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Abstract: The level of destruction caused by an earthquake depends on a variety of factors, such as
magnitude, duration, intensity, time of occurrence, and underlying geological features, which may
be mitigated and reduced by the level of preparedness of risk management measures. Geospatial
technologies offer a means by which earthquake occurrence can be predicted or foreshadowed;
managed in terms of levels of preparation related to land use planning; availability of emergency
shelters, medical resources, and food supplies; and assessment of damage and remedial priorities.
This literature review paper surveys the geospatial technologies employed in earthquake research
and disaster management. The objectives of this review paper are to assess: (1) the role of the
range of geospatial data types; (2) the application of geospatial technologies to the stages of an
earthquake; (3) the geospatial techniques used in earthquake hazard, vulnerability, and risk analysis;
and (4) to discuss the role of geospatial techniques in earthquakes and related disasters. The review
covers past, current, and potential earthquake-related applications of geospatial technology, together
with the challenges that limit the extent of usefulness and effectiveness. While the focus is mainly
on geospatial technology applied to earthquake research and management in practice, it also has
validity as a framework for natural disaster risk assessments, emergency management, mitigation,
and remediation, in general.

Keywords: remote sensing; earthquake; geospatial; hazard; review

1. Introduction

Multifaceted research on earthquakes, which rank among the most devastating natural
disasters [1–3], is of vital importance in mitigating the damage to human settlements and
minimizing loss of life and severe injuries. One of the earliest applications of satellite
data in earthquake exploration occurred in the 1970s [4], with the first mapping of active
faults using satellite images [5]. More recent developments in space-based seismolog-
ical research have made it possible to study a range of related phenomena, including
earthquake-induced deformations [6], pre-earthquake conditions, such as surface thermal
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variations [7], gaseous and aerosol emissions [5], and electromagnetic disturbances in
the ionosphere [8]. Similarly, technological developments have increased our capacity to
cope with earthquakes through occurrence prediction [9], prevention assessments [10],
identification of vulnerabilities [11,12], risk reduction [13], and disaster preparedness [14].
Further areas of related academic activity and disaster management are the stages of miti-
gation [15], which include post-earthquake adaptation [16], responses [17], recovery [18],
and social and economic sustainability [19]. Although each constitutes a separate field
of research and expertise, the objective of our research was to categorize these fields in
terms of the related novel and available technologies, to create a set of comprehensive
guidelines for researchers. Our study considered modern geospatial technologies and
their use in the study of earthquakes. Although previous reviews of these technologies
exist, they have generally focused on a single geospatial application related to earthquakes;
for example, [20] focused on earthquake-induced building damage. Our review aims to
provide a comprehensive review of existing geospatial applications of relevance in the
domain. The following flowchart (Figure 1) represents the structural parameters of our
research, sub-divided into the major contributory areas of coverage.
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Branch 1 of the flowchart (Figure 1) outlines the research coverage of the various
geospatial data types commonly used in seismology, namely Geographic Information Sys-
tem (GIS), optical Remote Sensing (RS), thermal, radar, and Light Detection and Ranging
(LiDAR), as well as combinations of these data types, referred to as fusion data. Com-
bining observations with data of various scales of resolution can often provide a more
comprehensive assessment of the mechanisms of potential destruction and the extent of
consequences of an earthquake. Moreover, RS data can be combined with GIS and other
data categories, including geological, topographic, and ground motion shake maps, to pro-
vide more detailed links between earthquake damage and its control and specific ground
conditions [21,22]. Such integration can be easily achieved by spatial referencing of the
geospatial data using standard map projections [23]. Branch 2 outlines the stages (pre-,
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inter-, and post-occurrence) for which we assessed applications of geospatial technology
in our research. Branch 3 outlines the impact analysis categories applied to earthquakes
in our research—“risk analysis”, in the context of our research, refers to the integration of
hazard and vulnerability analyses [24,25]. Through each stage, valuable information can be
obtained for better management strategies. Branch 4 outlines the potential natural disasters
that may be triggered as ripple effects of an earthquake, for example, tsunamis, fires, and
landslides.

2. The Role of Geospatial Data in Earthquake Studies

This section addresses geospatial data types and associated developmental trends in
this form of data up to 2022. It includes discussion on the advantages and limitations of
each data type and the image processing techniques used to map and monitor earthquakes.
In general, geospatial data provide locational information connected to a category of dataset
defined as a GIS, RS, global navigation satellite system (GNSS), information technology, or
field sensor.

The use of satellite data in seismological applications began in the 1970s with the map-
ping of geological faults [5]. Through technological advances in satellite remote sensing,
a wide range of techniques are available to conduct seismological [26] and geophysical
research [27]. Some RS satellites were launched for specific missions and limited time
frames. The DEMETER (Detection of Electromagnetic Emissions Transmitted from Earth-
quake Regions) mission, withdrawn in December 2010 after over six years in orbit [28], is
an example, which was dedicated to the study of ionospheric perturbations resulting from
seismic activity [29].

