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Abstract: Chromophoric Dissolved Organic Matter (CDOM) plays a critical role in the carbon and
biogeochemical cycles within aquatic ecosystems. Satellite imagery can be employed to determine
aquatic CDOM concentrations, highlighting the need for effective and precise algorithms for this task.
In this study, a cruise survey dataset containing CDOM absorption coefficients and water-leaving
radiances in the Pearl River estuary (PRE) was utilized to develop machine learning algorithms
for CDOM retrieval from Landsat-8 Operational Land Imager (OLI) observations. Based on OLI
wavelength bands, five bands and six band-ratios were chosen as input parameters for the machine
learning models. Six machine learning models were trained to develop CDOM algorithms, including
Support Vector Regression (SVR), Random Forest (RF), Extreme Gradient Boosting (XGBoost), Multi-
Layer Perceptron (MLP), and Convolutional Neural Network (CNN). The results indicated that,
among the six machine learning models, the XGBoost algorithm performed best, with the highest
R2 value of 0.9 and the lowest CDOM root mean square error (RMSE) of 0.37 m−1, outperforming
empirical algorithms. The XGBoost algorithm identified B4/B1 as the most critical input parameter,
contributing 71%, followed by B3/B2 with a 16% contribution, where B1, B2, B3, and B4 are the wave-
length bands of the OLI. These two band-ratios accounted for most of the contributions, suggesting
their significant role in CDOM retrieval from Landsat OLI images. By employing the developed
XGBoost algorithm, CDOM spatial patterns at six instances were derived from Landsat-8 OLI image
reflectance, illustrating CDOM variations in the PRE influenced by various factors. Further analysis
revealed that, in the PRE, tides and winds are the primary driving forces behind the spatial and
temporal variability of CDOM. At present, the exploration of employing machine learning algorithms
to infer CDOM concentrations in this region remains relatively limited; therefore, with a higher
R2 value, the machine learning model we established unveils fresh and novel results.

Keywords: machine learning algorithm; Chromophoric Dissolved Organic Matter (CDOM);
Landsat-8 OLI; Pearl River estuary

1. Introduction

Widely distributed in all natural waters, Chromophoric Dissolved Organic Matter
(CDOM) is a soluble and complex mixture of organic compounds [1]. The absorption
spectra of CDOM under solar irradiation are mostly in the UV (250–400 nm) range and
decrease exponentially with wavelength [2]. The presence of CDOM in aquatic environ-
ments can significantly impact the underwater light field, leading to a chain reaction of
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photochemical processes that, in turn, affect the biogeochemical cycling of vital elements
such as carbon, nitrogen, and phosphorus. These photochemical reactions can alter the
water’s optical properties and potentially disrupt the balance of its chemistry, which can
have far-reaching impacts on the aquatic ecosystem. This highlights the crucial role that
CDOM plays in shaping the health and functioning of water bodies, making it an important
factor to consider in understanding and managing these vulnerable environments [3–6].

The aquatic CDOM comes from multiple sources [7,8] and can accelerate global warm-
ing through the emission of greenhouse gases such as carbon dioxide and methane [9].
Therefore, monitoring the CDOM in aquatic environments and understanding its response
to environmental changes are of great significance. For large-scale monitoring of water
quality, the high spatial variations of CDOM characteristics cannot be fully captured by
observations from limited or sparse stations [10]. To solve this problem, remote sensing
technology enables the rapid acquisition of water surface data and the measurement of
CDOM concentrations with large-scale coverage at a low cost [11]. It has become an im-
portant method for implementing long-term and large-scale monitoring of eutrophication
levels in water bodies [12].

For estimating CDOM from satellite imagery, the semi-analytic method and quasi-
analytic algorithm (QAA) were introduced by Lee et al. [13], and an improved version was
later developed [14]. Semi-analytic methods enhance the algorithm model by improving
its generalizability and providing clear physical meaning to each parameter, resulting in
increased accuracy and robustness. However, these semi-analytical methods depend on a
complex theory of radiative transmission and require separating water columns’ optical
compositions and determining their intrinsic optical properties accurately, making them
difficult to use in coastal and inland water bodies that have complicated compositions and
trophic states [15]. Some CDOM estimation algorithms are established empirically [16–19].
These methods are often based on simple linear, exponential, or logarithmic models derived
from statistical relationships between the target parameters of the water system and the
reflectance measured remotely. These models are used to calculate CDOM with different
bands or band combinations based on linear or nonlinear algorithms.

