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Abstract: With the widespread application of GNSS, the delicate handling of biases among different
systems and different frequencies is of critical importance, wherein the inter-frequency clock biases
(IFCBs) and observable-specific signal biases (OSBs) should be carefully corrected. Usually, a serial
approach is used to calculate these products. To accelerate the computation speed and reduce the
time delay, a multicore parallel estimation strategy for IFCBs, code, and phase OSBs by utilizing task
parallel library (TPL) is proposed, the parallel computations, including precise point positioning
(PPP), IFCBs, and OSBs estimation, being carried out on the basis of data parallelisms and task-based
asynchronous programming. Three weeks of observables from the multi-GNSS experiment campaign
(MGEX) network is utilized. The result shows that the IFCB errors of GPS Block IIF and GLONASS
M+ satellites are nonnegligible, in which the GLONASS M+ satellite R21 shows the largest IFCB of
more than 0.60 m, while those of other systems and frequencies are marginal, and the code OSBs
present excellent stability with a standard deviation (STD) of 0.10 ns for GPS and approximately
0.20 ns for other satellite systems. Besides, the phase OSBs of all systems show the stability of better
than 0.10 ns, wherein the Galileo satellites show the best performance of 0.01 ns. Compared with the
single-core serial computing method, the acceleration rates for IFCBs and OSBs estimation are 3.10,
5.53, 9.66, and 17.04 times higher using four, eight, sixteen, and thirty-two physical cores, respectively,
through multi-core parallelized execution.

Keywords: multi-GNSS; multi-frequency; inter-frequency clock bias; code and phase observable-
specific bias; multi-core parallel computing

1. Introduction

With the continuous development and upgrade of GPS, GLONASS, Galileo, BeiDou
navigation satellite system (BDS), and other regional and augmentation systems, more than
140 navigation satellites can transmit triple frequencies, and even more signals [1]. On the
one hand, the advantages of multiple systems and multiple frequencies provided by global
navigation satellite systems (GNSS) are noticeable in the aspects of positioning accuracy,
convergence speed, availability, and reliability. On the other hand, the combined usage of
multiple frequencies and unified model processing at the observation level can effectively
enhance the performance of multi-GNSS services [2].

To achieve those improvements of the positioning performance, the biases handling
among different systems and different frequencies is inevitable. In addition to solving those
biases as parameters to be estimated in the normal equation, two kinds of products are
commonly estimated and broadcast currently. One is to process the biases using a differen-
tial approach, i.e., inter-frequency bias (IFB), inter-system bias (ISB), and differential code
bias (DCB), in the satellite [3] and receive side [4], a combination mode, i.e., uncalibrated
phase delay (UPD) in the satellite side [5] and receiver side [6] and inter-frequency clock
biases (IFCB). On the condition of multiple frequencies, the existing biases’ calibrations are
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too complicated to extend to different frequencies and signal modulations [7], and, in view
of the increasing number of bias combinations, how to provide users with a uniform and
convenient bias correction method is also a key issue that needs to be urgently addressed.
Hence, different from differential form and combination, a more effective and efficient
approach to deal with the code and phase deviations is the concept of observable-specific
signal biases (OSBs); the OSBs clearly depict and define the deviations of each code and
phase observations, making the deviations disposal of multiple systems and multiple fre-
quencies more flexible and convenient [8,9]. The OSB format was proposed and developed
by Schaer et al. [10,11]. The OSB product consists of a correction for each channel’s pseu-
dorange and carrier phase signal, and the user simply removes the respective deviation
from the original observation [12,13]. Li et al. [14] proposed a unified strategy of OSBs’
estimation and correction model for undifferenced ambiguity fixing of multiple systems
and multiple frequencies, but global ionosphere maps (GIM) are necessary for code OSBs’
estimation. Currently, several institutions, including the Centre National d’Etudes Spatiales
(CNES), the Center for Orbit Determination in Europe (CODE), the Chinese Academy of
Sciences (CAS), and Wuhan University, can provide daily OSBs per satellite. All those
products support multi-GNSS and multi-frequency, and they differ from each other in the
aspect of publishment latency, i.e., Wuhan University provides rapid products, and CNES
can broadcast both real-time and post products. Additionally, since the phase ambiguities
can only take in a constant part of carrier phase biases, the combination of the time-varying
aspect of phase biases of triple-frequency observations, which is named as IFCB [15], should
also be carefully corrected. It is worth mentioning that whether the estimation is for OSBs
or IFCBs, a large-scale GNSS network with hundreds of reference stations is utilized to
obtain those products.