2.1. GIS Data

GIS supports a large variety of data with different formats, in an easy-to-use modelling
environment. The mapping and modelling as well as the associated analyses have assisted
governments to make well-informed decisions for the development of emergency response
strategies by [30]. GIS-based modeling is mainly used in emergency management [31], haz-
ard analysis [32,33], vulnerability analysis [34], risk analysis [35], damage assessment [36],
change detection analysis, etc. [37], evaluating areas of risk and hazards with respect to
communities, real estate and land property, as well as natural resources.

GIS is invaluable in the following aspects of earthquake disaster management:

• Evaluating short- and long-term reconstruction and recovery processes.
• Ranking the stages of search-and-rescue operations.
• Determining the post-disaster assembly areas, emergency management operations cen-

ters, and other incidental services aimed at minimizing the disastrous consequences.
• Analyzing service area of hospitals and fire stations, which play a key role in providing

the quickest response.
• Preparing the strategic databases for pharmacies and medical supplies.
• Predicting the aftermath of earthquakes, such as tsunamis and fires, which helps to

recognize the possible affected areas via buffer analysis.
• Utilizing ArcView 3D Analyst, which can be used to prepare a 3D view of the buildings.

Earthquake-vulnerable buildings will be defined (based on a specific number of floors,
materials, commercial or residential use, etc.).

In risk and hazard management, GIS has proven to be one of the simplest methods
of assembling information. Many researchers and scholars rely on Web GIS seismic risk
assessment [38,39]. In Japan, after the Niigata Chuetsu Earthquake, a special GIS-based
portal was developed in order to assist damage assessment management [40]. A similar
portal was created by using ArcObjects, which are the components of COM-based ArcGIS
software [41]. Ref. [42] covered the sharing of disaster information via GIS, as established in
the Japanese national “Chuetsu Earthquake Restoration and Revival Support GIS Project”
that followed the Mw 6.8 Chuetsu Niigata Earthquake of 2004. The damage caused by the
massive earthquake recorded by many organizations was tracked and unified in GIS and
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broadcast in real time, greatly simplifying post-disaster management. The completeness
of the shared GIS data from Chuetsu 2004, thus, constituted a basis for future risk man-
agement information, which has undoubtedly played an important role in developing an
understanding of earthquake risks.

GIS was used as an effective and useful tool for risk assessment purposes in the Pendik
urban region, which has a population of 389,000 and forms a gateway to Istanbul, Turkey.
Here, the ArcView tool, supported by MsAccess data based on a Pendik Urban Inventory,
was used to make detailed risk maps accompanied by analytical reports. Hospitals and
clinics, educational institutions, and police and governmental buildings located on the
underlying deformation, unstable land, and alluvial ground were identified along with
gas hazard zones, plants that produce hazardous materials, and buildings under high-
voltage power lines [43]. Ref. [44] developed a Web-based GIS system including two main
components: (1) an online database of earthquakes recorded by the Vietnam National
Seismic Network and (2) a rapid seismic hazard assessment toolkit. Using an online
earthquake database, it became possible to create a shake map caused by the previously
recorded earthquake. Ref. [45] studied the Kalachori Accelerometric Network, comprising
seven stations, installed in suburban areas west of Thessaloniki, Greece. These stations
documented geotechnical data from 78 earthquakes that occurred in the region between
2014 and 2016. An online Web-GIS platform compiled and unified the data. Ref. [46]
introduced the Beijing Earthquake Disaster Prevention System as a GIS and online portal.
This system totally integrates disaster data and is accessible by non-professionals due to
its user-friendly interface. A distinctive feature of this platform is that it allows data from
different sources to be mixed and processed in a uniform manner to serve as the basis for
various spatial analysis. Ref. [47] reported a noticeable gap in web-based GIS applications
by neglecting the potential to combine earthquake and hurricane data into a single dynamic
interface. The author devised an improved methodology to extend a previously developed
online GIS application, making it possible to examine the relationships between earthquake
and tropical storm events over the last 30 years, as well as analyzing the trends and
intensities of those events. These examples clearly demonstrate the relevance of GIS for
timely responses to emergencies and highlighted the need for improved technologies for
integrated data assessment. The web-based GIS platform called PREVIEW [48] provides
access to interactive digital content designed for free and continuous access to global
records on hurricanes, storms, floods, landslides, droughts, earthquakes, tsunamis, volcanic
eruptions, and wildfires.

