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Abstract: High-resolution digital elevation models (DEMs) are important for relevant geoscience
research and practical applications. Compared with traditional hardware-based methods, super-
resolution (SR) reconstruction techniques are currently low-cost and feasible methods used for
obtaining high-resolution DEMs. Single-image super-resolution (SISR) techniques have become
popular in DEM SR in recent years. However, DEM super-resolution has not yet utilized reference-
based image super-resolution (RefSR) techniques. In this paper, we propose a terrain self-similarity-
based transformer (SSTrans) to generate super-resolution DEMs. It is a reference-based image
super-resolution method that automatically acquires reference images using terrain self-similarity. To
verify the proposed model, we conducted experiments on four distinct types of terrain and compared
them to the results from the bicubic, SRGAN, and SRCNN approaches. The experimental results
show that the SSTrans method performs well in all four terrains and has outstanding advantages in
complex and uneven surface terrains.

Keywords: DEM; super-resolution reconstruction; transformer; self-similarity

1. Introduction

A digital elevation model (DEM) is a digital terrain simulation enabled by topographic
elevation data. DEMs can provide precise geographic information and are increasingly be-
ing used in fields such as hydrology, ecology, meteorology, and topographic mapping [1–5].
High-resolution DEMs are more detailed and can provide more accurate representations of
terrain surfaces; DEM quality is essential for relevant geoscientific research and real-world
applications. For example, the findings of flood model simulations demonstrate that DEM
accuracy can significantly affect flood danger estimation [6], and DEM accuracy is practi-
cally linearly proportional to terrain slope, i.e., the steeper the slope, the higher the error [7].
The main sources for generating DEMs are GPS and remote sensing [8]. Among the remote
sensing methods, LiDAR techniques have contributed significantly to the acquisition of
high-resolution DEMs [9]. However, creating DEMs with LiDAR methods is expensive, and
obtaining high-quality DEMs over a wide area is a challenge. Therefore, a feasible strategy
to obtain high-resolution DEMs at a low cost is to use super-resolution reconstruction
techniques to reconstruct low-resolution DEMs into high-resolution DEMs [10].

Traditional interpolation methods, such as inverse distance weighting (IDW), bilinear
interpolation, nearest-neighbor interpolation (NNI), and bicubic interpolation [11–15] were
widely used in the early work, but these methods are susceptible to terrain relief, resulting
in less stable accuracy [16,17]. The approach of fusing multiple data sources to construct
a high-resolution DEM is also frequently utilized [18–20]. Although this method can use
the complementary qualities of multi-source data to extract significant information from
them, it can not significantly increase the accuracy of the rebuilt data in the case of limited
data sources.

Single-image super-resolution (SISR) and reference-based image super-resolution
(RefSR) are the two basic approaches used in deep learning-based super-resolution (SR)
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research. The SISR technique has been widely used for DEM SR reconstruction. Enormous
quantities of DEM sample data are used by the deep learning-based DEM SR reconstruction
method to learn how to rebuild a low-resolution DEM and produce a high-resolution
DEM that accurately represents the terrain [21–23]. The first method to reconstructing
high-resolution images using convolutional neural networks is called super-resolution
convolutional neural networks (SRCNNs) [24]. Chen et al. [25] used SRCNN to DEM scenes
(D-SRCNN) and achieved superior reconstruction results compared to traditional interpo-
lation approaches. By incorporating gradient information into a depth super-resolution
network (EDSR) via transfer learning, Xu et al. [22] produced high-quality DEMs while
resolving the issues of enormous dynamic height ranges and inadequately trained samples.
Demiray et al. [26] developed a D-SRGAN model based on generative adversarial networks
(GANs) for enhancing DEM resolution, inspired by the SISR technique. Zhu et al. [27] pre-
sented a conditional encoder–decoder generative adversarial neural network (CEDGAN)
for DEM that captures the complicated features of the input’s spatial data distribution,
which was inspired by conditional generative adversarial networks (CGANs) [28].