Machine learning methods can capture rich features of input datasets using complex
networks and structures, thereby uncovering implicit relationships between retrieval and
input variables without relying on specific input datasets. There are several approaches
suggested for satellite data analysis, including Neural Network (NN) [20], Deep Neural
Network (DNN) [21], Convolutional Neural Network (CNN) [22], Mixture Density Net-
works [23], Extreme Gradient Boosting (XGBoost) [24], and Random Forest (RF) [25]. For
example, Li et al. (2021) used the Support Vector Machine (SVM) to estimate chlorophyll
a (Chl-a) concentrations and CDOM from bands 2-6 of Sentinel-2 Multi-Spectral Instru-
ment (MSI) data and band combinations in China’s inland lakes with the slope = 1.21
and R2 = 0.88 in the validation, and the study suggested that the SVM can be an effective
method for monitoring small-scale inland lakes [26]. According to Pahlevan et al., the Mix-
ture Density Networks (MDN) proved to be more effective than Artificial Neural Networks
(ANN), XGBoost, and Support Vector Regression (SVR) in estimating CDOM, Chl-a, and
total suspended solid (TSS) from global-scale Landsat 8 and Sentinel-2, 3 images, and their
analyses indicated that the uncertainties ranged from 26% to 62% for Chl-a and TSS, and
26% to 91% for CDOM [27].

In recent years, machine learning has been increasingly employed to develop re-
mote sensing algorithms for various water quality parameters. For example, Zhang et al.
proposed a novel algorithm that predicts water quality parameters, such as phosphorus,
nitrogen, chemical oxygen demand (COD), biochemical oxygen demand (BOD), and Chl-a),
using a Bayesian probabilistic neural network. The root mean squared errors (RMSEs)
of phosphorus, nitrogen, COD, BOD, and Chl-a were 0.03 mg/L, 0.28 mg/L, 3.28 mg/L,
0.49 mg/L, and 0.75 µg/L, respectively [28]. Cao et al. demonstrated how machine learning
techniques could be applied to expand water quality datasets for Lake Taihu using Landsat
data, suggesting that Lake Taihu had been eutrophic from 1984 to 2019 [29]. Machine
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learning methods have been proven to enhance the retrieval of particulate organic carbon
(POC) concentrations from satellite data, which can aid in examining POC dynamics in
both open oceans and marginal seas [30]. Supervised machine learning algorithms have
been developed based on spectral data from Sentinel-2 and unmanned aerial vehicles to
predict the concentration of TSS and Chl-a with R2 values above 0.8 in two distinct water
bodies [31]. Utilizing the Random Forest method and airborne hyperspectral reflectance
data collected from a reservoir, CDOM concentration was derived with a Nash-Sutcliffe
efficiency of 0.77 [32]. Machine learning methods have also been used to retrieve Sec-
chi disk depth (SDD), an indicator for water transparency, with a mean relative error of
approximately 30% for global lakes and reservoirs [33].

As the largest river estuary in South China, the water quality in the Pearl River estuary
(PRE) has experienced degradation due to industrial pollution, agricultural runoff, and
domestic sewage resulting from rapid population growth and urbanization. Accurate
CDOM estimation is crucial for evaluating water quality in the PRE. In this study, we
aim to: (a) develop a robust machine learning model for the estimation of CDOM in the
PRE using both in-situ CDOM data and spectral observations, (b) validate the accuracy
of the machine learning model against empirical band-ratio algorithms, and (c) map the
distribution of CDOM concentrations in the PRE using Landsat-8 Operational Land Imager
(OLI) images. This study will provide practical CDOM remote sensing algorithms for
operational water quality monitoring and further analysis of the mechanism of CDOM
variations in the PRE.

The remainder of the paper is organized as follows: Section 2 describes the study area,
used data, and methods. Section 3 presents the results of the machine learning algorithms
and analyzes CDOM variations in response to the tide and wind forcing. Discussions are
provided in Section 4, followed by conclusions in Section 5.

2. Materials and Methods
2.1. Study Region

The PRE is situated in southern Guangdong Province, China, ranging from 22◦N to
22.75◦N and 113.5◦E to 114◦E. It is a significant component of the Greater Bay Area, which
encompasses Guangdong, Hong Kong, and Macau, and is widely regarded as a crucial
economic zone in China. Due to its strategic location and abundant natural resources, the
development of the PRE has been a key driver of economic growth (Figure 1). With rapid
population growth and urbanization, water quality is threatened by various factors such as
terrestrial waste, sewage, industrial discharges, and more. Thus, it is particularly important
to monitor water quality and respond quickly to different pollution events in the PRE. Due
to inland water discharges, the PRE has unique water quality characteristics that differ
from those of continental shelf waters [34].

