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Abstract: Monitoring tree diseases in forests is crucial for managing pathogens, particularly as
climate change and globalization lead to the emergence and spread of tree diseases. Object detection
algorithms for monitoring tree diseases through remote sensing rely on bounding boxes to represent
trees. However, this approach may not be the most efficient. Our study proposed a solution to this
challenge by applying object detection to unmanned aerial vehicle (UAV)-based imagery, using point
labels that were converted into equally sized square bounding boxes. This allowed for effective and
extensive monitoring of black pine (Pinus nigra L.) trees with vitality-related damages. To achieve
this, we used the “You Only Look Once” version 5 (YOLOv5) deep learning algorithm for object
detection, alongside a 16 by 16 intersection over union (IOU) and confidence threshold grid search,
and five-fold cross-validation. Our dataset used for training and evaluating the YOLOv5 models
consisted of 179 images, containing a total of 2374 labeled trees. Our experiments revealed that, for
achieving the best results, the constant bounding box size should cover at least the center half of the
tree canopy. Moreover, we found that YOLOv5s was the optimal model architecture. Our final model
achieved competitive results for detecting damaged black pines, with a 95% confidence interval of
the F1 score of 67–77%. These results can possibly be improved by incorporating more data, which is
less effort-intensive due to the use of point labels. Additionally, there is potential for advancements
in the method of converting points to bounding boxes by utilizing more sophisticated algorithms,
providing an opportunity for further research. Overall, this study presents an efficient method for
monitoring forest health at the single tree level, using point labels on UAV-based imagery with a
deep learning object detection algorithm.

Keywords: point labels; stress detection; forest health; UAV; deep learning; YOLOv5

1. Introduction

Globalization and climate change impact forests world-wide by causing pathogen
invasions, as well as disease emergence and spread [1]. Monitoring forest health under
these changing conditions is important, as it provides insight into diseases and advice for
pathogen management to be formulated [2,3].

Forest monitoring consists mainly of collecting data, which has many different ap-
proaches as it is a well-researched topic. Sampling the data in situ by foot has made
significant progress, but it sometimes includes subjective measurements and is expensive.
It is thus rather suited for limited sampling, but less for temporally or spatially extensive
coverage [4–6]. An alternative to in situ sampling is remote sensing, which can differentiate
diseased trees from healthy ones if applied correctly [7]. While mapping forest health is
possible using satellite imagery [8], the low resolution prohibits automated labeling on
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the individual tree level [9]. Using unmanned aerial vehicles (UAVs) can reduce costs as
well as response times and can expand spatial coverage in comparison to field data [10–12].
The increase in studies using UAVs reflects these advantages [13]. The algorithms used on
UAV-based imagery are diverse but most have in common that they require a dataset for
training as they are machine learning or deep learning algorithms [14]. The datasets are
categorized as classification, regression [15], object detection, or segmentation [16]. Clas-
sification assigns a class to previously manually or automatically segmented images [17],
while regression assigns a continuous value to an image [18]. Object detection usually uses
bounding boxes in an image [19,20] to capture the spatial extent and location of objects, as
well as the class of objects [21]. Segmentation requires pixel-wise class labels as it classi-
fies every pixel of an image [22] and is thus the most resource-intensive kind of labeling.
While the kind of labels used varies across different use cases [23], bounding boxes are
well-suited labels for monitoring tree health, as manually labeled datasets with bounding
boxes enable state-of-the-art performance [24]. Additionally, bounding boxes are relatively
simple compared to the labels required for segmentation and require no additional manual
or automated tree crown delineation, unlike classification.

