare our methods with other DIP-based methods. In case 1 and case
2, DIP2D-`2 performs well. However, in other cases, it performs much worse than other
DIP-based methods. Therefore, the assumption of Gaussian distribution performs poorly
for mixed HSI noise. S2DIP has the best performance in case 1 and case 2. In other cases,
our methods outperform S2DIP. Next, we focus on the comparison between DIP2D-`1 and
ALDIP. When updating the parameters of the network, DIP2D-`1 uses ‖Y − fΘ(Z)‖1 as
the loss function while ALDIP uses ‖W � (Y − fΘ(Z))‖1. ALDIP multiplies an additional
W , which guides the network to learn the skewness of noise. To assess the effect of this
operation, we further show the difference between the above two methods in the metrics.
Table 4 shows the improvement of AL noise modeling, where positive numbers represent
positive effects and negative numbers represent negative effects.

According to Table 4, we find that AL noise modeling can always achieve good
improvements on the Indian Pines dataset. However, on the Pavia Centre dataset, AL
modeling leads to a decrease in PSNR and ERGAS, but an improvement in SSIM and SAM
in cases 1-5. For other cases with more intensive noise, the effect of AL modeling becomes
more and more obvious. In other words, the more complex the noise, the more asymmetric
it becomes.
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Table 2. The metrics of a synthetic data experiment on HSI dataset Indian Pines. The optimal values are indicated in bold and the second-best values are underlined.

Cases Metrics Noisy FastHyDe LRTV LRTDTV NMoG BALMF CTV DIP2D-`2 DIP2D-`1 S2DIP ALDIP ALDIP-SSTV

Case 1

PSNR 26.03 39.23 43.76 43.44 39.05 36.13 40.08 41.04 40.10 44.91 40.10 41.84
SSIM 0.6036 0.9590 0.9929 0.9956 0.9583 0.9092 0.9721 0.9780 0.9699 0.9971 0.9669 0.9816
SAM 5.8973 1.1306 0.6230 0.6513 1.2091 1.7804 1.05 0.8983 0.9976 0.6930 0.9892 0.7755

ERGAS 116.62 26.80 16.08 17.16 27.32 37.87 24.41 21.18 23.74 15.70 23.66 20.46

Case 2

PSNR 30.84 41.78 47.28 44.80 44.10 39.98 42.25 44.67 44.05 47.02 46.03 47.07
SSIM 0.7569 0.9812 0.9968 0.9973 0.9865 0.9561 0.9812 0.9904 0.9888 0.9981 0.9921 0.9947
SAM 3.9517 0.8090 0.3974 0.5323 0.6781 1.2462 0.862 0.5932 0.6510 0.5345 0.5022 0.4529

ERGAS 78.13 20.29 11.09 15.24 15.61 26.88 19.56 14.01 15.15 12.42 12.12 11.39

Case 3

PSNR 18.52 28.06 48.47 44.62 46.80 47.19 47.84 30.46 49.45 48.11 49.82 50.40
SSIM 0.4557 0.8076 0.9988 0.9980 0.9948 0.9947 0.9944 0.9133 0.9978 0.9993 0.9980 0.9984
SAM 13.1936 2.7764 0.2494 0.4344 0.3999 0.4128 0.4319 1.8306 0.3375 0.2903 0.3218 0.3047

ERGAS 273.80 92.08 8.96 15.68 16.75 11.03 10.24 69.44 8.74 9.41 7.86 7.48

Case 4

PSNR 17.10 24.74 37.09 39.96 35.24 41.96 44.11 30.27 48.99 48.06 49.76 50.31
SSIM 0.4073 0.7181 0.9655 0.9845 0.9809 0.9743 0.9692 0.9061 0.9978 0.9992 0.9979 0.9982
SAM 17.9269 8.6414 2.8213 1.5948 5.6250 3.6964 1.5977 1.9643 0.2914 0.2979 0.3245 0.3057