2.2. In-Situ Data Collection
2.2.1. Sample Collection and Processing

A cruise survey was carried out in the PRE in May 2014 to investigate its unique
water properties. During the survey, measurements were taken of surface optical radiation,
and water samples were collected, filtered, and stored for later analysis. We measured
the concentrations of Chl-a, suspended particulate matter (SPM), and CDOM absorption
coefficients at a laboratory in less than one week. In the cruise survey, water samples were
gathered from a depth of 0–1 m and stored in acid-washed polyvinyl chloride bottles, under
dark and refrigerated conditions, to assess CDOM absorption [35]. With pre-combustion
Whatman GF/F filters, large particles, and plankton cells were first filtered out of water
samples at low pressure, and next, Nitrocellulose Millipore filters with a 0.22 µm pore size
were used to filter the samples. The CDOM absorbance (A(λ)) was determined by measur-
ing it in a 10 cm cuvette by using a Shimadzu UV-2550 spectrophotometer at wavelengths
of 190–900 nm with 0.25 nm spectral resolution. Finally, the average absorption coefficient
of every wavelength was calculated using Equation (1) and corrected for scattering effects
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by removing the total radioactive absorbance at 700 nm through an infra-red swab pattern
(Equation (2)) [36].

ag
(
λ)′ = 2.303×A(λ)/r , (1)

ag(λ) = ag
(
λ)′ − ag

(
700)′ × λ/700 (2)

where λ represents wavelength, A(λ) indicates the measured absorbance, ag(λ) is the
absorption coefficient in m−1, a′ is the uncorrected absorption coefficient in m−1, and
r represents the cuvette length in m. As previous studies showed that the absorption
coefficient at 290 nm, ag(290) had the strongest correlation with Landsat-8 OLI image
reflectance [5], the ag(290) was used to be an indicator of the CDOM concentration for
algorithm development.
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2.2.2. Measurements of In-Situ and Remote Sensing Reflectance

In-situ data in the PRE were collected during a cruise survey in the period from
3 to 11 May 2014. A total of 15 transects were covered in the estuary and one was recovered
to the south of Hong Kong during the cruise, as shown in Figure 1c, with 59 sampling
stations. At each station, water surface reflectance spectra were measured by using an
OceanOptics spectrometer with a spectral resolution of 0.2 nm in a range from 380 nm to
1000 nm. During the survey, in-situ spectral measurements were collected for downwelling
irradiance above the water surface (Es(λ,θ,φ)), total water-leaving radiance (Lt(λ,θ,φ)), and
sky radiance (Lsky(λ,θ”,φ)) at a nadir viewing angle (θ) of 45◦ and an azimuthal angle (φ)
of 135◦ relative to the sun, where θ ” represents the solar zenith angle. These measure-
ments were carried out following the protocols outlined by Mobley to eliminate sun glint
effects [37]. In addition, the spectrometer prober was placed 2 m above the water surface
when conducting the measurements to prevent shadows and boat reflections. The remote
sensing reflectance (Rrs) was derived by the equation given by [38],

Rrs(θ, φ, λ) =
Lt(θ, φ, λ)− ρ(θ, φ)Lsky(θ′′ , φ, λ)

Es(λ)
(3)
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where ρ(θ,φ) is the reflectance of the air-water interface, obtained from a Look-Up-Table [39],
based on the sensor geometry setting, including sun zenith and azimuth angles, and wind
speed. The Rrs was calculated from the filtered dataset based on the median spectrum,
according to the procedure described by Maciel et al. [40].

Water surface spectra were measured within a zenith angle of 45 degrees and a solar
azimuth of 135 degrees. The reflectance was calculated as the ratio between the surface
reflectance and the spectral target of the reference panel. Ten measurements were taken
at each site, and a representative spectrum was calculated as the geometrical mean of
all samples, excluding wild-type values. Then, the data were converted to remote sense
reflectance by dividing the reflectance factor by π.

In addition, to reduce the uncertainty in the spectra, the acquired data were manually
filtered to exclude outliers or scintillation-contaminated spectra. Finally, the spectral re-
sponse function (SRF) of the Landsat-8 OLI sensor was simulated using the Rrs spectra [41].

2.3. Methods
2.3.1. Image Preprocessing

Landsat-8 OLI images of the PRE were obtained from the United States Geological
Survey (USGS) portal (https://earthexplorer.usgs.gov/ accessed on 31 December 2022).
These data feature a temporal resolution of 16 days and a spatial resolution of 30 m, and
include four visible bands, one near-infrared band, and two short-wave infrared bands. The
Landsat 8 OLI also has a shorter blue band and a narrower near-IR band than Landsat 4/5/7,
enabling better monitoring of water quality parameters in coastal waters. Only images with
less than 10% cloud coverage were used in this study. The satellite images were corrected
for atmospheric effects through the application of the OLI “lite” (ACOLITE) atmospheric
correction process. Previous studies showed that ACOLITE has better overall performance
on Landsat 8 images [42]. In addition, the Normalized Difference Water Index (NDWI) [14]
was calculated for all images to separate water bodies from shadows formed by land or
terrain, based on contrast thresholds for near-infrared and visible green radiation.