While bounding boxes (Figure 1a) are appropriate for monitoring tree health, point
labels (Figure 1b) might cover all relevant information. The reason for using bounding
boxes for tree health monitoring is mainly the compatibility with object detection algorithms
that require bounding boxes. Bounding boxes contain information on location, spatial
extent, and the class of individual objects. However, the spatial extent of individual trees
may not be important for tree health monitoring, while the location and class of individual
trees (e.g., degree of damage, tree species) are. The location and class of individual objects is
contained within point labels. For example, point labels would contain all the information
needed for monitoring the spatial distribution of damaged trees. Sometimes, point labels
might be available from other investigations and thus represent low-cost data if they could
be used for training an algorithm. This is significant because making a dataset for a remote
sensing algorithm is still expensive, considering image collection and manual labeling.
There have been attempts unrelated to tree health monitoring that tried replacing bounding
boxes with point labels by creating new algorithms. Those, however, showed limitations,
such as performing worse on larger objects or objects distant from each other. This topic
is generally little explored [25–27]. Instead of using an algorithm that directly takes point
labels as input, another option could be converting the point labels to bounding boxes
first, which then are used to train an object detection algorithm requiring bounding boxes.
This would allow for state-of-the-art object detection algorithms to use point labels. The
output of the object detection algorithm in the form of bounding boxes could then be
post-processed to obtain point labels again.

Figure 1. Trees labeled as (a) bounding boxes and as (b) points on the same orthomosaic with healthy
black pines (green), damaged black pines (orange), and dead black pines (red).
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In this study, we wanted to reuse point labels of a previous investigation [28] for object
detection of black pines (Pinus nigra L.). There, the labels were classified by the degree of
vitality-related damage on high-resolution imagery over a large area using “You Only Look
Once” version 5 (YOLOv5). Black pines were chosen as the object of investigation because
they were considered relevant to the regionally changing climate in Germany. However,
in the largest black pine forest in Germany, many trees showed signs of vitality loss. The
orthomosaics were UAV-based red, green, blue (RGB) images, as high-resolution and a
low cost were preferred. While using more information-rich sensors, such as multispectral
sensors, might have allowed for more differentiated distinctions besides the objectives of
our study, RGB cameras often perform well for monitoring tree diseases and are more cost-
effective [14]. The study was conducted on the largest black pine forest in Germany, which
primarily consists of a pure stand of black pine trees. According to samples previously
collected, approximately 12% of the black pines of this forest were dead and 59% were
damaged at the time of UAV image collection. Thus, the selected study area was suited
for both training and testing the proposed method. The main goals of our study were
as follows:

• To develop a new method for assessing the vitality-related damages of black pines us-
ing point labels on high-resolution UAV-based RGB imagery with YOLOv5, reducing
the labeling effort;

• To identify the optimal bounding box size and model size for the proposed method,
enabling an efficient conversion of point labels to bounding boxes for object detection;

• To demonstrate the competitive performance of the proposed method by comparing it
to similar studies, showing its potential for practical applications.

2. Materials and Methods
2.1. Data Collection and Annotation

The study area was located in the largest black pine forest in Germany. The forest
located in the municipalities of Leinach and Erlabrunn extends over 230 hectares, of which
the study area covers approximately 90 hectares (centered at 49.856°N, 9.833°E). The study
area included only areas with a mostly pure black pine stand. The images were collected in
2019 on 13, 15, and 16 August with a DJI Phantom 4 RTK at an altitude of 100 m with an RGB
camera [28]. Those images were converted into 27 orthomosaics using photogrammetry
with a spatial resolution ranging from 2 to 4 cm.

The trees were labeled in the arc geographic information system (ArcGIS) Pro within
circular virtual sample plots with an area of 500 square meters each, which were system-
atically placed on the orthomosaics (Figure 2). We labeled every visible tree above 2 m
within a sample circle by marking its highest point on a normalized digital surface model
with a point label, along with its class. We used five different classes: healthy black pines,
damaged black pines, dead black pines, other conifers, and deciduous trees (Figure 1b).
The degree of damage was assessed by a verbal description: healthy black pines have
exclusively green needles, damaged black pines have at least partially brown needles or
branches that are visible due to sparse needles, and dead black pines are, at a minimum,
80% damaged.
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Figure 2. Virtual sample plots (white) on all 27 UAV-based orthomosaics of the study area (saturated).

All orthomosaics were resampled using cubic interpolation to achieve a consistent
pixel size of approximately 2.8 cm in width and height. Subsequently, one square inscribed
in every virtual sample plot was used as an image for the dataset, which resulted in
179 images with a resolution of 640 by 640 pixels and a spatial extent of approximately
17.8 by 17.8 m (Table 1). The dataset consisted of 2374 labeled trees, with 551 healthy, 1383
damaged, and 299 dead black pines, 90 other conifers and 51 deciduous trees. The dataset
was split into a training set, a development set, and a testing set, using a 4:1:1 ratio for all
experiments, while five-fold cross-validation was applied to the combined training and
development sets for the final model.