Usually, serial computing is typically applied in the estimation of those products, and
multi-GNSS and multi-frequency data from regional or huge global GNSS networks are
solved serially, wherein the IFCBs, code, and phase OSBs are estimated in turn. With the
rapid development of numerous parallel computing technologies and multicore platforms,
parallelized decomposition of computationally intensive operations and multicore dis-
tributed processing of data-intensive solving can effectively improve the speed of GNSS
solving. As early as 2010, the first working group of the International Association of
Geodesy (IAG) launched the Dancer program, which was designed to rapidly solve orig-
inal observation data from the level of observation equation for the space geodesy [16],
and corresponding achievements were applied to the international terrestrial reference
frame (ITRF) reprocessing and upgrade task. Using open multi-processing (OpenMP)
to accelerate the covariance update process, Kuang et al. [17] realized the real-time GPS
satellite ephemeris computation. Li et al. [18] developed a parallel estimation approach
for GNSS network corrections using the undifferenced ionospheric-free (IF) combination,
wherein the real-time FCBs and tropospheric delays parallel estimation, and tropospheric
modelings were implemented concurrently. Chen et al. [19] proposed a parallel algorithm
for multi-GNSS orbit determination, and, in the level of normal equation, the guided
scheduling and optimal cache memory traffics were performed in a multi-thread way.
Additionally, to speed up the GNSS data processing, the software package Bernese 5.0
and its later version, GIPSY [20], GNSSer [21] all supports multi-thread, multi-core, or
muti-node parallel computing. Hence, it is feasible to further apply parallel computing
into IFCBs’ and OSBs’ estimation.

In this contribution, our aim is to accelerate the estimation process of IFCBs, code, and
phase OSBs using multi-core parallel tool task parallel library (TPL), so as to reduce the
delay time for publishing precise bias products of multiple systems and multiple frequen-
cies. This manuscript consists of four parts. First, the parallel estimation methodology of
IFCBs and OSBs is proposed. Next, the observation data with detailed solving strategy is
introduced. Then, the characteristics of IFCBs and OSBs of multi-GNSS are discussed and
analyzed, and the computational efficiency is also validated using different numbers of
physical cores. Finally, discussions and conclusions are provided.
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2. Methodology

The parallel resolution of undifferenced and uncombined PPP of multiple systems
and multiple frequencies is introduced first, followed by the parallel estimation method of
IFCBs, and, finally, the parallel computing of code and phase OSBs is given.

2.1. Parallel Resolution of Undifferenced and Uncombined PPP

The pseudorange Ps
r,i and phase Ls

r,i from the navigation satellite s to ground receiver
r at frequency i is expressed as follows:

Ps
r,i = ρs

r + dtr − dts − dts + γi · Is
r,1 + ms

r · Zr + dr,i + ds
j + εs

Pi

Ls
r,i = λi ϕ

s
r,i = ρs

r + dtr − dts − dts − γi · Is
r,1 + ms

r · Zr + λi Ns
r,i + br,i + bs

i + εs
Li

(1)

where ρs
r represents the distance between the spatial antenna center and the ground receiver;

dtr and dts indicate the clock offsets of the receiver and satellite, respectively; Is
r,1 is the

ionospheric delay on the first frequency with its frequency-dependent variable γi = f 2
1 / f 2

i ;
Zr denotes the zenith tropospheric delay, and the mapping function ms

r is defined to the
slant direction; Ns

r,i is the integer phase ambiguity with its wavelength λi; dr,i and ds
j are

pseudorange biases of the receiver and satellite, respectively; br,i and bs
i are the phase

biases of the receiver and satellite, respectively; εs
Pi

and εs
Li

are the sum of the pseudorange
and phase measurement noise and corresponding multipath effect, respectively. Besides,
the antenna phase center corrections, tide loading, Sagnac effect, and phase windup are
corrected in advance using the existing international GNSS service (IGS) guideline.

Due to the small magnitude of the time-varying part of the phase biases in the receiver
side, it can be ignored [22,23]. The satellite phase biases can be separated into constant
part b̃s

i and time-varying part δbs
i . Following the convention of the IGS analysis centers,

using GPS L1 and L2 signals, BDS-2, BDS-3 B1I, and B3I signals, Galileo E1 and E5a signals,
and GLONASSS G1 and G2 signals, the IF model is employed to generate the precise clock
offsets. Hence, the satellite clock correction absorbs the satellite code pseudorange bias and
time-variant portion of phase bias:

dts
IF12 = dts − (α12 · ds

1 + β12 · ds
2)− (α12 · δbs

1 + β12 · bs
2) = dts − ds

IF12 − δbs
IF12 (2)

On the condition of multiple GNSS constellations, the general raw observation equa-
tions are written as:

ps
r,i = −µs

r · δx + dtr + ISBsys−G + ms
r · Zr + γi · I

s
r,1 + Ωr,i + δb

s
r,i + εs

r,i

ls
r,i = −µs

r · δx + dtr + ISBsys−G + ms
r · Zr − γi · I

s
r,1 + λi · N

s
r,i + Θs

i + ξs
r,i

(3)

with

dtr = dtr + dr,IF12

Is
r,1 = Is

r,1 + β12(DCBr,12 + DCBs
12)− β12 · δDPBs

12

λi · N
s
r,i = λi · Ns

r,i + br,i + b̃s
i + (−dr,IF12 + γi · β12 ·DCBr,12) +

(
−ds

IF12 + γi · β12 ·DCBs
12
)