Compared to SR reconstruction without a reference image, SR reconstruction us-
ing a reference image can provide more detailed information and hence achieve supe-
rior reconstruction results. Recently, advances have been made in RefSR, which trans-
fers high-resolution information from a specific reference picture to generate satisfying
results [29–31]. Yue et al. [29] proposed a more general scheme using reference images,
in which similar images are retrieved from the web, and globally registered and locally
matched. To apply semantic matching, Zheng et al. [30] substituted convolutional neural
network features for the straightforward gradient features and employed a SISR approach
for feature synthesis. Yang et al. [31] were among the first to introduce the transformer
architecture in SR tasks.

The current super-resolution image reconstruction method without a reference image
is widely used on DEM data. However, the super-resolution image reconstruction method
with a reference image is not used in DEM high-resolution reconstruction because the
manual method of providing a reference image is difficult to implement. Inspired by
Zheng’s SWM method [10], which extracts self-similarity from an input image to generate a
high-resolution image, we propose a method for automatically obtaining reference data for
low-resolution DEM data by utilizing terrain self-similarity in this paper. In mathematics,
a self-similar object is exactly or nearly similar to a part of itself. Self-similarity has also
been verified in geographic phenomena [32–34]. The self-similarity of the terrain can be
used to construct reference images that have greater information and generate superior
results than single-image super-resolution methods. We are one of the first to introduce the
RefSR into DEM SR. In addition, we apply a transformer model for image super-resolution
inspired by Yang’s TTSR approach [31], where low-resolution (LR) and reference(s) (Ref)
correspond to the query and key in the transformer [35], respectively.

The structure of this paper is as follows. The application and gathering of DEM data as
well as associated research on DEM super-resolution are discussed in Section 1. The dataset
and model construction processes are thoroughly explained in Section 2. Data sources,
experiments, and analysis of experimental results are all described in Section 3. Finally, we
discuss the conclusions of the paper and possible future research directions in Section 4.

2. Methodology

The following are the main steps of the experiment as shown in Figure 1.
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Figure 1. The self-similarity transformer workflow. DEM-HR refers to the high-resolution DEM data
used for comparison with SR data. DEM-LR refers to the low-resolution DEM data obtained after
downsampling DEM-HR as input. DEM-Ref refers to the reference data obtained using self-similarity.
DEM-LR↑ refers to the data obtained by upsampling DEM-LR, while DEM-Ref↓↑ refers to the data
obtained by downsampling and upsampling the reference data. DEM-LR↑ and DEM-Ref↓↑ will be
used to calculate the correlation between the low-resolution image and the reference image.

2.1. Self-Attention in Transformers

The original transformer model was used in natural language processing. Transformer
networks have received great interest in computer vision due to their excellent performance
in natural language processing. As a result, the transformer model has been extensively
studied in the field of image super-resolution [36,37]. The foundation of the transformer
design is a self-attention mechanism that picks up on the connections between the elements.
In the original transformer model, X represents a sequence of n entities (x1, x2, . . . , xn). The
self-attention formula can be expressed as:

Attention(V, K, Q) = softmax(
QKT
√

dk
)V (1)

where V = XWV , K = XWK, Q = XWQ, WV , WK, WQ represents three learnable weight
matrices to transform V(value), K(key), Q(query); dk represents the dimension of the query
and key.

2.2. TTSR

TTSR [31] is the first method to use a transformer structure in image super-resolution
and has achieved significant improvement. TTSR employs an image super-resolution
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method based on reference image(s) (RefSR), where the transformer’s representations of the
LR and Ref images are used as query and key, respectively. This architecture enables learn-
ing to combine features from the LR and Ref images to identify deep-matching features.