ERGAS 371.64 213.74 75.18 45.80 117.76 87.57 36.52 70.96 8.35 9.47 7.89 7.50

Case 5

PSNR 16.89 24.59 36.78 39.45 36.01 41.19 41.23 29.77 48.00 47.72 48.81 49.62
SSIM 0.3937 0.7089 0.9602 0.9792 0.9805 0.9662 0.9354 0.8975 0.9972 0.9991 0.9977 0.9981
SAM 18.3366 8.7609 3.0209 1.6783 5.3124 3.2847 2.8146 2.3404 0.3566 0.3564 0.3558 0.3234

ERGAS 377.49 217.16 81.72 51.00 111.17 84.29 61.26 76.72 10.06 10.31 9.28 8.18

Case 6

PSNR 16.06 22.94 36.18 38.91 40.04 39.93 37.91 29.72 47.24 47.55 48.66 49.54
SSIM 0.3622 0.6569 0.9584 0.9817 0.9830 0.9592 0.9880 0.8838 0.9968 0.9990 0.9973 0.9980
SAM 20.8171 10.6067 2.5872 1.5086 5.0481 3.8595 1.0938 2.6751 0.4134 0.3835 0.3713 0.3334

ERGAS 423.77 258.33 76.07 48.55 106.80 88.84 36.42 77.99 10.98 10.39 9.24 8.25

Case 7

PSNR 15.30 21.85 34.35 37.80 39.61 37.16 36.63 29.63 46.30 47.03 48.11 49.71
SSIM 0.3310 0.6335 0.9457 0.9763 0.9845 0.9369 0.9857 0.8871 0.9960 0.9987 0.9966 0.9975
SAM 22.6722 11.0750 3.3362 1.3765 4.5066 3.9360 1.1551 2.9089 0.4594 0.4495 0.3846 0.3577

ERGAS 461.45 278.01 84.80 43.50 94.44 98.32 40.56 80.22 12.44 11.48 9.77 8.37

Case 8

PSNR 14.52 19.96 32.80 36.49 39.31 35.02 35.66 29.18 46.01 46.61 47.95 49.32
SSIM 0.3012 0.5566 0.9300 0.9750 0.9849 0.9128 0.9838 0.8668 0.9959 0.9985 0.9969 0.9973
SAM 24.6293 13.6830 3.2331 1.3849 4.3261 3.2084 1.2382 3.2743 0.4792 0.4933 0.4013 0.3914

ERGAS 497.95 323.77 89.67 51.52 92.30 94.75 44.59 85.39 12.86 12.28 9.95 9.19
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Table 2. Cont.

Cases Metrics Noisy FastHyDe LRTV LRTDTV NMoG BALMF CTV DIP2D-`2 DIP2D-`1 S2DIP ALDIP ALDIP-SSTV

Case 9

PSNR 14.29 19.70 28.54 33.94 34.15 33.31 34.65 28.81 44.48 46.08 47.10 50.20
SSIM 0.2916 0.6960 0.9171 0.9444 0.9216 0.8749 0.9811 0.8525 0.9937 0.9981 0.9962 0.9981
SAM 25.6182 12.3029 4.7091 2.6407 8.0042 5.0992 1.2395 3.6646 0.6310 0.5571 0.4811 0.3556

ERGAS 518.06 313.29 123.04 80.01 180.95 132.82 48.79 91.31 16.00 13.39 11.94 8.18

Case 10

PSNR 14.08 19.12 27.13 31.01 29.21 29.56 33.66 28.84 42.70 46.14 46.99 49.79
SSIM 0.2831 0.6754 0.8783 0.9047 0.8376 0.8267 0.9777 0.8502 0.9919 0.9983 0.9959 0.9978
SAM 26.8287 13.9469 5.8248 4.0121 10.7548 7.0674 1.4748 3.7119 0.7584 0.5570 0.4909 0.3923

ERGAS 538.55 342.07 139.38 107.30 259.88 167.56 55.69 91.63 20.07 13.53 12.52 9.32

Case 11

PSNR 13.80 18.62 31.58 34.60 37.87 32.87 35.23 27.67 43.95 45.67 47.37 48.79
SSIM 0.2796 0.5233 0.9714 0.9615 0.9811 0.9003 0.9821 0.8369 0.9936 0.9982 0.9956 0.9972
SAM 26.4903 14.6744 2.3998 2.0343 5.0204 4.4053 1.2945 3.9564 0.6378 0.5478 0.4563 0.4067