2.2. Optical Data

Optical satellite imagery provides post-earthquake images of the affected area, poten-
tially within a few hours of the event. Ref. [49] implemented damage detection based on
multitemporal coherence map clustering and a similarity analysis from Sentinel-1 image
datasets for a Mw 7.4 strength earthquake that occurred in Kermanshah, Iran, in 2017,
another application of optical RS is in the mapping of the deformations that follow an
earthquake [50]. However, more advanced RS techniques for representing and measuring
deformation will be introduced in the section “Active Microwave” (Section 2.4.2). To
detect deformations using optical imagery, a sub-pixel correlation technique can be used, in
which deformation locations are represented by mismatched pixels. Notwithstanding the
more advanced forms of RS data, optical sensing is still a common method used to detect
surface changes following an earthquake. Ref. [51] measured vertical surface deformations
associated with the Mw 6.0 Petermann Ranges earthquake in Australia in 2016. The authors
quantified the vertical deformation using high-resolution optical WorldView satellite im-
agery and validated the result with radar and field-based data. Pre- and post-earthquake
Digital Elevation Models (DEMs) were generated from in-track stereo optical satellite
images. The results showed that differenced DEMs are useful for constraining vertical
deformation arising from surface rupture earthquakes that cause only moderate (<1 m)
vertical movement. The researchers concluded that optical imagery remains useful when
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radar data are not available. Another disadvantage of optical RS is its limitations in the
representation of reverse fault earthquakes, including large oversteps and combinations of
discrete and distributed deformation. Reverse faults pose a severe threat to several highly
populous megalopolises, including Los Angeles, Taipei, and Teheran, and greater research
will have great relevance for planners and engineers in these vast urban landscapes.

2.3. Thermal Infrared (TIR) Data

Geodynamic activity may produce mounting tectonic pressure in crustal layers, which
manifests in changes to the thermal regime prior to an earthquake. Refs. [7,52,53] all
confirm escalations in temperature a few hours prior to an earthquake, by as much as
10 degrees around the epicenter. Some authors have also suggested that similar anomalous
tectonic activity can last up to several weeks after the main shock and may be identified
by thermal measurements. If these changes are possible to identify, they will enable us
to determine future likely earthquake activities and give key information on earthquake
risk. The monitoring of seismic activity via thermal remote sensing has become a standard
technique. The capacity to measure the surface emissivity of regions with high seismic
activity on a regular or even continuous basis offers the potential for a standardized
approach for analyzing pre-earthquake geodynamic activity and monitor risk [7]. Land
surface temperatures (LSTs) can be determined by a range of thermal sensors that include
the Advanced Very-High-Resolution Radiometer (AVHRR) aboard the National Oceanic
and Atmospheric Administration (NOAA), the Multi-spectral Visible and Infrared Scan
Radiometer (MVISR) on the Feng Yun (FY) Chinese series of satellites, the Moderate-
Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites,
and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) also
aboard the Terra. The first detection of enhanced TIR anomalies preceding an earthquake
occurred in the 1980s [54,55]. Paralleling the increasing usage of thermal monitoring of
geodynamic activities and subsequent anomalies, an extensive literature on the use of
various machine learning techniques and methods for processing thermal remote sensing
data has appeared. Ref. [56] assessed the capability of thermal remote sensing to determine
active geological faults. Refs. [57,58] trained a time series of surface temperatures in an
artificial neural network, while [59] reviewed significant LST precursory remote sensing
studies published between 2000 and 2015.

2.4. Optical Data
2.4.1. Passive Microwave

Energy values registered by passive microwave sensors are (1) atmospheric emis-
sions (2), surface emissions (3), surface-reflected, or (4) subsurface-transmitted. Compared
to the wavelengths of other parts of the electromagnetic spectrum, the length of microwaves
is exceeded only by the length of radio waves and, therefore, the energy they release is
relatively small [60,61]. As described in the “Thermal infrared” section, while TIR has
been used extensively in measuring temperature variations, recently, with the advent of
various passive microwave remote sensing satellites, microwave brightness temperature
(MBT) images have also been used successfully to detect seismic anomalies [61,62]. The
implication is that an additional range of electromagnetic frequencies has been harnessed to
measure temperature, and both infrared and passive microwave remote sensing is capable
of detecting temperature anomalies. For example, [63,64] proposed an anomaly index
algorithm based on a conceptual approach for determining temperature differences be-
tween adjacent pixels. The performance of the algorithm in monitoring seismic anomalies
was tested and validated for several events, including the 2004 Morocco earthquake and
the 2008 Wenchuan earthquake, using 18.7 GHz MBT data obtained with the Advanced
Microwave Scanning Radiometer for EOS (AMSR-E), and both studies showed significant
anomalies near the epicenters.

Standard variations in the force of the gravitational field impacting the Earth’s surface
are primarily due to the fact that the constituency of the mass of the planet is neither
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homogenous nor evenly distributed. Inversely, the slightest localized fluctuations in the
tectonic plates and internal density produce measurable changes in the gravitational forces
that act on the surface. During an earthquake, major movements of rock, kilometers
below the surface, can be similarly measured on the surface. Measuring the changes in
gravity supports predicting earthquake occurrences and will be described in greater detail
in the “pre-earthquake” section. Recently, “gravity satellites”, such as the Challenging
Mini-Satellite Payload (CHAMP) launched by Germany in 2000, the Gravity Recovery
and Climate Experiment (GRACE) launched in 2002 as a joint US–German project, and
the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) introduced by
the European Space Agency in 2009, provided the first means of measuring changes in
global mass based on changes in gravity data, which have been employed in earthquake
prediction research. This was accomplished through measuring changes in the distances
between the satellites and their velocities using the K-band microwave ranging (KBR)
system integral to each satellite. Minor variations in the distances and velocities reflect the
changes in Earth’s gravitational field [65].