2.3. Data Pre-Processing

Figure 2 shows the data preprocessing process. First, the original high-resolution DEM
is cropped to obtain an N × N sized DEM-HR image. This image is used as the ground truth
for comparison with the DEM-SR results. Then, we apply bicubic downsampling with a
factor of a× on DEM-HR to obtain DEM-LR, which is used as the super-resolution input
image. Unlike the traditional reference-based SR method that uses high-resolution images
as reference images, there is no available reference terrain dataset, and constructing the
dataset is a huge workload. Considering the self-similarity of the terrain, we use large-scale
DEM images centered on DEM-LR as reference images and apply them to super-resolution
reconstruction. With DEM-HR as the center, we crop the original high-resolution DEM to
obtain a DEM image of size a*N × a*N and then apply bicubic downsampling with the
factor a× on the a*N × a*N DEM image to obtain DEM-Ref, which is used as the reference
image of DEM-LR. Then we apply bicubic upsampling with the factor a× on DEM-LR to
obtain a DEM-LR↑ image and we sequentially downsample and upsample the DEM-Ref
with the same factors a× to obtain DEM-Ref↓↑. The correlation between the LR and the
reference could be calculated via the use of the DEM-LR↑ and DEM-Ref↓↑. Finally, our
model generates a synthetic feature map from the inputs of DEM-LR, DEM-Ref, DEM-LR↑,
and DEM-Ref↓↑, and uses it to produce HR predictions.

Figure 2. Data preprocessing flow. DEM-HR refers to the high-resolution DEM data used for comparison
with SR data. DEM-LR refers to the low-resolution DEM data obtained after downsampling DEM-HR
as input. DEM-Ref refers to the reference data obtained using self-similarity. DEM-LR↑ refers to the
data obtained by upsampling DEM-LR, while DEM-Ref↓↑ refers to the data obtained by downsampling
and upsampling the reference data. We will use DEM-LR↑ and DEM-Ref↓↑ to calculate the correlation
between the low-resolution image and the reference image.
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2.4. Model Architecture
2.4.1. Self-Similarity Transformer

As shown in Figure 3, there are four parts in our transformer: residual feature
extraction module, relevance calculation module, feature transfer module, and feature
synthesis module.

Figure 3. SSTrans structure. F, V, K, Q are the features of DEM-LR, DEM-Ref, DEM-Ref↓↑, and DEM-
Ref extracted by the residual network. P, W are the position matrix and weight matrix obtained by
the correlation calculation, respectively. V′ is the high-resolution feature representation of DEM-LR.

Accurate and appropriate feature extraction for reference images is helpful for gener-
ating better high-resolution images. We use a residual network-based feature extraction
method. Through the combination of LR and Ref image feature learning, this approach may
produce more precise similar features. The feature extraction procedure can be described
as follows:

F = RFE(DEM− LR) (2)

V = RFE(DEM− Re f ) (3)

K = RFE(DEM− Re f ↓↑) (4)

Q = RFE(DEM− LR ↑) (5)

where RFE(·) denotes the residual feature extraction module. Features V (value), K (key),
and Q (query) correspond to the three basic components of the attention mechanism within
the transformer, and F is a DEM-LR feature.
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Calculating the similarity between Q and K yields the correlation between DEM-
LR and DEM-Ref. The relevance calculation operation was used to record the position
information most relevant to the DEM-LR image in the DEM-Ref image:

P, W = RC(Q, K) (6)

where RC(·) denotes the relevance calculation operation, which uses element-wise multi-
plication. W is the relevance weight matrix; P is the relevance position matrix.

Through the position matrix P, the features of V are transferred to obtain the represen-
tation of HR features corresponding to DEM-LR images:

V′ = FT(V, P) (7)

where FT(·) denotes the feature transfer operation, which uses hard attention [31]. V′

represents the HR feature representation for the DEM-LR image.
We synthesize features F, V′, and W to obtain the final output result. This method can

be defined as follows:

FS(F, V′, W) = Conv(F||V′)�W (8)

ISR = F + FS(F, V′, W) (9)

where ISR indicates the synthesized output features, FS(·) denotes the feature synthesis
operation, the operator � denotes the Hadamard product between feature maps, || denotes
channel-wise concatenation, and Conv denotes a convolutional layer.