Table 1. Details of the labeled dataset.

Image Size Number of
Images

Number of
Labeled Trees Bands Spatial

Resolution

640 × 640 pixels 179 2374 RGB ≈2.8 cm

2.2. Algorithm Implementation

We used the deep learning object detection algorithm YOLOv5 without modifica-
tions from the GitHub repository of the same name using the PyTorch framework as of
8 December 2021 [29]. YOLOv5 represents a balanced trade-off between speed and ac-
curacy compared to other commonly used algorithms [30,31]. This algorithm included
data augmentation and hyperparameters suited for fine-tuning by default, as well as the
capability to ensemble multiple models. The option to automatically generate anchors was
disabled for all models trained in this study.

For an easy decision about which model performs better, we chose a single number
evaluation metric. On the contrary, having multiple evaluation metrics can make it difficult
to decide on one model over the other and may cause rather arbitrary trade-offs between
different metrics, such as prioritizing recall over precision or vice versa. The single number
evaluation metric used for this paper was the F1 score:

F1 =
2 × TP

2 × TP + FP + FN
, (1)

where TP is the number of true positives, FP is the number of false positives, and FN is
the number of false negatives. The F1 score can be calculated for single classes, as well
as for multiple classes combined, by selecting TP, FP, and FN accordingly. We chose an
intersection over union (IOU) threshold of 0% for correct detections because we considered
spatial accuracy to be of low importance for this study. This IOU threshold is different
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from the IOU threshold used for non-maximum suppression. It is the minimum overlap
required between the predicted bounding box and the ground truth bounding box for
the prediction to be considered a correct detection. On the other hand, the IOU threshold
used for non-maximum suppression is the threshold used to determine which predicted
bounding boxes to keep when multiple bounding boxes are predicted for the same object.

For an optimal non-maximum suppression of the model output, we determined the
optimal intersection over union (IOU) threshold and confidence threshold by performing a
16 by 16 grid search, similar to Sirazitdinov et al. [32]. It was performed on the development
set, except for the final model, when it was performed on the testing set. The value with the
highest F1 score was chosen as the optimal value. Values above an IOU of 0.5 and below a
confidence threshold of 0.05 were not tested due to faster processing speeds.

2.3. Label Conversion

The chosen object detection algorithm YOLOv5 requires objects to be labeled as
bounding boxes. Due to this restriction, the point labels of the dataset exported from
ArcGIS Pro in the XLSX file format had to be converted to bounding boxes in the YOLO
labeling format. The conversion from points to bounding boxes could have also been
performed in ArcGIS Pro. For simplicity, the bounding boxes of every object should be
of equal size and square shape. The ideal edge length of the bounding boxes had to be
determined. We tested several bounding box edge lengths from 32 to 320 pixels in 32-pixel
increments. The edge lengths of 16 pixels below, and above the best-performing length,
were also tested. We generated a square bounding box for every tested edge length using
the point label as the center. If the bounding box was partially outside the image, it was
cropped accordingly so it stayed within the image. For this experiment, the relatively
small model size YOLOv5s with 7.2 million parameters was chosen out of training time
considerations, because the model had to be trained eleven times. The best edge length
was determined by the highest F1 score on the development set, calculated with an IOU
threshold of 0% for correct detections. Bounding boxes with this edge length were used for
all subsequent models and testing in our study.

2.4. YOLOv5 Model Size

We determined the optimal YOLOv5 model size by using the dataset that had the
converted labels from the previous experiment, before training the final model. YOLOv5
offers multiple model sizes, which differentiate each other by the model size. To find the
best-performing model size, the models YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x were tested with 1.9, 7.2, 21.2, 46.5, and 86.7 million parameters, respectively [29].
We tested the different model sizes not only on the development set, but also on the
training set to detect any potential overfitting behavior. The F1 score calculated with an
IOU threshold of 0% for correct detections was used as the evaluation metric.