ERGAS 531.88 349.84 79.30 63.94 104.89 108.83 47.07 101.46 16.17 13.65 10.70 9.56

Case 12

PSNR 13.14 17.55 31.01 33.62 35.51 31.37 34.6 27.31 43.29 45.44 45.54 48.05
SSIM 0.2576 0.4994 0.9706 0.9600 0.9657 0.8594 0.9804 0.8235 0.9931 0.9982 0.9949 0.9966
SAM 28.0145 15.0541 2.4515 2.1039 6.0969 4.8016 1.4321 4.0036 0.6207 0.5570 0.4942 0.4582

ERGAS 561.12 372.75 79.56 65.50 131.85 122.80 50.42 103.93 17.03 13.88 13.13 11.05

Table 3. The metrics of a synthetic data experiment on the HSI dataset Pavia Centre. The optimal values are indicated in bold and the second-best values
are underlined.

Cases Metrics Noisy FastHyDe LRTV LRTDTV NMoG BALMF CTV DIP2D-`2 DIP2D-`1 S2DIP ALDIP ALDIP-SSTV

Case 1

PSNR 26.30 39.20 39.48 35.86 39.51 37.43 38.8 39.17 39.00 40.04 37.45 38.69
SSIM 0.7424 0.9800 0.9829 0.9620 0.9811 0.9680 0.9794 0.9809 0.9805 0.9845 0.9814 0.9840
SAM 17.0067 3.7325 3.8531 4.6013 3.5918 5.3550 3.7128 3.7796 4.0133 3.0926 4.3570 4.0333

ERGAS 175.10 40.62 39.03 58.34 39.22 50.16 41.83 40.37 41.22 36.22 49.91 43.81

Case 2

PSNR 31.65 41.78 42.08 37.46 44.68 41.65 41.78 41.98 42.59 43.80 43.47 44.10
SSIM 0.8729 0.9902 0.9912 0.9734 0.9938 0.9868 0.9902 0.9891 0.9907 0.9928 0.9943 0.9949
SAM 12.1869 3.0119 3.0857 4.0471 2.5040 3.9117 2.7267 3.2144 2.9836 2.4591 2.5291 2.4204

ERGAS 113.60 30.25 29.25 49.42 22.24 33.56 30.44 29.99 27.94 23.97 25.83 24.08

Case 3

PSNR 22.36 35.48 43.90 38.49 47.64 46.40 42.71 35.64 47.25 47.43 46.36 47.29
SSIM 0.6967 0.9662 0.9948 0.9806 0.9970 0.9964 0.9942 0.9673 0.9967 0.9969 0.9974 0.9975
SAM 20.0879 4.1047 2.6064 3.3883 1.9752 2.0972 2.1413 4.9394 1.9686 1.8505 1.7034 1.7181

ERGAS 273.22 60.78 24.40 43.81 15.86 18.88 30.51 59.42 16.09 15.74 17.51 16.00
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Table 3. Cont.

Cases Metrics Noisy FastHyDe LRTV LRTDTV NMoG BALMF CTV DIP2D-`2 DIP2D-`1 S2DIP ALDIP ALDIP-SSTV

Case 4

PSNR 21.57 32.82 43.60 36.12 47.52 45.64 42.07 35.53 47.20 47.39 46.40 47.35
SSIM 0.6549 0.9493 0.9946 0.9565 0.9969 0.9962 0.9942 0.9660 0.9967 0.9969 0.9974 0.9975
SAM 23.0573 7.4007 2.6426 7.9608 2.0154 2.1448 2.1413 5.0382 1.9759 1.8543 1.7262 1.6897

ERGAS 308.95 101.51 25.14 90.77 16.03 20.30 30.51 60.22 16.16 15.81 17.43 15.94

Case 5

PSNR 21.30 32.67 43.51 36.14 47.37 45.61 42.07 34.40 46.93 46.88 46.22 46.97
SSIM 0.6343 0.9471 0.9945 0.9560 0.9969 0.9960 0.9937 0.9583 0.9965 0.9966 0.9972 0.9973
SAM 24.7838 7.5769 2.6701 8.1455 2.0495 2.2043 2.2856 5.6935 2.0375 1.9416 1.8048 1.8292