2.4.2. Loss Function

Our loss function adopts adversarial lossLadv and reconstruction lossLrec. Adversarial
loss could improve the visual quality of synthetic pictures greatly [38,39]. We use WGAN-
GP [40] to obtain more stable results. The adversarial loss is expressed as:

Ladv = −x̃∼g [D(x̃)] (10)

min
G

max
D∈D

x∼r [D(x)]− x̃∼g [D(x̃)] (11)

In this paper, we use the L1 loss as our reconstruction loss instead of the mean square
error measure (MSE).

Lrec =
∥∥∥IHR − ISR

∥∥∥
1

(12)

2.4.3. Implementation Details

The weights for Lrec and Ladv are 1 and 1× 10−4, respectively. The Adam optimizer is
used with the learning rate of 1× 10−4 The network is pre-trained for 2 epochs, where only
Lrec is applied. Afterward, all losses are used to train for another 60 epochs.

2.5. Evaluation Metrics

The root mean square error (RMSE) and mean absolute error (MAE) are frequently
employed as markers to assess the accuracy of the reconstruction. The quality of the
reconstruction improves as the MAE and RMSE absolute values decrease.

MAE =
1
N

N

∑
i

∣∣yi − y′ i
∣∣ (13)

RMSE =

√√√√ 1
N

N

∑
i
(yi − y′)2 (14)
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where N denotes the number of pixels in the DEM sample, the value of each pixel in the
original data are represented by yi, and the value of each pixel in the reconstruction result
is represented by y′ i.

In addition, in this study, we use structural similarity (SSIM) [41] and peak signal-to-
noise ratio (PSNR) to assess the similarity of the terrain to one another.

PSNR = 10× log10(
(2n − 1)2

MSE
) (15)

where MSE is the mean square error.
The mean errors of the terrain parameters are represented by Etp.

Etp =
1
N

N

∑
i

∣∣ti − t′ i
∣∣ (16)

where ti denotes the values of the terrain parameters generated with the original high-
resolution DEM and t′ i denotes the values of the terrain parameters generated with the
reconstructed high-resolution DEM.

3. Experiments and Results

The experiment uses the Ubuntu 16.04 operating system, an Intel Xeon Gold 6230 CPU,
a Tesla V100 SXM2 GPU with 32 GB, and networks built using the PyTorch framework.
Bicubic, SRCNN, and SRGAN are the three super-resolution reconstruction algorithms
that are used as comparisons in comparative studies to assess the effectiveness of the
new approaches suggested. SRCNN and SRGAN are part of the single-image super-
resolution (SISR) approach, while bicubic belongs to the traditional interpolation algorithm.
Additionally, the MSE, RMSE, PSNR, and SSIM assessment metrics are used to evaluate the
four super-resolution reconstruction algorithms.

3.1. Data Descriptions

The experimental data used in this work were provided by the ASTER GDEM V3
dataset with a data resolution of 30 m. Figure 4 shows four typical subregions of mainland
China, i.e., the Inner Mongolian Plateau, the Tarim Basin, the Qinling Mountains, and
the North China Plain, which were selected as the ground truth to evaluate our model’s
performance. These areas comprise a variety of terrains with a wide range of hypsography
and altitude. According to these four areas, we built a DEM dataset based on the self-
similarity of the terrain. A total of 40,000 DEM pairs form the DEM dataset, of which
30,000 pairs form the training set and 10,000 pairs form the validation set. Each subarea
contains 10,000 DEM pairs, of which, 7500 are used for training and 2500 for validation.
Each pair contains an input image and a reference image, and the parameters N and a in
Section 2.3 are set to 32 and 4, respectively. The input image is a 32 × 32 DEM cropped
from the original high-resolution DEM data, the reference image is a 32× 32 DEM obtained
by using terrain self-similarity, corresponding to the input image.
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Figure 4. (a) Inner Mongolian Plateau, (b) Tarim Basin, (c) Qinling Mountains, (d) North China Plain.