2.5. Final Model Evaluation

We trained and evaluated the final model by utilizing the dataset that included the
converted labels and the optimal YOLOv5s model size that we had determined previously.
K-fold cross-validation was used for training the final model to improve the performance by
using the development set for training as well, while leaving the testing set for final cross-
validation. It was important to keep the testing set separate from k-fold cross validation
and not use it for either validation during training or training the model to avoid accidental
overfitting by the final model. In k-fold cross validation, the data are divided into k equal-
sized subsets, or folds. One model was trained on k − 1 folds and tested on the remaining
fold. This process was repeated k times, with each fold being used as the development
set once. We chose five-fold cross-validation because k = 5 is the most used value in the
literature [33]. We created five YOLOv5 models using this method. They were combined
into a single final model utilizing the in-built ensembling feature of YOLOv5. Ensembling



Remote Sens. 2023, 15, 1964 6 of 13

describes the general method of combining multiple models into one final model to obtain
a better generalization performance [34].

The final model was evaluated in several ways on the testing set. At first, a confusion
matrix was calculated using the same 0% threshold for correct detections that was also
used for the F1 score. A confusion matrix enables insight into wrong classifications and
might indicate possible measures for improvement.

Afterwards, the F1 scores were calculated for every class, each along their respective
95% confidence intervals. F1 scores as single values are point estimates. Point estimates,
sometimes combined with p-values, might suggest meaningful results, although the results
might not be very specific. This is opposed to confidence intervals, which can represent
the meaning of the result more realistically compared to point estimates [35,36]. Another
alternative might be using a point estimate with a standard error [35], which is not viable
for the F1 score because of its asymmetric distribution. For this reason, we calculated
confidence intervals in addition to the point estimates. The distribution of the F1 score can
be sampled using:

F1 =
U

U + V
with

{
U ∼ Γ(TP + λ, 2h)
V ∼ Γ(FP + FN + 2λ, h),

(2)

where λ = 0.5 and h = 1 [37]. A confidence interval with a confidence level of 1 − α
can be estimated by sampling the distribution from Equation (2) and choosing the α

2 th
percentile for the lower bound and the (1 − α

2 )th percentile for the upper bound, where α is
the significance level [38]. A significance level of 5% and thus a 95% confidence interval
was chosen for conformity, as those values are the most used values in the literature [39].
We used one million replicates for sampling the distributions.

2.6. Extensive Labeling Using the Final Model

The final model ensemble was used for the extensive labeling of one orthomosaic.
Due to project constraints, we did not use the final model to label the whole study area.
For this, a stride equal to the edge length of the optimal bounding boxes was used. This
resulted in overlapping detections. For reducing multiple detections of individual trees,
we used the same threshold values determined for the final model with which to perform
non-maximum suppression of all combined detections of the orthomosaic. The centers of
the resulting bounding boxes were converted back to points, maintaining the class. The
resulting label type is analogous to the original dataset. As the deep learning model was
trained to identify the tree location and enclose it with identically sized bounding boxes, the
predicted centers of these boxes should correspond to the location of the trees. We would
not recommend relying on the predicted bounding box size, since the training dataset did
not include any information on tree size, and this information is unlikely to be present in
the predicted bounding boxes. As a final processing step, all trees outside the region of
interest were removed.

3. Results and Discussion
3.1. Label Conversion

The optimal bounding box size for detecting trees was determined to be 112 pixels
(Figure 3a), covering about half of the tree canopy of larger trees and completely covering
small trees (Figure 4b). This aligns with other literature such as Yarak et al. [24], who
determined that optimal bounding boxes have to cover at least half of the tree canopy.
Bounding boxes of this size enabled an effective non-maximum suppression by reducing
multiple detections of the same large tree while still being able to differentiate two smaller
trees close to each other. Larger bounding boxes performed reasonably well, even if the
edge length was equal to half of the image width. This can likely be attributed to the grid
search choosing higher IOU threshold values for larger bounding box edge lengths, and
thus compensating for the otherwise obvious drop in accuracy to a certain degree. Only
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too-small bounding boxes had a significant impact on performance. This might be because
small bounding boxes rarely overlap, and thus often solely the confidence threshold can be
used for non-maximum suppression.

Figure 3. Results of the experiments. (a) F1 scores of YOLOv5s across different bounding box edge
lengths in pixels. (b) F1 scores on the training set and the development set across multiple YOLOv5
model sizes.