2.3.2. Machine Learning Approaches

In this study, to establish a dependable remote sensing algorithm, six machine learning
techniques were employed for estimating ag(290) in the PRE waters. These techniques were
Support Vector Regression (SVR), Random Forest (RF), Extreme Gradient Boosting Decision
Tree (XGBoost), Convolutional Neural Network (CNN), K-nearest Neighbor Regression
(KNN), and Multi-Layer Perception (MLP), based on the in-situ survey data collected in
the PRE.

• Support Vector Regression

The Support Vector Regression (SVR) is a kernel-based, supervised algorithm that
was first introduced by Cortes and Vapnik in 1995 for binary classification [43]. It employs
a statistical theoretical approach that differs from traditional statistical methods and is
based on an approximation of the structured risk minimization method. SVR is considered
a shallow machine learning technique that can address a range of issues, such as small
sample sizes, nonlinear relationships, high-dimensional pattern recognition, and overfitting
of functions. The algorithm’s versatility and ability to handle complex data have made it a
popular choice in various fields.

• Random Forest

The Random Forest (RF) algorithm is a versatile machine learning technique that
can be used to tackle both regression and classification problems [44]. It is based on
decision trees, which split a variable space consisting of n variables of c1, c2, c3, . . . , and
cn into j distinct regions of R1, R2, R3, . . . , and Rj. The final prediction for each input is
obtained by combining the predictions made by all decision trees in the Random Forest (RF)
algorithm [44]. This is done by taking the average of the predictions, reducing variance,
and improving accuracy. The RF algorithm can be adjusted using hyperparameters such as

https://earthexplorer.usgs.gov/
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the number of trees, maximum depth, and split criteria, making it flexible and adaptable to
various problems and data types. The configuration of the RF algorithm involves several
hyperparameters, such as the number and maximum depth of decision trees. In this
case, the RF model was implemented using the Random Forest package in the python
environment and consisted of 100 decision trees with a maximum of five leaf nodes.

• Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) is a recent and popular implementation of
the Gradient Boosting algorithm, which is a machine learning technique used for both
regression and classification problems [45]. The XGBoost is a powerful ensemble learning
algorithm based on the principles of decision tree. Unlike RF, XGBoost employs a boosted
merging technique that combines weak learners into a single, strong model through an
additive strategy. This feature makes XGBoost a versatile and highly effective solution
for a range of machine learning problems. The XGBoost training process starts by fitting
one learner with the entire dataset, and then adding a second learner to fit the residual
error of the entire dataset. A second learner is added for the remaining error of the entire
dataset to fit the remaining error from a previous learner [38]. The training is repeated
until the threshold is reached. Final prediction results are summed up from each learner’s
predictions. This method is implemented using the python package for XGBoost. The
main parameters that determine the structure of the model include the number of gradient
boosting trees and the maximum tree depth. The number of gradient boosting trees used in
this example was 50, and the maximum tree depth was 5.

• K-Nearest Neighbor

The K-nearest neighbor regression (KNN) is a simple and easy-to-implement method
for predicting continuous data with multiple variables. The prediction of each of the
experiments is calculated as the weighted average of the response variable k nearest sample
in the set of training, where k is an integer of the value of the user’s specified value. In
each characteristic space, the distance between the training and test sample squared is
estimated using the given measure of distance, known as a distance metric. The weight is
then defined as the reciprocal of the square root of the sum of the distances in all feature
spaces. The parameters of the K-Nearest Neighbor (KNN) method, including the values of
k and the distance metric, play a crucial role in determining the performance and efficiency
of the method.

• Multi-Layer Perceptron

Multi-Layer Perceptron (MLP) is a type of artificial neural network that consists of
three key layers: an input layer, a hidden layer, and an output layer. In the input layer, each
sample in the dataset is transformed into a feature vector, which is then processed by nodes
in the hidden layer. The hidden layer nodes receive data from the input layer and apply a
non-linear activation function, such as sigmoid or ReLU, to this data. Finally, the output
layer generates the final prediction based on the data processed by the hidden layer.