ERGAS 319.28 103.08 25.37 86.62 16.29 20.43 33.02 69.52 16.67 16.75 17.93 16.75

Case 6

PSNR 20.12 31.57 43.27 36.53 46.95 45.47 41.82 34.04 46.42 46.74 46.67 47.21
SSIM 0.5786 0.9312 0.9943 0.9584 0.9967 0.9957 0.9934 0.9524 0.9963 0.9965 0.9966 0.9974
SAM 27.9489 8.3278 2.6936 7.9102 2.0806 2.2514 2.2472 5.9020 2.1359 1.9748 2.0690 1.7600

ERGAS 363.07 116.00 26.00 85.87 17.06 21.18 33.27 72.71 17.71 16.98 17.24 16.34

Case 7

PSNR 19.02 30.37 43.12 36.30 47.03 45.47 41.4 33.53 46.04 46.00 46.40 46.95
SSIM 0.5223 0.9210 0.9941 0.9593 0.9966 0.9954 0.9929 0.9466 0.9960 0.9961 0.9963 0.9972
SAM 31.2914 8.8795 2.7314 7.6461 2.1179 2.3055 2.2937 6.0722 2.1985 2.1082 2.1499 1.8355

ERGAS 408.59 127.06 26.27 80.63 16.91 21.26 35.1 77.29 18.60 18.61 18.15 17.15

Case 8

PSNR 18.45 29.59 42.69 35.64 46.79 45.08 41.08 32.85 45.62 45.90 46.12 46.48
SSIM 0.4854 0.9076 0.9935 0.9538 0.9965 0.9950 0.9927 0.9386 0.9956 0.9960 0.9961 0.9971
SAM 32.6879 9.3407 2.7869 8.3467 2.1769 2.4255 2.3561 6.4693 2.2487 2.0995 2.1969 1.8739

ERGAS 436.01 133.66 27.50 89.53 17.59 22.48 35.61 83.97 19.73 18.76 18.84 18.20

Case 9

PSNR 17.85 28.79 41.96 34.91 44.94 43.03 40.73 31.97 44.18 44.20 44.57 45.20
SSIM 0.4520 0.8932 0.9927 0.9506 0.9951 0.9909 0.9919 0.9294 0.9943 0.9946 0.9949 0.9952
SAM 34.6958 10.5187 3.0950 8.1836 2.8347 3.3299 2.4071 6.8319 2.8962 2.7547 2.8309 2.7075

ERGAS 466.46 148.92 31.78 91.92 24.96 33.94 37.9 92.21 26.54 25.90 25.74 24.12

Case 10

PSNR 17.41 28.42 41.50 34.22 44.23 42.53 39.48 31.32 43.95 44.28 44.42 45.00
SSIM 0.4261 0.8847 0.9922 0.9413 0.9944 0.9876 0.9902 0.9215 0.9939 0.9946 0.9948 0.9950
SAM 35.8854 11.0685 3.1327 8.8384 3.0609 3.6675 3.2593 7.3129 2.9434 2.7617 2.8315 2.7416

ERGAS 491.22 155.12 33.31 102.06 30.26 42.02 46.45 101.00 27.08 25.80 26.27 24.69
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Table 3. Cont.

Cases Metrics Noisy FastHyDe LRTV LRTDTV NMoG BALMF CTV DIP2D-`2 DIP2D-`1 S2DIP ALDIP ALDIP-SSTV

Case 11

PSNR 18.18 28.73 42.45 34.97 46.36 43.93 39.43 32.50 45.50 45.71 46.00 46.71
SSIM 0.4617 0.8992 0.9932 0.9522 0.9962 0.9933 0.9896 0.9354 0.9955 0.9958 0.9961 0.9963
SAM 33.8180 9.6114 2.8141 7.3038 2.2481 2.6948 3.2593 6.6250 2.2602 2.1392 2.1863 2.0957

ERGAS 449.56 144.97 28.39 84.59 18.79 26.89 46.45 87.30 19.79 19.19 18.89 17.47

Case 12

PSNR 17.81 27.76 41.79 34.73 45.43 42.80 39.3 32.02 44.92 45.07 45.67 46.52
SSIM 0.4357 0.8871 0.9924 0.9540 0.9959 0.9936 0.9896 0.9305 0.9951 0.9954 0.9959 0.9962
SAM 35.8303 9.4789 2.8691 7.1715 2.3083 2.6295 3.1511 6.9558 2.3550 2.2468 2.2371 2.1170

ERGAS 469.43 157.33 30.54 80.55 20.99 28.06 45.64 91.81 21.20 20.57 19.59 17.91

Table 4. The improvement of AL noise modeling, i.e., the improvement of ALDIP over DIP2D-`1 in four metrics. Positive numbers indicate positive effects, while
negative numbers indicate negative effects. Negative effects are all underlined.