2.4.2. Active Microwave
RADAR Data

Several studies examined the use of Radio Detection and Ranging (RADAR) data in the
detection of active geological faults. An early application of radar images for this purpose
was the study by [66]. Studies by [67,68] emphasized the successful implementation of
Synthetic Aperture Radar (SAR) data for the spotting of lineament lines, namely landscape
features that reflect underlying faults and fractures. Ground movement, for example, is also
one of the key topics in earthquake studies and may be due to pre-seismic, coseismic, and
post-seismic deformations [69]. Earthquake geophysical parameters, such as the location
of the main shock, seismic moment, geometry of the fault, ground deformations, and
aseismic slip, also known as fault or surface creep [70], are important for reliable seismic
hazard assessment and large-scale tectonic studies. All these parameters can be measured
accurately using the Interferometric Synthetic Aperture Radar (InSAR) technique. InSAR
uses two images taken at different times for a particular locality and interprets them
through output maps called interferograms that show the ground surface displacement
during the time period.

Since InSAR was initially applied to measure the coseismic strain after the 1992
California earthquake [71], the use of the technique in earthquake-related studies has
increased significantly [72]. InSAR data can provide very-high-spatial-resolution (up to
10 m) measurements of coseismic ground displacements in the Earth’s crust (less than
50 km) of moderate magnitude (Mw 5+), just limiting observations of the largest subduction
zone events that usually lead to significant (more than 1 cm) deformations of the coastline.
The parameters of amplitude and phase are fundamental to the InSAR technique. The
major physical terrain parameters, such as slope and surface roughness, are computed
and integrated through the amplitude images, while the phase images record data relating
to the distance between the satellite and the surface site. Due to its high sensitivity to
heterogeneity in phase measurements, InSAR data can map the smallest displacements
along geological faults [73] and, thus, identify previously unmapped fault sites caused by
earthquakes [74].

Since 2000, Differential Interferometric Synthetic Aperture Radar (D-InSAR) has been
used to monitor deformations with centimeter accuracy [75]. However, despite the success-
ful use of D-InSAR in many scientific seismological applications, it has limitations related
to geometrical and temporal decorrelation, as well as atmospheric interferences [76]. The
above-mentioned issues can be solved by using Persistent Scatterer Interferometry (PSI),
a tool for analyzing high-quality phase information of coherent targets, in conjunction
with InSAR analysis [77]. Persistent Scatterer Synthetic Aperture Radar Interferometry
(PS-InSAR) is an applied time-series technique for monitoring coseismic deformations with
millimeter measurement accuracy, offsetting the limitations of D-InSAR [10]. Field studies



Remote Sens. 2023, 15, 1939 7 of 32

using multiple data sources, including InSAR, GNSS, and field-observed seismological mea-
surements, revealed the multilevel geological features of the Mw 7.8 Kaikōura earthquake
that occurred on the South Island of New Zealand in 2016. The analysis, which involved
the use of both Sentinel and ALOS-2, confirmed that the earthquake was the most complex
ever studied, with 25 known faults rupturing in a single earthquake event [78]. The output
coherence losses showed large phase gradients in the nearfield, major landslides, and land
surface changes.

LiDAR Data

Light Detection and Ranging uses pulsed-laser light emissions to measure distances to
Earth. Three-dimensional LiDAR data provided can be used in earthquake vulnerability or
damage assessments and, hence, play a role in earthquake disaster management. Through
scientific management techniques, including fault detection and the mapping of tectonic
features, the significant costs of post-earthquake repair and redevelopment can be most
effectively apportioned. Ref. [79] used LiDAR data recorded before and after the Mw
6.9 Chuetsu-oki earthquake in Nigata, Japan, in 2007, to acquire detailed information
about building damage by overlapping images and comparing the heights of buildings
in pre- and post-disaster phases. Ref. [80] showed the effectiveness of airborne LiDAR
DEM in mapping and differentiating aspects of the complex tectonic geomorphology of
the Meilongshan Fault in the densely forested areas of southern Taiwan. Ref. [81] used
terrestrial LiDAR DEM to construct a post-disaster building damage model using data
from the Yushu, China, and Port-au-Prince, Haiti, earthquakes that both occurred in 2010.
Ref. [82] combined DInSAR and LiDAR to create a robust 3D coseismic displacement map
for the Mw 6.9 earthquake that occurred in Fukushima, Japan in 2011. Liquefaction takes
place when soil under earthquake conditions loses its properties of traction and behaves as
a liquid. LiDAR is also widely used for liquefaction analysis. Ref. [83] utilized LiDAR data
to extract the surface deformations and then detected the subsidence due to liquefaction
by subtracting vertical displacements for the Christchurch sequence of seismic events in
2010 and 2011. Ref. [84] applied LiDAR data to derive the subsidence-related numerical
information caused by the Mw 9.0 Tohoku-Oki earthquake in Urasayu, Japan, in 2011 and
its impact on the sewerage system pipelines.