• Convolutional Neural Network

Convolutional Neural Networks (CNNs) are prominent types of feed-forward neu-
ral networks, known for their exceptional performance in image recognition and natural
language processing (NLP) tasks. The architecture of CNNs comprises three crucial compo-
nents, each playing a critical role in processing and analyzing data. The first component
is the convolutional layer, which consists of multiple feature planes that are responsible
for detecting unique features in the input data. The feature layer on each neuron is local
to the previous feature layer through the convolutions kernel, which slides across the
feature planes with a specific step size to attain weight sharing. The function of the pooling
layer is to downsample the local features extracted by the convolutional layer, reduce the
network-free parameters, improve robustness, and enhance the robustness of the feature
data. Typically, average pooling or maximum pool methods are used. The fully connected
layer takes the output of the features from the pooling layer and fully connects it to the
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multi-layer perceptron. The fully connected layer acts as the final output layer in a Convo-
lutional Neural Network (CNN), producing the predictions based on the features learned
from the previous layers. It is essential to have this layer in the network, as it allows for the
integration of all the features learned by the network into a single prediction. The multi-
layer perceptron in the fully connected layer is trained using a supervised learning method
to make predictions based on the input data. The integration of these three components in
the CNN architecture renders it an effective instrument for image recognition and natural
language processing (NLP), as well as for water quality research applications. The CNN
model detailed in this paper comprised 32 convolutional layers, five activation layers, a
stretching layer, a fully connected layer, and an output layer. It was developed using the
Python programming language and the Keras framework.

2.3.3. Feature Selection

The use of spectral indices as input features has been shown to improve the model
performance in previous studies [46]. In model training, the correlation analysis between
each OLI band and band combination is performed. The determination of the CDOM
absorption coefficient is carried out using Pearson correlation analysis, with the bands
exhibiting the highest correlations being selected as inputs for the machine learning model.
Our results showed that 11 spectral variables could be selected as inputs: Rrs for the first
five bands of the OLI (443, 482, 561, 655, and 865 nm), the green-blue ratio index (GBI),
the blue-near-infrared ratio index (BNIRI), the green-near ratio index (GNI), the red-blue
ratio index (RBI), the red-green ratio index (RGI), and the red-near ratio index (RCI). Then,
ag(290) was used as the output element. However, the SVR algorithm uses five single bands
as inputs (Table 1), as it will present better results.

Table 1. The input bands and band combinations of the Landsat 8 OLI.

Sensors Band Band-Ratio

Landsat-8 OLI

B1 (443 nm) B2/B5 (BNIRI)
B2 (482 nm) B3/B2 (GBI)
B3 (561 nm) B3/B5(GNI)
B4 (655 nm) B4/B1(RCI)
B5 (865 nm) B4/B2(RBI)

B4/B3(RGI)

After the machine learning algorithm training process, we evaluated the importance
of the variables and observed which variables had the highest predictive capability in the
developed model.

2.3.4. Accuracy Assessment

In this study, 70% of the data were used for algorithm training and 30% for validation.
To assess the credibility of the results, several metrics were computed, including deter-
mination (R2), slope (linear regression), root mean square error (RMSE), mean absolute
percentage error (MAPE), bias (systematic error), and mean absolute error (MAE). R2,
RMSE, and MAPE are widely used to evaluate model performance based on the original
data distribution. The MAE is calculated in log-transformed space, and deviation represents
the residuals in logarithmic form. The deviation and MAE calculated in log-transformed
space are considered to provide a good evaluation of the algorithm for the log-normal
distribution of water quality [23,46]. These measures are much more robust and straightfor-
ward and are the measure of evaluation for remote sensing algorithms with logarithmic
distributions [47], written as

RMSE =
1
N

√
∑N

i=1 (Mi − Ei)
2, (4)
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MAPE =
1
N

N

∑
|Mi − Ei|

M
, (5)

BIAS = 10(
∑N

i=1 log10(Mi)−log10(Ei)
N ), (6)

MAE =
∑n

i=1|Mi − Ei|
n

(7)

where N represents the number of data pairs, the subscript i refers to a single data point,
and M and E stand for measured and estimated values, respectively.

3. Results
3.1. Algorithm Accuracy Analysis

Table 2 and Figure 2 show the accuracies of the six machine learning algorithms for
the test dataset. The results indicated the potential of these six machine learning algorithms
for CDOM estimation in the PRE. The XGBoost algorithm outperformed the other five
machine learning algorithms in almost all statistical metrics. MAPE for the XGBoost was
12.52%, followed by the KNN (15.43%), RF (16.25%), MLP (19.75%), SVM (21.94%), and
CNN (25.86%). The R2 value was 0.9 for the XGBoost, followed by the SVM and MLP
(0.87), RF (0.85), CNN (0.79), and KNN (0.78). The RF had the highest stability in the
validation results (with R2 = 0.85, BIAS = 0.05, MAPE = 16.25%, MAE = 0.55 m−1, and
RMSE = 0.8 m−1). Overall, the six machine learning algorithms achieved over 75% accuracy
in estimating the CDOM with the available data.

Table 2. Validation results of the six machine learning algorithms determined from the test dataset.