Datasets Metrics Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 Case 11 Case 12

Indian Pines

PSNR −0.01 1.98 0.37 0.77 0.81 1.42 1.81 1.94 2.61 4.29 3.43 2.25
SSIM 0.0030 0.0033 0.0003 0.0001 0.0004 0.0005 0.0006 0.0010 0.0025 0.0040 0.0020 0.0018
SAM 0.0084 0.1487 0.0157 0.0331 0.0008 0.0421 0.0748 0.0779 0.1499 0.2675 0.1815 0.1265

ERGAS 0.09 3.03 0.89 0.46 0.78 1.74 2.67 2.91 4.06 7.55 5.47 3.90

Pavia Centre

PSNR −1.55 0.87 −0.89 −0.80 −0.71 0.25 0.37 0.50 0.39 0.47 0.50 0.75
SSIM 0.0009 0.0035 0.0007 0.0007 0.0007 0.0003 0.0002 0.0006 0.0006 0.0009 0.0006 0.0008
SAM −0.3436 0.4545 0.2652 0.2496 0.2327 0.0669 0.0486 0.0519 0.0654 0.1119 0.9014 0.1179

ERGAS −8.6971 2.1089 −1.4204 −1.2677 −1.2612 0.4747 0.4451 0.8953 0.8005 0.8074 0.9014 1.6018
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Figures 4 and 5 display the denoising result on Indian Pines and Pavia Centre.
Figures 4a and 5a show the noisy HSI, which is seriously degraded by the mixture of
Gaussian noise, impulse noise, deadlines and stripes. Some local areas are amplified to dis-
play detailed information. It is shown that DIP-based methods outperform other methods.
For DIP-based methods, our methods retain some important details.

(a) Noisy
PSNR = 14.52

(b) FastHyDe
PSNR = 19.96

(c) LRTV
PSNR = 32.80

(d) LRTDTV
PSNR = 36.49

(e) NMoG
PSNR = 39.31

(f) BALMF
PSNR = 35.02

(g) CTV
PSNR = 35.66

(h) DIP2D-`2

PSNR = 29.18
(i) DIP2D-`1

PSNR = 46.01
(j) S2DIP

PSNR = 46.61
(k) ALDIP

PSNR = 47.95
(l) ALDIP-SSTV

PSNR = 49.32
(m) GT

PSNR = Inf

Figure 4. GT, Noisy and denoising result by methods for comparison on Indian Pines dataset (case 8).
The pseudo images consisted of the 185th, 136th and 19th bands are selected to display. Two local
areas (red and blue squares) are demarcated zoomed for easy observation.

(a) Noisy
PSNR = 17.81

(b) FastHyDe
PSNR = 27.76

(c) LRTV
PSNR = 41.79

(d) LRTDTV
PSNR = 34.73

(e) NMoG
PSNR = 45.43

(f) BALMF
PSNR = 42.80

(g) CTV
PSNR = 39.3

(h) DIP2D-`2

PSNR = 32.02
(i) DIP2D-`1

PSNR = 44.92
(j) S2DIP

PSNR = 45.07
(k) ALDIP

PSNR = 45.67
(l) ALDIP-SSTV

PSNR = 46.52
(m) GT

PSNR = Inf

Figure 5. GT, noisy and denoising results by methods for comparison on Pavia Centre dataset (case
12). The pseudo images that consisted of the 30th, 14th and 2nd bands are selected to display. A local
area (red square) is demarcated zoomed for easy observation.