2.5. GNSS

GNSS technology is used in seismology for ionosphere sounding studies [85,86] and
for ground motion detection. Earth movements cause waves to travel through the atmo-
spheric layers right up to the ionosphere where they can be detected as disturbances by
global navigation systems such as GNSS. High-frequency GNSS data were first used in
seismological monitoring in 1994, when the Japanese Geological Survey Institute intro-
duced an array of 949 observation points to analyze crustal deformations and coseismic
land movements [87]. GNSS technology was later successfully applied for monitoring
deformation in other earthquakes, such as the Izmit earthquake in Turkey [88]; L’Aquila in
Italy [89]; Garhwal-Kumaun earthquakes in the Himalayas [90]. Ref. [91] showed that the
larger the number of monitoring satellites, the more accurately the locality of a coseismic
ionospheric disturbance can be identified. Researchers also established that GNSS signals in
combination with seismogram data can significantly enhance the quality and completeness
of deformation monitoring data [92,93].

2.6. Data Fusion

Typically, remote sensing technology can only provide observations of the Earth’s
surface from one side. For a more detailed description, observations from different sources
can be combined using a Data Fusion (DF) technique [94]. Thus, using several remote
sensing sources simultaneously and combining the outputs are key aspects in a detailed
and accurate description of the Earth. The complementary nature of optical/SAR/LiDAR
measurements can lead to a more complete description of the measured object (ground
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surface) when these data are considered together. Ref. [95] covered the feature fusion
methods for characterizing an urban area offered by remote sensing data sources and listed
these as: (1) multi-sensor (2) multi-temporal (3) multi-resolution (4) multi-angular, and
(5) model-based feature fusion. Ref. [96] provides a good example of primary data fusion
studies to demonstrate that a combination of optical imaging and SAR data significantly
improved the classification of earthquake damage. The authors also showed that complex
coherence provides higher classification accuracy when integrated with optical imaging.
The single drawback noted is that the increased sensitivity to the spatial base of the
interferometric pair has less effect on the correlation of SAR intensities. The fusion of radar
and optical remote sensing was examined by [97]. The authors combined radar and optical
observations of seismological and field survey data to study focal parameters, coseismic
slope failures, and secondary faults associated with the 7.3 magnitude earthquake in Sarpol-
e Zahab, Iran, in 2017. As a research method, additional analysis of radar and optical data
makes it possible to obtain a more accurate picture of coseismic ground changes occurring
at different spatial scales and improve the spatial characterization of coseismically activated
geological structures.

Ref. [98] provided a framework for disaster relief and necessary reconstruction using
a combination of multi-sensor, multi-temporal, and multi-resolution observational data
as well as multi-scale DEMs. The aim of the research was to develop a system that would
focus on monitoring and analysis during the earthquake and include rescue and insur-
ance activities, in order to provide immediate emergency responses. Ref. [99] investigated
the fusion of multi-geometric radar data. They studied the data fusion of line of sight
(LOS) InSAR measurements from different geometrical viewpoints to detect land defor-
mations. They used Envisat SAR data from the east coast of Australia between June 2006
and September 2010. This database is useful for merging data with several geometrical
features, as many images were recorded in particular areas. The results showed that data
fusion of LOS InSAR measurements from different multiple geometric data provides re-
liable estimates of horizontal and vertical movements. Ref. [100] presented an analysis
of earthquake-induced building damage detection by using multi-source data fusion and
ensemble learning algorithms for rapid damage mapping. SAR images obtained with
ALOS-2 PALSAR-2, Sentinel-1, Sentinel-2, and PlanetScope sensors were used in this study.
The area of multi-sensor and multi-temporal data fusion for remote sensing images is
extremely wide, which makes it difficult to cover it completely in one literature review.

2.7. Time-Series Data

To understand any former changes to the Earth’s surface and to be able to predict
potential change, continuous monitoring is essential. For this purpose, pre- and post-
earthquake time series data provide valuable information. Time-series data analyses were
once the domain of experts in specific fields. However, the availability of open source
tools, algorithms and programming languages and the rapid changes to our planetary
land surface usage particularly in the realm of climate change has resulted in the rapid
development of new forms of time series analyses of observed surface changes in terms
of magnitude, energy release, shaking intensity and earthquake prediction [101]. Further,
time series assist in long-term thermal imaging analysis used for earthquake hazard mon-
itoring [102], of pre-earthquake anomalies, identifying the post-earthquake ionospheric
disturbances and earthquake-induced deformations.

Ref. [103] stated that while InSAR data contain valuable ground displacement infor-
mation, they include several unwanted signals, including noise related to ionospheric and
atmospheric delays, orbital tilts, and topographic phase errors. These errors can be resolved
up to a point by applying time series to the InSAR data. This statement has been confirmed
by other researchers such as [104]. It has been established that reconstructed coseismic
fields provide greater comprehensive and seismologically consistent results in earthquake
modeling compared to single coseismic interferograms. Thus, it is fair to summarize that
time-series methods provide an additional dimension of precision in monitoring over a
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longer-term event in order to gain greater understanding and control of the nature of
earthquakes.