3.2. Results of the SR in Four Test Areas

To verify the reconstruction effect in DEM of the proposed model, 900 × 900 DEMs of the
Inner Mongolian Plateau, Qinling Mountains, Tarim Basin, and North China Plain were selected,
and the maximum elevation differences of the four regions are shown in Table 1. Figure 5 shows
the results of super-resolution reconstruction. Here are the conclusions of the experiment:

Area 1 is located in the Inner Mongolia Plateau, with high terrain and a relatively
smooth surface. As shown in Table 1, area 1 has a maximum elevation of 2206 m and a
minimum elevation of 1260 m, with a maximum elevation difference of 946 m. Figure 5(b1)
shows how closely the experimental results to the original DEM are reconstructed. As
shown in Table 2, due to the large height difference, the MAE and RMSE values are
relatively large, with a MAE value of 4.44 and an RMSE value of 5.65. The PSNR value is
34.09 and the SSIM value is 98.93%. The experiments demonstrate that the reconstruction
results are highly similar to the original DEM data and have small errors.

Table 1. Maximum elevation differences in four areas.

Area Maximum
Elevation (m)

Minimum
Elevation (m)

Maximum Elevation
Difference (m)

Area 1 2206 1260 946
Area 2 2528 190 2338
Area 3 1109 906 203
Area 4 129 5 124
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Figure 5. DEM reconstruction visualization results: (a1–a4) is the original DEM, (b1–b4) is the
reconstruction DEM.

Area 2 is located in the Qinling Mountains; the topography of the area is relatively
simple but the terrain is highly variable. As shown in Table 1, area 2 has a maximum
elevation of 2528 m and a minimum elevation of 190 m, with a maximum elevation
difference of 2338 m. Figure 5(b2) shows how closely the experimental results to the original
DEM are reconstructed. As shown in Table 2, due to the significant topographic variation,
MAE and RMSE values are 12.96 and 16.52, respectively. However, the reconstructed
similarity is very high, with SSIM values as high as 99.04%.

Table 2. MAE, RMSE, PSNR, and SSIM values of the reconstructed effects in four areas.

Area MAE (m) RMSE (m) PSNR (dB) SSIM

Area 1 4.44 5.65 34.09 98.93%
Area 2 12.96 16.52 23.77 99.04%
Area 3 1.55 2.03 41.99 96.13%
Area 4 1.63 2.14 41.51 94.11%

Area 3 is located in the Tarim Basin, with high terrain and a non-smooth surface. As
shown in Table 1, area 3 has a maximum elevation of 1109 m and a minimum elevation of
906 m, with a maximum elevation difference of 203 m. Figure 5(b3) shows how closely the
experimental results to the original DEM are reconstructed. In Table 2, the MAE value is 1.55
and the RMSE value is 2.03. The PSNR value is 41.99, which is higher than the values in regions
1 and 2, and the SSMI value is 96.13%, which is lower than the values in regions 1 and 2.

Area 4 is located in the North China Plain, with relatively complex topographic
texture features and a non-smooth surface. As shown in Table 1, area 4 has a maximum
elevation of 129 m and a minimum elevation of 5 m, with a maximum elevation difference
of 124 m. Figure 5(b4) shows how closely the experimental results to the original DEM are
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reconstructed. The MAE value is 1.63, the RMSE value is 2.14, the PSNR value is 41.54, and
the SSIM value is 94.11%, as shown in Table 2.

Based on the reconstruction results of the four areas, we can conclude that our model
can achieve effective reconstruction results, with a maximum regional structural similarity
(SSIM) of terrain smoothing index of 99%; the greater the height difference of the terrain,
the greater the MAE and RMSE values.