Machine Learning Algorithms

Statistic RF SVM XGBoost KNN MLP CNN

R2 0.85 0.87 0.9 0.78 0.87 0.79
BIAS 0.05 −0.09 −0.11 −0.16 0.12 0.03

MAPE (%) 16.25 21.94 12.52 15.43 19.75 25.86
MAE (m−1) 0.55 0.46 0.37 0.62 0.58 0.77
RMSE (m−1) 0.8 0.55 0.49 0.8 0.75 1

To further illustrate the performance of the six machine learning methods for CDOM
retrieval, scatterplots of in-situ measured CDOM ag(290) versus estimated CDOM ag(290)
were generated and are displayed in Figure 2. We observed that the XGBoost had a ag(290)
wider range (0 to up to 12.0 m−1), providing more realistic CDOM ag(290) estimates, while
the XVR and KNN had less estimate range, which tended to underestimate the CDOM.
The RF also showed underestimated CDOM values, while the MLP and CNN revealed a
more discrete pattern, indicating their instability in predicting the CDOM values.

Figure 3 illustrates the importance of the input parameters in the XGBoost and RF algo-
rithms, as these two algorithms had the best performance in estimating CDOM values. For
XGBoost, the most important input parameters (measured by Gain) were B4/B1 (red/blue1)
and B3/B2 (green/blue2) ratios, accounting for 69% and 18% of the importance percentage,
respectively. This indicated that B4/B1 and B3/B2 were more sensitive to CDOM values
than other input variables. For the RF algorithm, the most important input parameters were
B3/B2 (green/blue) and B2/B1 (blue2/blue1) ratios, accounting for 45% and 18% of the
importance percentage, respectively. Both algorithms suggested that the red/green/blue2
over blue1 ratios were the critical input parameters that revealed the fluorescence effects
caused by ultraviolet wavelengths for CDOM. CDOM absorbs ultraviolet light that may
induce fluorescence in the visible bands [5].



Remote Sens. 2023, 15, 1963 9 of 17

Remote Sens. 2023, 15, x FOR PEER REVIEW  9  of  18 
 

 

 

Figure 2. Scatter plots of  in-situ ag(290) versus estimated values  from  the machine  learning algo-

rithms of the RF (a), XGB (b), XVR (c), MLP (d), CNN (e), and KNN (f); the red dots are the training 

data set and the green dots are the test data set. 

   

Figure 2. Scatter plots of in-situ ag(290) versus estimated values from the machine learning algorithms
of the RF (a), XGB (b), XVR (c), MLP (d), CNN (e), and KNN (f); the red dots are the training data set
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Figure 3. Importance percentages of the input parameters for XGBoost (a) and Random Forest (b).

3.2. CDOM Spatial Patterns in the PRE

To further reveal the CDOM estimation capability from different algorithms, six
machine learning algorithms developed in this study were applied to Landsat 8 OLI images
to estimate the CDOM absorption coefficient in the PRE. The estimated CDOM values are
shown in Figure 4. We observed that the western nearshore of the PRE region showed
higher concentrations, while the continental shelf and Hong Kong nearshore displayed
lower concentrations, and the central part of the PRE exhibited a lower concentration.
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Figure 4 reveals that there were differences in estimated CDOM values from these
algorithms. The KNN and SVR algorithms generated lower CDOM concentrations on the
west side of the estuary than those from the XGBoost estimates; however, the RF provided
higher CDOM values in this area (on the west side of the PRE). For the MLP and CNN
algorithms, the estimated CDOM values were high on both sides of the estuary, revealing
unrealistic results due to the fact that the major outlets of the river discharges are all located
on the west side of the PRE and, therefore, the CDOM should be much higher on the west
side of the PRE. The CDOM values estimated from the XGBoost algorithm in the PRE had
a wide range, consistent with the model validation results (as shown in Figure 2).

3.3. Comparison with Other Models

Using the same cruse dataset, Lei et al. developed an empirical CDOM algorithm
for PRE with the band-ratio of B3/B1, and the R2 of the CDOM algorithm reached 0.79
and the MAPE was 32% [5]. Zhao et al., used the Support Vector Machine (SVM) machine
learning algorithm to estimate CDOM concentrations in the PRE by inputting two band
ratios, achieving a validation accuracy with an R2 of 0.84 [48]. Liu et al. developed an
algorithm for estimating CDOM and DOC concentrations in the PRE using two band
ratios, specifically Rrs(667)/Rrs(443) and Rrs(748)/Rrs(412), with a correlation coefficient
of 0.698 [49]. Nevertheless, at present, the exploration of employing machine learning
algorithms to infer CDOM concentrations in this region remains relatively limited and,
therefore, with a higher R2 value, the machine learning model we established unveils fresh
and novel results.

To consolidate this conclusion, band-ratios/combination CDOM models were trained
(or calibrated) using the in-situ data collected in this study.