According to the USGS, China is the most earthquake-prone country in the world.
Between 1900 and 2020, more than 800 seismic events (magnitude of Mw 6 or higher) were
recorded there. Indonesia is ranked as the second-most seismically active country. Since
1900, Indonesia has experienced more than 150 events between magnitudes Mw 7 and 8
and 11 earthquakes of a magnitude exceeding Mw 8. Annually, Iran is exposed to about
250 events of Mw 4.0 to 4.9 magnitude, 25 earthquakes between Mw 5.0 and 5.9, and up to
3 with magnitude Mw 7.0 to 7.9, placing the country in third place globally. Japan, Chile,
Mexico, India, Italy, Turkey, and Greece form the remainder of the top ten countries most
prone to seismic activity, having all experienced at least a dozen major earthquakes since
1900. Hence, in this paper, the literature reviewed mainly considered these ten countries.
Studies were selected by examining peer-reviewed journals and conference proceedings
between 2000 and 2021.

Many techniques and methods have been used to study earthquake phenomena.
Through the development of modern techniques, there has been increasing interest in
earthquakes over the last decade. Figure 2 illustrates the number of earthquake-related
studies conducted in the period of 2010–2021. Firstly, all earthquake-related studies were
found on Scopus and Web of Science databases and included coverage of the geodetic
techniques for earthquake study, such as GNSS, seismological methods, including borehole
and ground geophysics, geological approaches considering geomorphology and structural
geology, and all techniques related to remote sensing. The final stage of selection included
only those that incorporated remote sensing technologies.
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Japan and China are among the major nations that, in addition to geodetic, seismo-
logical, and geological techniques, have paid increased attention to remote sensing in
earthquake studies. On average, remote sensing accounts for about ten percent of the total
techniques used. However, the analysis of annual publications (Figure 3) revealed the
growing linear trend for all countries in using remote sensing, underlining its potential for
the future.
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3. The Role of Remote Sensing at Different Stages of an Earthquake

This section discusses the application of geospatial approaches before and after an
earthquake. Specific events occur during the different phases of an earthquake. For example,
surface deformations are usually divided into three stages—pre-seismic, coseismic, and
post-seismic—in the seismic cycle. Coseismic movements occur up to tens of meters
from the fault line while pre-seismic motion appears in the order of centimeters. Crustal
deformations in the post-seismic stage are commonly measured in centimeters, though
earthquake-induced landslides can be detected up to a few meters. Different geospatial
techniques are used to measure each of these stages.

3.1. Pre-Earthquake Studies

Although intensive research and interdisciplinary efforts have been applied to earth-
quake prediction, the accuracy of early warning systems is still limited [105]. A series of
studies indicated that the actual earthquake is usually accompanied by various anoma-
lies, including stress; seismic activity [106]; crustal deformations; thermal changes in land
surfaces [107]; air temperature variations [108]; electric [109] and magnetic field distur-
bances [110]; changes in underground water levels [111]; unusual animal behavior [112];
ionospheric signals [113]; and emissions of gas [114], such as radon (Rn) and carbon diox-
ide (CO2). These anomalies are deemed earthquake precursors. An earthquake can be
predicted by monitoring, tracking, and observing several precursors [115]. According to
the International Association of Seismology and Physics of the Earth’s Interior (IASPEI),
earthquake precursors constitute measurable changes in the properties or characteristics of
phenomena observed in the environment before the main seismic event [116].

The formation of an earthquake starts with strain accumulation in the rocks, fol-
lowed by the concentration of stress, rock mass fracture, and, finally, the occurrence of the
earthquake itself [117], implying that strain and stress are key fundamental precursors of
earthquakes. This approach was applied in predicting the 1975 Haicheng, China, earth-
quake [118]. Since the 1960s, numerous countries have established dedicated earthquake
precursor networks, for example, groundwater observation networks, crustal deformation
monitoring networks, as well as geoelectric, geomagnetic, and gravity observation mon-
itoring systems. However, due to the complex distribution of stresses and the dynamic
movement of energy in the Earth’s crust, the existing methods of RS do not yet extend to
the determination of the time, location, and magnitude of an earthquake [119].
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Geospatial technologies have been increasingly used in predicting earthquakes. Due
to possibilities of longer-term observations, a broad range of energy sources, as well as
various types of signals, remote sensing techniques, facilitate the acquiring of accurate
spatial and temporal information about changes associated with an earthquake. RS can
also effectively manage the limitations of fixed stations. These capacities provide insights
into the patterns of occurrence and dynamical development of an earthquake. All pre-
earthquake indicators can be easily measured by RS, and these indicators include crustal
deformation monitoring and measurements of surface temperature variations [59], gas
(CH4, CO, CO2, HCl, H2S, O3, SO2,) and aerosol exhalations, ionospheric electromagnetic
disturbances [102], as well as electromagnetic, hydrodynamic, and gravitational fields
preceding the earthquake. RS-based pre-earthquake predictions can be classified and
conveniently classified according to the anomaly or precursor monitored [105], including:
(1) thermal anomaly, (2) electromagnetic signal anomaly, (3) gravitational anomaly, and
(4) continuous crustal deformations.