3.3. Comparison Analysis with Other SR Methods

A comparative analysis using bicubic interpolation, SRGAN, and SRCNN was per-
formed to confirm the superiority of the models. The comparison of different methods is
shown in Table 3 and Figure 6.

Figure 6. Comparison of DEM reconstruction visualization results of four methods in four areas.

Both areas 1 and 2 have relatively large elevation differences; the MAE and RMSE
values obtained by all four methods are relatively large and the PSNR values are small.
Therefore, the size of the elevation difference is an important factor affecting the recon-
struction results. The topographic surfaces of areas 1 and 2 are smoother, and the SSIM
values obtained by all four methods are high above 95%; Figure 6 also shows that the
reconstructed results of area 1 and area 2 have high similarity. Areas 3 and 4 have more
complex terrain surfaces where the advantages of SSTrans are more evident. For example,
in area 4, the MAE value of SSTrans is 32.08% lower, the RMSE value is 32.49% lower, the
PSNR value is 8.95% higher, and the SSMI value is 15.76% higher compared to the SRCNN.
As shown in Figure 6, SSTrans still maintains high-quality reconstruction in areas 3 and
4, with SSIM values above 90%. Compared to the other SR methods, the SSTrans method
achieved the best results in all four areas.

Figure 7 shows the histogram statistics of the frequency of elevation points for regions
3 and 4. In general, the SSTrans method is very close to the original DEM. Figure 8
displays the results of the four-regional hillshade for a better visual assessment of the
terrain relief. As a traditional interpolation method, bicubic is unreliable and ineffective
in recovering details. SRGAN and SRCNN can recover more detailed information, but
in areas where the terrain surface is very complex, such as regions 3 and 4, they cannot
accurately reconstruct the terrain, and the difference with the original DEM is relatively
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large. SSTrans complements the shortcomings of SRCNN and SRGAN by taking advantage
of the self-similarity of the terrain to obtain more information from the reference DEM,
thereby reconstructing the details in the DEM more accurately.

Figure 7. Histogram statistics of the DEM reconstruction, (a) represents area 3 and (b) area 4.

Figure 8. A comparison of the results of DEM reconstruction using hillshade visualization for the
four methods.

Table 3. Quantitative evaluation of the reconstruction effects in four areas.

Area Methods MAE (m) RMSE (m) PSNR (dB) SSIM

Area 1

Bicubic 6.12 7.30 30.47 97.31%
SRGAN 6.17 8.15 29.90 96.09%
SRCNN 5.02 6.26 31.91 98.38%
SSTrans 4.44 5.65 33.06 98.93%

Area 2

Bicubic 15.24 19.28 21.39 98.21%
SRGAN 17.79 23.10 20.86 97.54%
SRCNN 14.86 18.20 22.02 98.85%
SSTrans 12.96 16.52 23.77 99.04%

Area 3

Bicubic 2.46 3.18 38.08 86.32%
SRGAN 2.10 2.78 39.22 87.71%
SRCNN 2.22 2.87 38.99 89.37%
SSTrans 1.55 2.03 41.99 96.13%

Area 4

Bicubic 2.53 3.32 37.07 74.76%
SRGAN 2.48 3.29 37.79 77.08%
SRCNN 2.40 3.17 38.10 78.35%
SSTrans 1.63 2.14 41.51 94.11%
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3.4. Terrain Parameters Maintenance

Table 4 shows the accuracy of the reconstruction of the slope direction and slope in the
four areas; SSTrans achieved the best results compared to the other three methods. In areas
1 and 2, the slope errors of SSTrans were 35.73 and 21.86% lower than those of SRCNN; for
regions 1 and 2, the aspect errors of SSTrans were 37.81% and 22.78% lower than those of
SRCNN. In areas 3 and 4, the slope errors of SSTrans were 46.92% and 34.92.86% lower
than those of SRCNN; for regions 1 and 2, the aspect errors of SSTrans were 57.99% and
59.70% lower than those of SRCNN. The terrain surface is more complex in areas 3 and 4
compared to areas 1 and 2, and SSTrans is further enhanced in areas 3 and 4 with far better
results than other methods, especially in the aspect terrain parameter.