Ωr,i =

{
0, i = 1, 2
−dr,IF12 − ds

IF12 − γ3 · β12(DCBr,12 + DCBs
12) + dr,3 + ds

3, i = 3

Θs
i =

0, i = 1, 2

δbs
i − δbs

IF12 − γi · β12 · δDPBs
12, i = 3

δb
s
r,i = γi · β12 · δDPBs

12 − δbs
IF12

(4)
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αij =
f 2
i

f 2
i − f 2

j
βij = −

f 2
j

f 2
i − f 2

j

DCBs
ij = ds

i − ds
j DCBr,ij = dr,i − dr,j

δDPBs
ij = δbs

i − δbs
j δbs

IFij = αij · δbs
i + βij · δbs

j

ds
IFij = αij · ds

i + βij · ds
j dr,IFij = αij · dr,i + βij · dr,j

(5)

where ps
r,i and ls

r,i represent the corrected pseudorange and phase observations, respec-
tively; µs

r and δx are the direction cosine from the ground receiver to the navigation satellite
and the corrections of the approximate station coordinates, respectively; dtr absorbs the
combination of receiver code pseudorange biases, and an additional ISB ISBsys−G, which
absorbs the difference of time and coordinate datum, the code pseudorange bias, and
other errors of different system, is introduced for other system sys; Is

r,1 takes in the com-
bination of receiver and satellite code pseudorange biases and the time-varying part of
satellite phase biases; λi · N

s
r,i takes in the constant part of satellite phase bias, receiver

phase bias, and the combination of both the receiver and satellite code biases, wherein
b̃s

i +
(
−ds

IF12 + γi · β12 ·DCBs
12
)

and br,i + (−dr,IF12 + γi · β12 ·DCBr,12) denote UPDs of the
satellite and receiver, respectively; the IFB Ωr,i and IFCB Θs

i are also introduced to the third
frequency, and δb

s
r,i is the combination of the time-varying portion of satellite phase bias,

which can be classified into the residual of code pseudorange, and it is marginal and can
be ignored.

Figure 1 gives the parallel computing flowchart of undifferenced and uncombined
PPP using TPL under a multicore platform. First, using task-based asynchronous pro-
gramming provided by TPL, the undifferenced processes are explicitly created based on
each observation file of multiple systems and multiple frequencies, and multiple solving
tasks are executed simultaneously. With parallel preprocessing performing on multiple
undifferenced tasks, and the correction files including ocean tide loading, antenna file,
satellite ephemeris and clock offsets, earth rotation parameter, and leap seconds are loaded
into the memory only once for all the undifferenced tasks, the calculated intermediate
variables, i.e., sun and moon positions, are stored and utilized for all reference stations.
Then, parallel processing of error calibration and adjustment of the estimated parameters
are implemented using the chain processor for the current corrected observables. Since each
error correction is independent and does not distinguish the order, the error corrections
can run in parallel. Finally, undifferenced epoch solutions are obtained in parallel. It is
worth noting that the mutex file locks involving the ephemeris interpolating, function
model and random model construction, and error calibration are established, so as to
prevent the errors of concurrent operation to global variables and ensure proper creation of
instantiation [18,24]. Otherwise, the access of multiple threads will cause distortions to the
program execution.

In contrast, the traditional batch processing cannot make efficient use of hardware
resources because for each new batch processing task, the solution correction files need to
be configured and read into memory each time, which undoubtedly causes a huge waste
of memory space and increases time overhead. Besides, creating and assigning tasks are
performed manually, and such operation cannot manage the cycle of tasks and perform
dynamic load balancing. The fine-grained parallelized flowchart in Figure 1 is designed and
developed from the bottom, which achieves the characteristic of dynamic loading balance.

Moreover, the processing of each station, each satellite, each system, and each fre-
quency is an atomic operation with a clear hierarchy and gradually finer granularity. Since
the creation, initialization, synchronization, communication, and termination of tasks also
consume time, the specific granularity should be matched adaptively according to the
scale of the GNSS network. If the scale and computation volume of the GNSS network
are small, the fine-grained parallel operation will be not effective and efficient enough,
and the coarse-grained matching operation should be carried out with the stations as the
granularity; as the scale of the GNSS network expands, the finer-grained operation of each
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satellite or each frequency can be further adopted. The granularity of parallel computing
is not as fine as possible, and the most suitable granularity should be selected adaptively
according to the actual computing task, matrix dimension, and the number of stations.
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2.2. Parallel Estimation of IFCBs

To perform multi-frequency OSB estimation, IFCB errors must be handled and cal-
ibrated in advance, especially for GLONASS and GPS satellites [25]. Using the original
phase observable in Equation (1), and taking GPS as an example, the geometry-free and
ionospheric-free (GFIF) combination and its variance can be obtained using task-based
asynchronous programming, in which the execution of daily observation data is defined as
a separate task, and multi-task run concurrently. GFIF(L1, L2, L3) = IFs

r,L1L2
− IFs

r,L1L3
= Ns

GFIF,r + Θs
GFIF

σGFIF(L1,L2,L3)
=
√
(α12 − α13)

2 · σ2
L1
+ (β12)

2 · σ2
L2
+ (β13)