3.1.1. Thermal Anomaly Studies

Overall, studies have reported increases in land surface temperature (LST) in a range
of 3–5 ◦C and 1–30 days prior to the earthquake [102]. In regions indicating LST anoma-
lies, both the coverage zone and the rise in temperature are positively correlated with the
magnitude of an earthquake. Outgoing longwave radiation (OLR) anomalies can usually
be observed 1–3 months prior to an earthquake above the geological fault locality. The
surface latent heat flux (SLHF) reflects the heat transfer from the ground to the atmosphere,
typically occurring 2–14 days prior to an earthquake. In addition, it has been observed
that SLHF anomalies are more prominent during coastal earthquakes. Since RS techniques
are frequently combined with GIS in climate change studies, GIS can also be adapted for
LST detection [120]. The radiometric surface temperature can be determined from satellite
measurements on the infrared spectrum or microwave wavelengths on the electromag-
netic spectrum. Due to the greater range of surface emissivity alterations, uncertainties in
microwave recovery can be higher compared to thermal infrared (TIR) recoveries of LST,
which manifest a stronger correlation between radiance and temperature. However, TIR
measurements demonstrate greater sensitivity to cloud contamination than microwave
measurements. Hence, the need for cloud detection may restrict the spatial and temporal
sampling of TIR observations. Comparisons of TIR and microwave temperature measure-
ments are not possible, irrespective of whether they have the same spatial coverage. The
reason for this is because TIR LST is derived from a thin upper layer of a few micrometers
(up to 50 µm) on the surface, while microwave radiation derives from deeper layers (1 mm)
and is dependent on soil moisture. Applying TIR to measure temperature was briefly
explained in the “Thermal infrared data” section, and the most popular TIR sensors, such
as NOAA and MODIS, were introduced. It should be noted that the passive microwave
radiometer, Special Sensor Microwave Imager (SSM/I), aboard the United States Defense
Meteorological Satellite Program (DMSP) is cloud-penetrated and, thus, can be used under
all weather conditions for detecting thermal emissions.

LST can be detected with thermal sensors and by using various algorithms, such as
split-window (SW), dual-angle (DA), or single-channel (SC). The most significant anomaly
was observed during the Mw 7.2 Gazli, Uzbekistan, earthquake in 1984. Ref. [121] examined
outgoing long-wave radiation (OLR), LST, and air temperature (AT) data taken from
thermal remote sensing images to study temporal variations in LST before and after three
strong earthquakes in the Vrancea, Romania, region area (Mw = 7.4, 1977; Mw = 7.1, 1986;
Mw = 6.9, 30 May 1990) and a moderate earthquake Mw = 5.9, 2004. The researchers assigned
the spatio-temporal anomalies to the mechanism of energy exchange in the preparatory
events preceding an earthquake. Ref. [122] applied different statistical techniques to thermal
data and calculated the thresholds of surface latent heat flux for several earthquakes in a
number of regions that exhibited different tectonic settings. Ref. [123] implemented the
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Robust Satellite Technique (RST) to determine thermal anomalies over a 10-year period
using satellite data obtained from MODIS-Aqua.

The temperature curves obtained from the wave of earthquakes recorded in Iran
from February to March 2005 showed clear fluctuations just before an earthquake and
disappeared after it. Ref. [124] studied satellite-based surface temperature variations in
the Mw 7.6 Kashmir, Mw 6.4 Ziarat, and Mw 7.2 Dalbandin earthquakes. Calculated LST
showed major temperature changes in ranges of 6.5–7.9 ◦C, 8.0–8.1 ◦C, and 2.7–5.4 ◦C, for
each event, respectively.

3.1.2. Electromagnetic Signal Anomaly Studies

The electromagnetic field is closely related to earthquakes [125]. Time series con-
ducted over years at Lake Baikal, Siberia, indicates that Earth’s pulse electromagnetic fields
(EPEMFs) are mainly terrestrial in origin. Since anomalies of this order of electromag-
netic wave can be detected several days before an earthquake, this method is suitable
for short-term earthquake prediction studies. During this period, the number of pulses
tends to increase sharply and then subsequently decrease [126]. The number of pulses
shows positive correlations with the time of year, magnitude of the earthquake, and fre-
quency of its occurrence. The seismic magnetic and electric field anomalies preceding major
earthquakes have been confirmed by many historical earthquakes and detected by both
ground and satellite methods [127]. As an example, China maintains a unique database
with nearly 50 years of continuous electromagnetic observations of value to a wide range
of geoscientists [128]. A remote electromagnetic network was established in China due to
its importance in earthquake prediction studies.