Pixel (67,7) on the Indian Pines dataset for case 9 is chosen to visualize the spectral
curves in Figure 6. For the Indian Pines dataset, DIP2D-`1, S2DIP, ALDIP and ALDIP-
SSTV’s spectral curves almost perfectly fit the curves of the ground truth. However, a local
area of curves is zoomed in to show that ALDIP and ALDIP-SSTV preserve details that
other methods fail to.
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Figure 6. Spectral curves of methods for comparison at pixel (67,7) on Indian Pines dataset (case 9).

Pixel (52,59) on the Pavia Centre dataset for case 12 is also selected. In Figure 7, it
is clear that ALDIP and ALDIP-SSTV finely recover the truth spectrum. Therefore, our
proposed ALDIP and ALDIP-SSTV are able to achieve a restoration closest to the truth.

Figure 7. Spectral curves of methods for comparison at pixel (52,59) on Pavia Centre dataset (case 12).

4.2. Real Data Experiments

Three real-world HSI datasets are used to conduct the real data experiments to validate
the effectiveness of our methods. They are:

1. Shanghai: captured by the GaoFen-5 satellite with 300 × 300 pixels and 155 bands.
2. Terrain: captured by Hyperspectral Digital Imagery Collection Experiment with

500 × 307 pixels and 210 bands.
3. Urban: captured by Hyperspectral Digital Imagery Collection Experiment with

307 × 307 pixels and 210 bands.

In the real data experiment, the early stopping trick is applied to all DIP-based methods
by manually monitoring to preventing overfitting. Figure 8 shows that on the Shanghai
dataset, FastHyDe, LRTDTV, NMoG and DIP-based methods successfully remove the
stripes. Taking a closer observation at these denoising results, FastHyDe, LRTDTV, DIP2D-
`2 and DIP2D-`1 lose some details in the zoomed local area. Moreover, ALDIP and ALDIP-
SSTV preserve more details than DIP2D-`2 and DIP2D-`1, which demonstrates that ALDIP
and ALDIP-SSTV obtain a superiority on HSI mixed noise removal.

The denoising result of the Terrain dataset is shown in Figure 9. Apparently, all non-
DIP-based methods cannot completely remove stripes. Among the DIP-based methods,
the results of ALDIP and ALDIP-SSTV are less blurring and preserve more details. On the
Urban dataset, the effectiveness of our methods is more significant. As shown in Figure 10,
non-DIP-based methods have poor performance. It can be seen visually that ALDIP and
ALDIP-SSTV outperform all other methods.
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(a) Noisy (b) FastHyDe (c) LRTV (d) LRTDTV (e) NMoG (f) BALMF

(g) CTV (h) DIP2D-`2 (i) DIP2D-`1 (j) S2DIP (k) ALDIP (l) ALDIP-SSTV

Figure 8. Noisy and denoising results by methods for comparison on real-world noisy HSI Shanghai
dataset. The enhanced pseudo images consisted of the 152nd, 88th and 43rd bands are displayed.
Two local areas (red and blue squares) are demarcated zoomed for easy observation.

(a) Noisy (b) FastHyDe (c) LRTV (d) LRTDTV (e) NMoG (f) BALMF

(g) CTV (h) DIP2D-`2 (i) DIP2D-`1 (j) S2DIP (k) ALDIP (l) ALDIP-SSTV

Figure 9. Noisy and denoising results by methods for comparison on real-world noisy HSI Terrain
dataset. The images of band 104 are displayed. Two local areas (red and blue squares) are demarcated
zoomed for easy observation.
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(a) Noisy (b) FastHyDe (c) LRTV (d) LRTDTV (e) NMoG (f) BALMF

(g) CTV (h) DIP2D-`2 (i) DIP2D-`1 (j) S2DIP (k) ALDIP (l) ALDIP-SSTV

Figure 10. Noisy and denoising result by methods for comparison on real-world noisy HSI Urban
dataset. The pseudo images consisted of the 104th, 108th and 109th bands are displayed. Two local
areas (red and blue squares) are demarcated zoomed for easy observation.

4.3. Sensitivity Analysis

At the first glance, ALDIP needs to initialize parameters λ and κ. Let us revisit Equa-
tion (22), and it is shown that only κ should be initialized, because updating λ depends on κ
rather than the previous λ. In practice, we do not know whether the noise is negative skew,
positive skew or symmetric. An intuitive strategy is to initialize κk = 0.5 (k = 1, 2, · · · , B),
which corresponds to the symmetric case.