2 · σ2
L3

(6)

with
Ns

GFIF,r =
(

α12Ns
r,1 − β12Ns

r,2

)
−
(

α13Ns
r,1 − β13Ns

r,3

)
+
(

α12br,1 − β12br,2

)
−
(

α13br,1 − β13br,3

)
+
(

α12b̃s
1 − β12b̃s

2

)
−
(

α13b̃s
1 − β13b̃s

3

)
Θs

GFIF =
(
α12δbs

1 − β12δbs
2
)
−
(
α13δbs

1 − β13δbs
3
) (7)

where NGFIF is a constant which takes in the constant phase biases. Θs
GFIF is the phase

IFCB, and it is clarified as the dissimilarity between the satellite clock offset computed
using the traditional two frequencies and that of using the new frequency.
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Next, the differenced IFCB between epoch is computed to remove Ns
GFIF,r{

∆Θs
GFIF(k) = GFIF(L1, L2, L5)

s
r(k)− GFIF(L1, L2, L5)

s
r(k− 1)

σ∆Θs
GFIF(k)

=
√

2σGFIF(L1,L2,L3)
(8)

where k− 1 and k are the two adjacent moments, and ∆ is the single-differenced opera-
tor. It should be noted that the observations with a deviation more than 3σ∆Θs

GFIF(k)
will

be removed.
Then, based on data parallelism, multiple stations are engaged in the estimation of

satellite-dependent IFCB using the weighting method based on satellite elevation angle.
This process is executed concurrently for a certain number of loops, and the serial loop
methods involving for and foreach are substituted by parallel.for and parallel.foreach,
respectively, from TPL data parallelism. Hence, a refactoring of the original for and foreach
statements is implemented.

∆Θ̂s
GFIF(k) =

n
∑

r=1
∆Θs

GFIF(k) ·ωs
r

n
∑

r=1
ωs

r

(9)

with

ωs
r =


0 Es

r < 15
◦

2 sin Es
r 15

◦
< Es

r < 30
◦

1 Es
r ≥ 40

◦
(10)

where Es
r is the satellite elevation angle with its weight ωs

r . Assuming the initial value
of IFCB as 0 per satellite, the absolute IFCB at k epoch is accumulated using the epoch-
differenced IFCB [26].

Correspondingly, the relationship between Θs
3 in Equation (4) and Θs

GFIF in Equation (7)
can be expressed as:

Θs
3 = − 1

β13
·Θs

GFIF (11)

Therefore, by converting the IFCBs estimated by GFIF combination, the IFCB products
can be directly applied to multi-frequency observation data processing, i.e., PPP.

2.3. Parallel Estimation of Code OSBs

The receiver DCB, satellite DCB, and slant ionosphere delay in Equation (4) are linear-
dependent, which means that they are not estimable. Therefore, an ionospheric spherical
harmonic function is introduced to model ionospheric vertical total electron content (VTEC)
on a thin-layer approximation. The function is shown as follows:

VTEC(βs
r, χs

r) = MF(Es
r) · STECs

r

MF(Es
r) = cos

(
arcsin

(
Rearth

Rearth+Hion
sin2 α

(
π
2 − Es

r
)))

VTEC(βs
r, ss

r) =
kmax
∑

k=0

k
∑

m=0
ΠnmPnm

(
sin β

j
r

)
(anm cos mss

r + bnm sin mss
r)

Πnm =
√

(4n+2)(n−m)!
1+ςm(n+m)!

(12)

where Rearth = 6,378,137 m, and Hion is the attitude of the ionosphere thin shell, usually we
set as 506.7 km. βs

r and ss
r represent the geocentric latitude of the ionosphere pierce point

(IPP) and sun-fixed longitude of the IPP, anm, and bnm are the coefficients to be estimated
every 2 h. On the condition of kmax = 15, a total of 3072 ionospheric model coefficients
should be estimated and, with more than 100 satellites and 300 stations, approximately
3400 parameters should be estimated.
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The most time-consuming calculation in the ionospheric modeling is the high-dimension
matrix operation, especially the inverse operation of the symmetric positive definite matrix.
To accelerate this process, the numerical parallel calculation method for matrix multiplica-
tion, decomposition, and inversion based on modular matrix theory from Cui et al. [27] is
utilized, i.e., the efficient Cholesky parallel decomposition.

However, each receiver shares the same satellite DCB, resulting in a linear dependency
of the satellite and receiver DCB parameters, hence, the ionospheric modeling is rank deficit
with a deficiency number of 1. Therefore, to separate the receiver DCB, the sum of all
observed satellites is set as 0 [28]. Using the estimated IFB Ωr,i and the DCB value DCBs

12
in Equation (4), the DCBs between the other code and the reference code can be further
obtained. By introducing the constraint that ds

IF12 = 0, the DCB can be transformed into the
observable-specific code bias of each signal, and the code OSBs on frequency i, j, and k are
derived as: 

d
s
i = βijDCBs

ij
dj = −αijDCBs

ij
dk = βijDCBs

ij − DCBs
ik

(13)

2.4. Parallel Estimation of Phase OSBs

Usually, on the condition of multiple frequencies, the undifferenced ambiguities are
established using extra-wide-lane (EWL), wide-lane (WL), and narrow-lane (NL) combina-
tions in parallel, which are expressed as [14]:

N̂s
r,EWL = N̂s

r,j − N̂s
r,k = Ns

r,EWL + br,EWL − bs
EWL

N̂s
r,WL = N̂s

r,i − N̂s
r,j = Ns

r,WL + br,WL − bs
WL

N̂s
r,NL =

αijλi N̂s
r,i+βijλj N̂s

r,j
λWL

− λi Ns
r,WL

λj−λi
= Ns

r,NL + br,NL − bs
NL

(14)

with 
bs

EWL =
bj
λj
− bk

λk
+

(1−η)di+ηdj
λEWL

bs
WL = bi

λi
− bj

λj
− λidj+λjdi

λiλj

bs
NL =

λj
λj−λi

(
bi
λi
− di

λi

)
− λi

λj−λi

(
bj
λj
− dj

λj

) (15)

where η =
(
λ2λ3 − λ2

1
)
/
(
λ2

2 − λ2
1
)
, br,ewl , br,wl , and br,nl are the EWL, WL, and NL receiver

UPDs, respectively; and bs
ewl , bs

wl , and bs
nl are the corresponding satellite UPDs, respectively.

The reference station is selected with the criteria of the most visible satellites and good
observation quality, and the receiver UPDs of this station are set to 0. To fix the EWL-
and WL-ambiguities, the decision function from Dong and Bock [29] is applied. However,
compared with the long wavelengths of EWL and WL ambiguities, the wavelength of NL
ambiguity is short, i.e., 10.7 cm for GPS satellites, and a robust estimation method from
Li et al. [30] is utilized. Parallel estimation of UPDs is based on inter-satellite parallelism.

After obtaining the UPDs, the phase OSBs can be derived as:
bi =

−λj
γλi−λj

[
bs

WL −
(

αWLd
s
i + βWLd

s
j

)]
+ (γ− 1)λNLbs

NL

bj =
−γλj

γλi−λj

[
bs

WL −
(

αWLd
s
i + βWLd

s
j

)]
+ (γ− 1)λNLbs

NL

bk = −
[
bs

EWL −
(

αWLd
s
i + βWLd

s
j

)
− bj

] (16)
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with 
αNL =

λj

λi(λj−λi)
βNL =

λj

λj(λj−λi)

αWL =
λi−λj

λi(λj+λi)
βWL =

λi−λj

λj(λj+λi)

αEWL = 1−η
λEWL

βEWL = η
λEWL

(17)

where b denotes the phase OSB, which consists of UPDs and code OSBs. By mapping
various relative forms of pseudorange and phase biases into the absolute form, a simple
and uniform biases correction product can be provided to users with multiple frequencies
and multiple constellations.

Figure 2 presents the parallel estimation flowchart of IFCBs, code, and phase OSBs
under a multicore platform. First, the observables of multiple systems and multiple fre-
quencies are input, and parallel computing across stations and weighted GFIF combination
are used to acquire IFCB products. Next, with the calculated IFCBs, multiple PPP tasks are
created and run concurrently to obtain slants ionospheric delays, IFB parameters, and float
ambiguities in Equation (4). Then, using parallel computing across satellites and the matrix
parallel computing method, DCBs between available frequencies are acquired through
ionosphere modeling and zero mean constraint, and then code OSBs could be generated
with the IF constraint. Finally, three kinds of UPDs can be obtained after the separation of
float ambiguities, and the phase OSBs are finally acquired based on the aforementioned
estimated code OSBs and phase UPDs.
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Additionally, under the background of multiple systems and multiple frequencies, a
number of factors need to be taken into account: (1) To effectively control the quality of the
estimated IFCBs, code, and phase OSBs, the consecutive measurement session less than
30 min is removed, and standard deviation (STD) of exceeding three times is also deleted
and the residual errors of PPP are carefully checked per satellite and per frequency in
parallel; (2) The previous BDS-2 satellite-induced code pseudorange variations [31], which
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is currently clarified into satellite antenna group delay variations (GDV) [32], are corrected
using elevation-dependent piecewise linear models; (3) Since the traditional frequency
division multiple access (FDMA) signals on the first two frequencies are transmitted by
GLONASS, it will bring additional IFB parameters in the receiver side, which is defined as
GLONASS receiver IFB (GIFB). Although GLONASS IFBs can be expressed as a linear or
quadratic polynomial model [33], the residual errors will still remain and, hence, to avoid
this phenomenon, the same kind of receivers are chosen; (4) Affected by the multipath
effects and other unmodeled errors, i.e., large multipath and noise magnitudes at low
satellite elevation angles, the probability of correctly fixing the full ambiguity sets is often
low, leading to a solution failure. In this case, at the current epoch, the unconverging
ambiguity will affect the fixing of all ambiguities. If the corresponding criteria are used to
filter out the subsets with better quality from the full ambiguity sets, the ratio value, success
rate, and correct rate of ambiguity fixing will be improved, hence, a partial ambiguity fixing
method is utilized; (5) Owing to the stability of code OSB, daily value is usually estimated
for each signal of each satellite and, considering the short wavelength of NL ambiguity,
the NL UPDs are estimated for every epoch, hence, phase OSBs are usually estimated for
every epoch.