Here, three ratios/combination algorithms are given by [25],

ag(290) = A
B3− B2
B3 + B2

+ C (8)

ag(290) = A
B3
B2

+ C (9)

ag(290) = A× B2 + C× B3 + D (10)

where B2 and B3 represent the Rrs values at Landsat-8 bands 2 and 3, respectively, and A, B,
and C represent the model calibration coefficients.

The calibration and validation results are shown in Table 3 and Figure 5, which reveal
that the R2 of three empirical algorithms were 0.53, 0.55, and 0.57, and the MAPE was
34.21%, 46.87%, and 23.27%, respectively. For the results of R2 and MAPE, the machine
learning algorithms developed in this study had much better performance than these
empirical models and could better simulate the CDOM absorption coefficients in terms of
optical spectra. The empirical model exhibited an overall underestimation of the CDOM
over 7.0 m−1. Although empirical models are much easier to implement, allowing straight-
forward extrapolation of predictions beyond the training data set, the machine learning
algorithms can retrieve more accurate CDOM absorptions in the PRE from satellite optical
reflectance observations.

Table 3. Calibration coefficients and R2 of empirical CDOM models.

A C D R2 MAPE MAE RMSE

A B3 − B2
B3 + B2 + C 23.416 0.342 - 0.53 34.21 0.97 1.3

A B3
B2 + C 9.302 −8.801 - 0.55 46.87 1.08 1.36

A× B2 + C× B3 + D −253.25 230.64 1.43 0.57 23.27 0.93 1.26
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Figure 5. Validation results obtained using the empirical algorithm of Equation (8) (a), Equation (9) (b),
and Equation (10) (c).

3.4. CDOM Variations in the PRE

In this study, the XGBoost algorithm was further used to derive the CDOM values
from the Landsat OLI images, which were acquired on 23 October 2017, 14 November 2019,
18 February 2020, 2 December 2020, 19 January 2021, and 5 December 2021. The local
acquisition time of these satellite images was ~10:52 AM for the Landsat-8 sun-synchronous
orbit. The derived CDOM data in the PRE are shown in Figure 6, which displays significant
difference in the CDOM values for the satellite images at different times.
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Figure 6. CDOM ag(290) derived from Landsat-8 the OLI data based on the XGBoost algorithm on
23 October 2017 (a), 14 November 2019 (b), 18 February 2020 (c), 2 December 2020 (d), 19 January 2021 (e),
and 5 December 2021 (f) in the PRE. The red dot in (a) displays the location of the Shek Pik tidal gauge
station, and black dot in (a) shows the location of the Sha Chau meteorological station.

The CDOM variation in the PRE may be caused by many factors, including hydrody-
namic conditions. Figure 7 shows the sea level measurements at the Shek Pik tidal gauge
station (22◦13′13”N, 113◦53′40”) provided by the Hong Kong Observatory, and the satellite
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image acquisition times are also marked in the figure, which reveals the tidal phases at
the satellite image acquisition times. The high CDOM appeared on 2 December 2020 and
5 December 2021 in high water during the tide slack periods (Figure 6). On 23 October 2017
and 14 November 2019, the CDOM values were lower than those on 2 December 2020 and
5 December 2021 (Figure 6). The tidal phases at these two time periods were on the flood
with the increasing water level (Figure 7) and, therefore, the onshore-ward surface currents
appeared in the estuary. The lowest CDOM of all the cases appeared on 19 January 2021 in
the weak flood tide and the water level was elevated from low low-water to low high-water.
On 18 February 2020, the water level was decreasing on the ebb tide and the CDOM was
higher than that on the weak flood tide and lower than the low high-water.
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Figure 7. Sea level measured at the Shek Pik tidal gauge station. The tidal data for 23 October 2017 (a),
14 November 2019 (b), 18 February 2020 (c), 2 December 2020 (d), 19 January 2021 (e), and
5 December 2021 (f) in the PRE.

Table 4 lists the tidal and wind conditions at the satellite acquisition times. The
wind data were measured at the Sha Chau meteorological station, available from the web
https://data.weather.gov.hk (accessed on 13 December 2022). The southeasterly wind
prevailed on 19 January 2021, while the CDOM was the lowest of all the cases and, in
addition, it corresponded to a neap tide period. The easterly wind also appeared on
14 November 2019 for one of the two LHW cases, and it seems that the CDOM of this case
was lower than that of the other LHW case with northerly winds.

Table 4. Tidal phase and wind conditions at the satellite image acquisition times.

Date 23 October 2017 14 November 2019 18 February 2020 2 December 2020 19 January 2021 5 December 2021

Tide Phase Flood Flood Ebb LHW * Weak flood LHW *
Tide Spring Spring Neap Spring Neap Spring

Wind speed (m s−1) 4.3 3.3 7.1 5.6 3.9 4.7
Wind Dir NNE E NNE NNE SE N

* LHW-low high-water.