Figure 4. Different labels on the same image with healthy black pines (green), damaged black pines
(orange), and dead black pines (red). The image coincidentally contains no deciduous trees or other
conifers. (a) Point labels from a previous investigation; (b) bounding boxes converted from point
labels in (a) using the optimal edge length; (c) output bounding boxes from the final model; (d) point
labels converted from output bounding boxes in (c).

3.2. YOLOv5 Model Size

The optimal length of the bounding box edge was used to determine the best-performing
YOLOv5 model size. The F1 score on the development set was highest for YOLOv5s, while
the performance on the training set increased with model size (Figure 3b). Using a model
that is too small may lead to poor performance on both the training and development sets,
while a model that is too large may show overfitting behavior. Overfitting denotes the
phenomenon of a model optimizing too much to the specific training set and generalizing
too little beyond, which also results in a worse performance on the development set.
However, it is important to note that the optimal bounding box size was determined with
YOLOv5s, which may limit the generalizability of our results to other model sizes. This may
have resulted in the dataset giving YOLOv5s an advantage. Using a smaller model such
as the optimal YOLOv5s instead of a larger model (e.g., YOLOv5x) also reduces training
and inference time significantly, and cuts down the memory requirements. YOLOv5s has
7.2 million parameters, while YOLOv5x, as the largest tested model size, has 86.7 million
parameters [29]. This coincidentally makes the following five-fold cross-validation easier
to implement.
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3.3. Final Model Evaluation

Using the optimal bounding box size and the YOLOv5s model, we trained five models
using five-fold cross-validation, and these models were ensembled to create the final model
using the ensembling built into YOLOv5. The confusion matrix of the ensembled models on
the testing set (Figure 5) indicates that our algorithm performs best in detecting damaged
black pines, followed by dead black pines, and healthy black pines. Other tree species
were not detected correctly, likely due to the low object count in the dataset. Furthermore,
healthy black pines were often misclassified as damaged black pines, indicating an unclear
distinction in the labeling instructions.

Figure 5. Confusion matrix of the final model.

The F1 score point estimates and confidence intervals of our algorithm across different
categories are listed in Table 2. The most appropriate literature with which to compare these
values of our study are studies covering pine wilt disease on UAV-based imagery, as this
disease is the tree disease covered most frequently by studies about monitoring tree disease
using UAVs [14]. This disease also covers species within the same genus, Pinus, as in our
study, and is thus an appropriate comparison. However, one restriction for comparison is
that not all articles fitting this description use the F1 score as a metric [40,41].

Table 2. F1 scores of the final model across all classes.

Category Point Estimate 95% Confidence Interval

Healthy black pine 43% 32–54%
Damaged black pine 72% 67–77%

Dead black pine 71% 60–79%
Other conifer species 0% 0–20%

Deciduous tree 0% 1–53%

Sun et al. [42] proposed a method for RGB imagery that performs tree crown seg-
mentation first and then classifies those segments into the classes tree crown, tree crown
discolored by pine wilt disease, and forest gap. The proposed method achieved an F1 score
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of 65.8% regarding trees discolored by pine wilt disease (Table 3). Sun et al. [43] compared
multiple deep learning object detection algorithms for detecting diseased trees infected with
pine wilt disease on RGB images. The compared algorithms were Faster-RCNN, YOLOv4,
SSD, YOLOv5, and a proposed algorithm consisting of YOLOv4 with a custom backbone
made up of MobileNetv2 with an added CBAM attention and Inceptionv2 structure. The
best-performing algorithm was the one they proposed, with an F1 score of 95.6%. The
labeled dataset used for this study consisted of 116,012 images, which is hundreds of times
larger than the dataset used for our study and might be the main reason for this relatively
high F1 score. Only trees infected with pine wilt disease were labeled. Li et al. [44] pro-
posed an algorithm for semantic segmentation on multispectral imagery, based on deep
one-class classification, which achieved an F1 score above 90%. The model only detected
trees with middle to late-stage pine wilt disease, which were trees with yellow to reddish-
brown needles. Xia et al. [45] compared multiple deep learning algorithms for semantic
segmentation on RGB images. The best-performing algorithm DeepLLab3+ achieved an F1
score of 82.5%. The segmented labels used for this study covered only trees infected with
pine wilt disease.