3. Experimental Data and Parameter Estimation Strategy

Usually, a global or a regional dense network is necessary for the multi-GNSS bi-
ases estimation, and, hence, the observables from 340 multi-GNSS experiment campaign
(MGEX) network tracking stations (Figure 3) [34], recorded from DOY 290, 2021 to DOY
310, 2021, are utilized. All those stations can track GPS and Galileo multiple frequencies,
and more than 170 stations and 160 stations can observe BDS-2, BDS-3, and GLONASS
multi-frequency signals. Besides, to avoid the additional GLONASS IFBs among different
types of receivers, about 80 stations equipped with SEPT POLARX5 receivers are selected
to estimate GLONASS UPDs.
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The IFCBs, OSBs, and PPP estimation strategies are summarized in Table 1. The
elevation mask is set as 7◦, and the triple-frequency uncombined observables with an
interval of 30 s are processed. Clock slip is detected using the difference between epoch and
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cycle slip is detected with the triple-frequency TurboEdit method [35] and we adopt the
GBM post precise products and igs14 antenna model. The zenith hydrostatic delay (ZHD) is
calibrated with the Saastamoinen model [36] and the GPT3 meteorological parameter [37],
and the tropospheric zenith wet delay (ZWD) is corrected using the Askne and Nordius
model [38] and the GPT3 meteorological parameter [37], with corresponding mapping
function VMF3 [37]. The residual zenith wet delay, the ionospheric delay, and ISB are
estimated as random walk, and ambiguity parameters and receiver clock correction are
modeled as constant and white noise, respectively. If cycle slips happen, the ambiguity
parameters will be initialized with a large variance. To further reduce the estimated
parameters, the station coordinates are fixed to the reference values published by the IGS
daily solution independent exchange format (SINEX) files.

Table 1. Processing strategies of the IFCBs and OSBs estimation, and multi-GNSS and multi-
frequency PPP.

Type Processing Strategy

Sampling interval 30 s
Elevation mask 7◦

Weight for observations Elevation-dependent weight
Satellite ephemeris and clock offsets files GBM post precise products

Clock slip and cycle slip Difference between epochs and modified triple-frequency TurboEdit method
Antenna phase offset igs14 antenna model

Tropospheric delay
ZHD is corrected using Saastamoinen + GPT3

ZWD is corrected using Askne and Nordius + GPT3
VMF3 mapping function

Ionospheric delay and ISB Modeled as a random walk, with a power spectrum density of 1.7 × 10−4 and
1.7 × 10−7 m2/s, respectively

Tracking station
coordinates Fixed to the IGS daily SINEX files

Ambiguity Modeled as a constant without cycle slips, partial
ambiguity fixing, and the ratio value is set as 2.0

Receiver clock offset White noise

Table 2 further lists satellite systems, frequencies used to estimate IFCBs and phase
OSBs, and codes used to estimate code OSBs in the experiment.

Table 2. The selected frequencies and codes in the experiment.

System
Frequencies Used to
Estimate IFCBs and

Phase OSBs
Codes Used to Estimate Code OSBs

GPS L1, L2, L5 C1C, C1W, C1L, C1X, C2L, C2W, C2X, C5Q, C5X

Galileo E1, E5a, E5b C1X, C5X, C6X, C7X, C8X

GLONASS G1, G2, G3 C1C, C2C, C3X

BDS-2 B1I, B2I, B3I C2I, C6I, C7I

BDS-3 B1I, B2a, B3I C1P, C1X, C2I, C5P, C5X, C6I, C8X

Table 3 describes the experimental platform used in the experiment. The GNSS data
parallel processing software GNSSer [21] was utilized to obtain the IFCB and OSB products.
Since GNSSer was developed using C#, TPL matches C# perfectly, simplifying the process
of adding parallelism and concurrency to GNSS data processing. The software has a
user-friendly interface and a high degree of automation, i.e., the ability to automatically
download precise products from the IGS corresponding to the pending tasks.
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Table 3. The experimental platform used in the experiment.

Experimental Platform Processor Number of Cores Memory Size

Dell R750 workstation Intel Xeon gold processor
6314U, 3.40 GHz 32 cores 128 GB

4. Experimental Results and Discussions

In this section, multi-system IFCBs are estimated and investigated first. Then, the code
and phase OSB products are analyzed and discussed. Finally, the speed-up effect of parallel
computing is evaluated.

4.1. Characteristic of Multi-GNSS IFCBs

IFCB is an indispensable prerequisite for multi-frequency PPP and UPDs estimation.
Figure 4 shows the multi-GNSS IFCB series and maximum values on DOY 290, 2021. It can
be found that the IFCBs of different system present different variation amplitude.
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Figure 4. The multi-GNSS IFCB series and maximum values on DOY 290, 2021. A different color line
represents a different satellite. The orange and blue lines of GLONASS denote R21 and R09 satellites,
respectively. The abbreviation G, E, R, C2, and C3 represents GPS, Galileo, GLONASS, BDS-2, and
BDS-3, respectively.