Table 4. Quantitative evaluation of terrain parameter retention in four areas.

Area Terrain
Parameters Bicubic SRGAN SRCNN SSTrans

Area 1 Eslope 3.30 4.07 3.05 1.96
Easpect 68.11 75.39 63.97 39.78

Area 2 Eslope 5.28 7.66 5.17 4.04
Easpect 29.60 42.39 28.71 22.17

Area 3 Eslope 2.50 2.13 2.11 1.12
Easpect 84.41 86.05 79.25 33.29

Area 4 Eslope 2.93 2.42 2.52 1.64
Easpect 86.99 87.07 83.74 33.75

The visualization results of the DEM reconstruction for slope and aspect using each
of the four algorithms are displayed in Figures 9 and 10. The color differences between
Figures 9a and 10a and the other image series show the ability of different methods to
maintain terrain features. In Figures 9c and 10c, the traditional interpolation method bicubic
results in large color blocks and fails to recover detailed information. In comparison, in
Figures 9d,e and 10d,e, the deep learning methods, SRGAN and SRCNN, perform better
and recover more detailed information, but there is still some gap with the original DEM
data and they do not perform well in some finer details. In Figures 9f and 10f, the SSTrans
method has further improved the results and is already very close to the original DEM in
terms of the visual aspect.

Figure 9. Comparison of the results of the slope visualization for DEM reconstruction using four
different methods in area 4.
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Figure 10. Comparison of the DEM reconstruction results for aspect visualization using four methods
in area 4.

4. Conclusions

In this article, we propose a terrain self-similarity-based transformer for super-resolution
DEM generation. The novelty of this paper is as follows.

1. We are one of the first to introduce the transformer method to DEM super-resolution
(SR);

2. We are one of the first to introduce the reference-based image super-resolution (RefSR)
into DEM super-resolution (SR);

3. To overcome the problem that the manual method of providing reference images is
difficult to implement, we propose a method to automatically acquire high-resolution
reference data for low-resolution DEM data using the self-similarity of terrain data.

To validate the accuracy of the model, we conducted three sets of experiments on
experimental data selected from different terrain types: Inner Mongolian Plateau, Qinling
Mountains, Tarim Basin, and North China Plain. The first set of experiments aimed to verify
the accuracy of the model presented in this study. The experimental results showed that
the model achieved more than 90% SSIM values in all four areas, which demonstrated the
high accuracy of the model in reconstruction. The second set of experiments is compared
with bicubic interpolation, SRGAN, and SRCNN methods to verify the reconstruction
quality of the model proposed in this paper. The comparison results showed that in
gentler terrain, SSTrans had the best reconstruction effect but was not outstanding. In more
complex terrain, SSTrans shows a significant improvement in reconstruction compared to
other methods, with indexes notably higher. The third set of experiments evaluates the
terrain attributes (slope and aspect). In areas 1 and 2, SSTrans does not show a significant
advantage over SRCNN in the reconstruction of elevation values, but it does demonstrate
significant improvement in slope and aspect. In areas 3 and 4, which are two areas with
more complex terrain surfaces, the reconstruction of SSTrans is more outstanding. SSTrans,
a reference-based image super-resolution (RefSR) method, is able to produce more accurate
results when compared to SRGAN and SRCNN, two single-image super-resolution (SISR)
methods based on deep learning. This is because it uses reference images obtained through
self-similarity to gather more specific data when dealing with complex terrain surfaces.

In future work, we will further attempt to introduce adversarial generative network
methods in combination with SSTrans methods to investigate how to further improve the
reconstruction accuracy.
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