The above analysis suggests that the tidal condition can greatly affect the CDOM distri-
butions in the PRE. The high CDOM appears in the high-water during the tidal slack period,
and the CDOM in the weak flood tide was lower than in the strong flood tide. The wind also
had impacts on the CDOM distribution, with the low CDOM appearing in the easterly.

The tidal currents can modify the water properties in the estuary, and the results
indicate that the shoreward current on the ebb causes the CDOM to be concentrated
inside the estuary. In the high-water, the CDOM reached the maximum, forced by the
accumulation effects of the onshore-ward tidal current. However, the CDOM spatial pattern

https://data.weather.gov.hk
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may be controlled by many factors, such as river discharge and wind-induced upwelling,
in addition to the wind and tidal currents. Lai et al. indicated that the interaction of the
wind and tide might modify the Pearl River estuarine circulations, which could change the
spatial distributions of nutrients in the estuary [50]. Therefore, a detailed analysis of the
CDOM pattern needs to be implemented with more available data in the future.

4. Discussion

This study compared the performance of six machine learning algorithms in estimat-
ing CDOM concentrations in the PRE. The results revealed that the XGBoost and SVR
algorithms exhibited the highest accuracies, with RMSE of 0.49 m−1 and 0.55 m−1, respec-
tively. In contrast, the MLP, KNN, and RF algorithms displayed moderate accuracies, with
RMSEs of 0.75 m−1 and 0.8 m−1, respectively. The CNN algorithm, however, demonstrated
the lowest accuracy, with an RMSE of 1.0 m−1. The discrepancies in performance among
these algorithms can be attributed to various factors, such as variations in prediction stabil-
ity and intrinsic limitations and the shortcomings of each algorithm. For instance, neural
network-based algorithms tend to be highly sensitive to hyperparameter selection and may
require a larger amount of training data to achieve optimal performance.

The increasing importance of machine learning in the remote sensing monitoring of
water quality, particularly with large amounts of data analysis, has been realized recently.
However, machine learning is a black-box method, and data overfitting could occur in
some cases. Therefore, understanding the model decision process in the black box is
crucial. Recently proposed explainable methods, such as Local Interpretable Model-agnostic
Explanations (LIME) [51] and Shapley Additive explanations (SHAP) [52], can make the
machine learning black box transparent and help interpret water quality retrieval processes.
Thus, combining machine learning and explainable methods will contribute to developing
robust results for machine learning algorithms.

This study highlights that the high accuracy of machine learning methodologies
enables the implementation of real-time CDOM monitoring using satellite observation
data in the PRE, which is significant for improving water quality in estuarine waters with
varying optical complexity. Although machine learning algorithms mostly outperform
traditional methodologies, accurate estimation of CDOM from satellite remote sensing
remains challenging due to CDOM’s specific absorption and reflectance characteristics.
Consequently, effectively combining various types of satellite observations is essential for
developing a more robust model.

With more satellite and in-situ observations available in the future, the training and
testing datasets can be further consolidated, potentially leading to more reliable results in
machine learning algorithm development. Since machine learning is a black-box method
that cannot provide distinct physical meanings for remote sensing algorithms, our future
work may focus on developing explainable methods for these machine learning models
to help interpret feature importance and identify the factors that influence the model’s
decision-making process.

5. Conclusions

In this study, we developed machine learning algorithms based on a cruise dataset
to retrieve CDOM absorption coefficients from Landsat OLI image data in the PRE. With
reliable algorithms resulting from this study, CDOM data in the PRE can be retrieved from
long-term archived Landsat images, which will help in capturing CDOM variabilities on dif-
ferent time scales in the PRE and understanding ecological environment changes in the area.
Six machine learning algorithms for CDOM were developed using cruise-measured CDOM
absorption coefficients and optical spectral Rrs. The results show that XGBoost presented the
best performance in estimating CDOM, validated by a test dataset. The estimated CDOM
from XGBoost had the highest range and the lowest error, and when applied to Landsat-8
image data, the XGBoost algorithm provided reasonable CDOM estimations in the PRE
compared to the other machine learning algorithms. We used XGBoost algorithms to
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retrieve CDOM values from Landsat data acquired on 23 October 2017, 14 November 2019,
18 February 2020, 2 December 2020, 19 January 2021, and 5 December 2021. The results
suggest that tide and wind can significantly affect CDOM spatial patterns in the PRE. High
CDOM appears during high water in the tidal slack period, and CDOM in the weak flood
tide is lower than in the strong flood tide. Easterly wind can weaken CDOM in the estuary.
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