(1) For the 12 GPS Block IIF satellites, the IFCB errors reach more than 0.1 m, which
is nonnegligible and must be carefully calibrated when using the triple-frequency
observations, and the phenomenon has been first founded by Montenbruck et al. [15].
The newly launched Block III satellite has a small magnitude of IFCB errors;

(2) With the IFCB amplitude of more than 5 cm, the same phenomenon has been occurred
on some BDS-2 satellites, and this has been reported by Pan et al. [39];

(3) Among the GLONASS constellation, in addition to transmitting traditional FDMA
signals, a code division multiple access (CDMA) signal at 1202.025 Hz can be broadcast
by 4 M+ satellites and 2 K1 satellites. During the selected period, the ground stations
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can track the G3 signal from K1 satellite R09 and M+ satellite R21. It can be seen that
the variation of IFCB errors for R09 is tiny and stable, while that of R21 is fluctuating,
and periodical variation has also been observed [40];

(4) Currently, the BDS-3 satellites broadcast service on six frequencies, namely, B1C, B1I,
B2a, B2b, B2a+b, and B3I. The IFCB errors of BDS-3 satellites are relatively small
and can be neglected during the precise observation data handling, which has been
pointed by Pan et al. [39];

(5) The Galileo satellite shows the smallest IFCB errors among these four GNSS constella-
tions. The possible reasons can be attributed to the better manufacturing process and
high-performance satellite atomic clock.

The comparison reveals that the IFCB errors of Galileo satellites are exceptionally
marginal, while GLONASS-M+ satellite R21 shows the largest IFCB errors of larger than
0.3 m. The possible reason may be attributable to that GLONASS M+ satellite transmits G3
signal from a different antenna, and the antenna phase center offset between GLONASS
G1/G2 antenna and G3 antenna is more than 0.5 m on the y axis of satellite body coordi-
nate [41], and, thus, the estimated IFCBs absorb this inconsistency. Since GLONASS K1
satellite R26 also presents this inconsistency, its IFCB errors may also be very large.

Furthermore, Figure 5 shows the multi-GNSS IFCB series and maximum values from
DOY 290, 2021 to DOY 310, 2021. Through statistics, with an averaged root mean square
(RMS) of 4.29 cm and a maximum value of 17.20 cm, the IFCB errors of GPS Block IIF
satellites present significant and periodical fluctuation. The maximum IFCB errors of BDS-2,
BDS-3, and Galileo satellites are 5.83, 4.07, and 2.32 cm, respectively, and the RMS values
of these three systems are 1.09, 0.74, and 0.33 cm, respectively, during the selected period.
Additionally, with periodical variation, the IFCB amplitude and RMS of GLONASS M+
satellite R21 are 61.00 cm and 11.46 cm, respectively, which are the biggest among those
GNSS constellations.
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Through the aforementioned analysis and discussions, it can be concluded that the
IFCBs of GPS Block IIF and GLONASS-M+ satellites should be corrected in advance,
while those of other systems can be neglected due to their small magnitude. Additionally,
the periodical variation characteristic makes it possible to model IFCB errors and obtain
high-accuracy forecast values.

4.2. Characteristic of Code OSBs

Figure 6 shows the multi-GNSS code OSB series form DOY 290, 2021 to DOY 310, 2021.
Table 4 further gives the statistical STDs. It can be concluded that:

(1) Among those systems, the satellite code OSBs of GPS are the most stable, and their
average STD is less than 0.10 ns;

(2) Currently, all the 26 Galileo satellites are able to provide five-frequency signals. It
can be seen that all these code OSBs are generally stable and, owing to the special
Alt-BOC modulation, the code OSBs on E5a (C5X), E5b (C7X), and E5ab (C8X) are
highly consistent, which has also been discussed in Li et al. [14];

(3) For GLONASS satellites, the STDs of C1C, C2C, and C3X OSBs are 0.13, 0.21, 0.11 ns,
respectively. The code OSB on the G3 CDMA signal shows slightly better stability
than the other two FDMA frequencies;

(4) The magnitudes of BDS-2 and BDS-3 code OSBs are approximately 100 and 200 ns,
respectively, which are larger than other systems. The BDS3 code OSBs show slightly
better stability than the BDS2 code OSBs.

Table 4. The STDs of multi-GNSS code OSBs during the selected period. (ns).

GPS Galileo GLONASS BDS-2 BDS-3

STD 0.10 0.21 0.17 0.23 0.21

4.3. Characteristic of Phase OSBs

Figure 7 shows the multi-GNSS phase OSB series on DOY 290, 2021. The interval is
30 s. Figure 8 further gives the statistical result of STDs from DOY 290, 2021 to DOY 310,
2021. It can be concluded that:

(1) With an average STD less than 0.05 ns, the phase OSBs of GPS, Galileo, BDS-2,
and BDS-3 satellites are very stable, wherein Galileo shows the optimal result. The
possible reason may also be attributable to the high-performance atomic clocks that
Galileo utilized;

(2) For GLONASS satellite, the STDs of G1, G2, and G3 phase OSBs are 0.08, 0.11, and
0.09 ns, respectively, which are slightly larger than those of other systems. The possible
reason could be due to the GLONASS IFBs, although the same receiver type is selected,
there is slight difference in the receiver version number, which will bring biases for
phase OSBs estimation.

Hence, considering the stability of phase OSBs, the phase OSB products could be
published with a longer sampling interval. With the estimated IFCBs and OSBs, users can
directly correct the original pseudorange and phase observations of multiple systems and
multiple frequencies, allowing for convenient data processing and ambiguity fixation.