As stated before, the loss function of ALDIP can actually be deemed as the weighted `1
norm, where the weight is determined by λ and κ. DIP2D-`1 is hence employed as the base-
line. Figure 11 exhibits the PSNR curve versus a different initial value of κ. It is revealed that
the PSNR of ALDIP fluctuates within a very small interval and is always higher than that
of the baseline. A conclusion is thus drawn that ALDIP is not sensitive to the initial value
of κ.

Figure 11. The trend of PSNR changing with the initial value of κ on Indian Pines (case 8) and Pavia
Centre (case 12).

Furthermore, as shown in Figure 12, it is found that ALDIP can always reach the
optimal PSNR value with fewer iterations than DIP2D-`1, no matter how κ is initialized.
This indicates that DIP guided by AL noise modeling has a faster learning process.
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Figure 12. The trend of iterations to reach the best PSNR changing with the initial value of κ on
Indian Pines (case 8) and Pavia Centre (case 12).

DIP-based methods require early stopping to avoid the inherited overfitting issue.
Therefore, the number of steps is a critical hyperparameter that affects the performance
of our methods. Figure 13 visualized how the number of steps impacts the performance
of our methods. As shown in Figure 13, the PSNR values on both the Indian Pines and
Pavia Centre datasets approach their respective peaks at around 800 iterations when the
image suffers from i.i.d. Gaussian noise (case 1). There is a similar conclusion for non-i.i.d.
Gaussian noise (case 2). For the mixed noise, cases 5, 8 and 10 are selected to be displayed.
At about 1500 iterations, ALDIP reaches a high PSNR value on both datasets. Thus, we set
the number of steps to 800 for Gaussian noise cases and 1500 for the mixed noise cases.

Figure 13. The empirical number of steps for experiments and how different numbers of steps impact
the noise removal results.

4.4. Execution Time

Table 5 presents the execution time and corresponding PSNR of DIP-based methods
when achieving their optimal PSNR. It is shown that although DIP2D-l2 has the shortest
execution time, its performance is far inferior to other methods. Among DIP2D-l1, S2DIP
and ALDIP, ALDIP exhibits the shortest execution time and the best performance. Al-
though we need to update the parameters of AL at each iteration, it is not a time-consuming
process. Even with the additional time required for updating the parameters of AL, ALDIP
still exhibits a shorter execution time due to improvements in learning speed. Under the
guidance of AL noise modeling, DIP is accelerated significantly. However, incorporated
with the SSTV term, ALDIP-SSTV has the longest execution time. This is because the
backpropagation process of the SSTV term is time-consuming.
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Table 5. The execution time (Exe. time) and PSNR of DIP-based methods on Indian Pines (case 8)
and Pavia Centre (case 12).

Datasets Metrics DIP2D-`2 DIP2D-`1 S2DIP ALDIP ALDIP-SSTV

Indian Pines Exe. time 72.29 123.74 341.27 114.23 660.58
PSNR 29.27 45.75 46.61 47.44 50.00

Pavia Centre Exe. time 42.75 109.48 128.90 74.59 231.91
PSNR 32.03 44.91 44.95 45.74 46.46

5. Conclusions

In this paper, considering the asymmetric and heavy-tailed properties of HSI noise, we
combine an AL noise model and deep image prior. We propose ALDIP and ALDIP-SSTV
for HSI denoising. Compared with other state-of-the-art methods, our methods outperform
other methods for both synthetic data and real-world data. As unsupervised-learning-
based methods, ALDIP and ALDIP-SSTV avoid training on massive paired data. There
are still several directions to further improve our methods. For instance, it is still urgent
to design the automatic early stopping strategy to replace manual monitoring. Moreover,
except for SSTV, other more advanced regularizations can be combined into ALDIP. Last
but not least, the construction of a more suitable network architecture for HSI denoising
is also an interesting problem. Additionally, our methods focus on modifying the loss
function to enable the network to learn the asymmetric and heavy-tailed properties of
complex noise. It would be interesting to design a learnable module that can achieve the
same objective in the future.
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