Table 3. Comparison of pine tree vitality monitoring studies utilizing the F1 score as an evalua-
tion metric.

Study Algorithm Task Spectral Bands F1 Score for
Damaged Pines

Sun et al. [42] Custom
algorithm

Segmentation
and

classification
RGB 65.8%

Sun et al. [43] Custom
YOLOv4 Object detection RGB 95.6%

Li et al. [44] Custom
algorithm

Semantic
segmentation Multispectral >90%

Xia et al. [45] DeepLLab3+ Semantic
segmentation RGB 82.5%

Our study YOLOv5 Object detection RGB 67–77%

The F1 scores of our method fit right within the other literature. From all the studies
compared above, each covers mostly one class with definitions most similar to the class
of damaged black pine used in our study. The F1 scores achieved in those other studies
ranged from 65.8% up to 95.6%, which puts our method with a 95% confidence interval of
67–77% for damaged black pines within this range. Thus, our method achieves competitive
accuracy using only point labels converted to bounding boxes. All studies compared
above only labeled the tree species under investigation. Similarly, our algorithm might be
improved by only labeling black pines, as it performed significantly worse on the classes
“other conifers” and “deciduous trees”. Increasing the dataset size might also improve
our algorithm, similar to Sun et al. [43], who used a significantly larger dataset relative
to our study. The effort of labeling a larger dataset is reduced by the efficient labeling of
point labels compared to bounding boxes. It is worth noting that both our method and the
studies compared above use computationally intensive algorithms, which might limit their
applicability in some cases.

The final model was applied to an orthomosaic (Figure 6) using a stride of 112 pixels,
which is equal to the optimal edge length determined above. Then, non-maximum sup-
pression was applied to all detections at once (Figure 4c) and the bounding boxes were
converted to points (Figure 4d). All points outside the area of interest were deleted. It
would be expected that using bounding boxes derived from points loses the information on
relative size. This was happening on the one hand for large trees, which were sometimes
being detected multiple times and, on the other hand, trees close to each other were some-
times incorrectly detected as one tree. This indicates that a better conversion algorithm for
converting points to bounding boxes might improve the results. Algorithms that could be
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used for this task could be, for example, seed region growing, watershed delineation [46],
layer stacking [47], or PseudoEdgeNet [48].

Figure 6. The result after post-processing the output of the final model extensively covers the area
of interest in one orthomosaic. Each point represents a tree classified as either a healthy black pine
(green), a damaged black pine (orange), or a dead black pine (red). The result coincidentally contains
no tree classified into another conifer species or a deciduous tree.

4. Conclusions

In this study, we proposed a novel method for detecting and classifying damaged
trees labeled as point labels using UAV-based orthomosaics. The use of point labels allows
for a reduced labeling effort and the opportunity to reuse existing data for training a deep
learning algorithm, which is a significant advantage compared to bounding box labels. In
the face of globalization and climate change, monitoring forest health is an important tool
for pathogen management. Widespread monitoring using remote sensing often requires a
dataset that is labeled in a resource-intensive way. We showed that point labels enable more
efficient labeling while achieving competitive results. Our proposed method constructs
equally-sized square bounding boxes with a point label at the center of each, with the
optimal edge length covering at least half of the tree canopy. We found that the YOLOv5s
model performed best on the chosen metric and was used for the final algorithm. This
study highlights the importance of selecting the optimal bounding box size and model size
for achieving the best performance for our approach, as well as the need for clear labeling
instructions. Our method was able to label orthomosaics effectively and efficiently. This
study provides an efficient and effective way to train a deep learning algorithm for tree
vitality monitoring.

Future research could explore using a more sophisticated algorithm for converting
point labels to bounding boxes or labeling a larger dataset, which is less resource intensive
due to the labels being points. The method proposed in this study enables the native
labeling of objects as points or reusing existing data labeled as points combined with
unmodified state-of-the-art object detection algorithms, which may enable more effective
monitoring of tree vitality. Therefore, this study’s significance lies in providing a more
efficient and effective way to monitor tree vitality, which can have important implications
for the management of forest ecosystems.
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