4.4. Evaluation of Parallel Acceleration Ratio

Five parallel computing schemes involving a different number of physical cores, along
with the traditional serial computing, were carried out. The time spent on the experiment
was averaged through the repeat of three times.

Usually, using a serial computing method, the undifferenced and uncombined PPP of
each station takes 28 s, and about 8 min, 260 min, and 12 min for IFCBs estimation, code
OSBs estimation and ionospheric modeling, and phase OSBs estimation, respectively. It
can be concluded that most of the time is spent on PPP and global ionospheric modeling,
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which can be accelerated using multi-station parallel computing, multi-satellite parallel
computing, and matrix parallel operation.
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Table 5 gives the computation time and acceleration rate using different scheme. The
acceleration rates using four, eight, sixteen, and thirty-two cores are 3.10, 5.53, 9.66, and
17.04 times, respectively, compared to the serial computing scheme using a single core.
Using a quad-core platform, the time spent on PPP per station, IFCBs estimation, code
OSBs estimation, and phase estimation are 10 s, 3 min, 80 min, and 4 min, respectively.
As the quantity of input cores increases, the time spent on parallel computing overheads
involving synchronization, communication, and coordination increases quite a lot, and the
improvement of parallel computing efficiency is reduced and limited [17–19]. More threads
tend to compete for CPU resources, thus reducing the computational efficiency. Moreover,
the established file locks in Figure 1 during IFCBs and OSBs estimation, which force the
parallel program to serially execute, also decrease the speed-up ratio. However, with more
invested cores, the efficiency for IFCBs and OSBs publication is greatly improved, and
the time for releasing those products to GNSS users with multiple systems and multiple
frequencies can be substantially reduced.
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Figure 8. The average STDs of multi-GNSS phase OSBs from DOY 290, 2021 to DOY 310, 2021.

Table 5. Computation time and acceleration rate using a different scheme.

Single Core Four Cores Eight Cores Sixteen Cores Thirty-Two Cores

Computation time (min) 438 141.30 79.20 45.35 25.70

Acceleration rate — 3.10 5.53 9.66 17.04

5. Discussions

To achieve optimal fusion of multi-frequency GNSS data, the biases need to be finely
considered and modeled. In this contribution, IFCBs and OSBs are estimated as two types
of parameters. By absorbing IFCBs, Su et al. [42] proposed a more flexible and unified
correction product, and it is the phase time-varying OSBs. This kind of product deserves
our further research.

Besides, the accuracy of the estimated IFCBs and OSBs can be validated in three
aspects. The first is the comparison with the OSB products published by other organiza-
tions. By converting the datum, approximately 95% of the residuals for the code OSBs
are less than 0.2 ns, indicating that our products are in good agreement with CAS, but,
for the phase OSBs, since they absorb various errors, i.e., parameter and model settings
of different software, an alternative approach is the performance of PPP ambiguity fixing
of multi-system and multi-frequency [14,43–45]. Using the triple-frequency observations
from the European permanent network and Henan providence, China, the average static
hourly positioning accuracy of 4.0 and 7.0 mm can be achieved in the horizontal and
vertical components, respectively. It costs approximately 5.0 and 6.0 min to realize the
coordinate convergence and the first time to fix ambiguity. The last validation method
is to use the massive observations from the large-scale GNSS network and convert the
observations into carrier ranges [46], then huge GNSS network processing using the carrier
range is conducted. Utilizing the approximately 250 stations from the Crustal Movement
Observation Network of China (CMONOC), and the parallel computing method of the
huge GNSS network being extended to triple-frequency as according to Li et al. [47], the
daily static coordinate accuracy of better than 3.0 and 5.0 mm is realized in the horizontal
and vertical components, respectively, and the ambiguity fixing rate reaches more than
92.0%. Since the emphasis of this contribution is the parallel estimation of IFCBs and OSBs,
the results of the aforementioned two validations are not provided in detail.
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6. Conclusions

To accelerate the computation speed and reduce the time consumption of IFCBs and
OSBs, this paper proposed an efficient parallel computation method using TPL. The key
findings are summarized as:

1. Among multiple systems, the IFCBs of GPS Block IIF and GLONASS M+ satellites
present periodical variation, and their amplitudes are nonnegligible, wherein the
GLONASS M+ satellite R21 shows the largest IFCB of more than 0.60 m;

2. For all the four systems, the daily code OSBs present high stability with average STDs
smaller than 0.20 ns, among which GPS presents the smallest STD of 0.10 ns;

3. The phase OSBs show the stability of better than 0.10 ns, wherein the Galileo satellites
presents the optimal performance of 0.01 ns;

4. Under a multicore platform, the acceleration effect is significant, which can signifi-
cantly shorten the computation time for IFCBs and OSBs estimation.

However, the proposed parallel computing method can be further extended to mul-
tiple computers with different configurations. The message passing interface (MPI) and
Hadoop MapReduce can be applied. Parallel computing based on graphics processing
units (GPUs) has advantages over multi-core CPUs, which is the next step in our research.
The application of those absolute biases will also be investigated further.
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