The Mw 9.2 Great Alaskan earthquake of 1964 remains the second most powerful in
recorded history and set up a massive series of ionospheric disturbances [129]. Since then,
non-standard electromagnetic fluctuations have been associated with earthquakes. The
Russian Interkosmos-19 satellite recorded abnormal very-low-frequency (VLF) (3–30 kHz)
electromagnetic signal measurements just hours before an Mw 5.7 earthquake occurred in
Jiangsu province on 9 July 1979. This qualifies as the first monitoring of earthquake seismic
signals using remote sensing [130]. In a study of the Mw 6.8 Spitak earthquake that occurred
in Armenia in 1988, leaving at least 25,000 dead and 130,000 injured, [131] reported that the
Cosmos-1809 satellite detected electromagnetic radiations with a frequency below 450 Hz.
Ref. [132] found that low-frequency (LF) (0.1–16 kHz) radio wave emissions increase in
intensity when the satellite moves closer to the epicenter of the seismic region, while a
significant increase in ELF and VLF emissions occurred at frequencies of 800 and 4650 Hz
in the interval from 8 to 3 h after each event. According to [133], the National Space
Development Agency of Japan (NASDA) and the associated natural sciences research
institute (RIKEN) researched the effectiveness of using electromagnetic phenomena in
short-term earthquake prediction. Their five-year study showed that seismic features are
manifested not only in the lithosphere but also in the atmosphere and ionosphere. At
present, ionospheric electromagnetic studies related to earthquakes are used extensively.
Stable statistical estimates of the ionosphere–lithosphere relationship have been established,
and several new ionospheric satellites have recently been launched. Ref. [134] summarized
the main research findings from measurements of ultra-low-frequency plasma measured
by DEMETER prior to the Wenchuan earthquake. As mentioned earlier, DEMETER was the
first space-based platform to study ionospheric perturbations caused by earthquakes [29].

The Swarm mission, launched in 2013, was a combination of three similar satellites:
Alpha (A), Bravo (B), and Charlie (C) [135]. These satellites include special magnetic and
plasma sensors to measure the strength, intensity, and direction of the magnetic field.
To date, several scientific studies [136–139] have investigated plasma and magnetic field
parameters associated with the time and location of large seismic events using Swarm data,
thus providing strong evidence for a correlation between ionospheric disturbances and
earthquake occurrence. One of the challenges relates to the requirement of algorithms
and methods that can evaluate the anomalies. For instance, the forecasting patterns of
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Earth electromagnetic signal before a strong earthquake were studied by [140]. The authors
proposed a successful model for predicting the main intensity trend from the signal of
Earth’s electromagnetic field. That was a recent achievement, which effectively reduced
the forecasting error compared to the traditional models and became a hope for further
electromagnetic anomaly monitoring prior to the earthquake.

3.1.3. Crustal Deformation Studies

Tectonic plates are always in continuous movement, and this slow relative motion
causes such deformations of the earth’s crust as subsidence, crustal creeping, uplifts,
etc. [141]. Tectonic-related ground and crustal deformations can be accurately documented
by various geodetic tools, including leveling or laser ranging [127]. However, these tradi-
tional ground-based measuring instruments are both time- and labor-resource-consuming,
and they are not always suitable for large-area and repeated observations. In contrast, such
modern space technologies as SAR and GNSS make it possible to determine horizontal
and vertical changes simultaneously and produce measurements in a range of minutes to
several days.

The millimeter accuracy of measurements made by SAR systems as well as multi-
time analysis techniques have provided excellent images of pre-seismic surface displace-
ments [142]. SAR has been widely used in earthquake prediction research since the 1990s.
Prior to this, coseismic deformations were determined by comparing and analyzing high-
precision DEM data from two separate InSAR images taken before and after an earth-
quake [71]. However, the regular use of InSAR is limited due to temporal and geometrical
decorrelation, as well as due to atmospheric disturbances [143]. Nevertheless, the latest
developments in InSAR technology have brought new insights to the study of earthquakes.
Ref. [142] applied the multi-temporal PS-InSAR technique to detect pre-seismic ground
movements in the region of the Mw 6.3 L’Aquila, Italy, earthquake in 2009. They used
ERS and ENVISAT PS datasets spanning 20 years and confirmed the presence of a 5-year
coseismic uplift followed by subsidence in the study area, which is a precursor signal for
an earthquake.

Like SAR, the Global Positioning System (GPS) has also been widely used for de-
formation measurements for many years. Since 2004, this observation technology has
greatly assisted many seismic exploration activities [144]. GPS takes precedence over other
surveying methods in terms of high accuracy of measurements, continuous data collection
capability, and weather independence, providing new technical means to monitor surface
deformations. Ref. [145] used GPS to determine the pre-seismic deformation model in Tai-
wan. Their study showed that short-term crustal displacements can be used as an indicator
of pre-seismic displacements. Current GPS uses a 30 s data acquisition frequency to resolve
single-day coordinates, which provide a means for describing the advancing movement of
crustal deformations prior to an earthquake. With the developments in satellite hardware
technology, the accuracy of high-frequency GPS has been greatly improved. Refs. [92,93]
demonstrated that the use of GPS technology for earthquake prediction yields good results
and can be expanded through a combination with other methods.

3.1.4. Gravity Anomaly Studies

Abnormal gravitational field behavior in the form of alternating changes in positive
and negative gravity can be detected as much as 2 years prior to the commencement of
seismic activity. During the active seismic phase, the internal stresses and strains exerted
on the crust impact measurably on the gravitational field. Hence, changes arising from
gravitational monitoring of the field can be effectively used to describe the underlying
tectonic setting and define potentially hazardous seismic zones, as well as providing
a basis for longer-term earthquake predictions [65]. However, predictions in this case
are often limited by the irregularity in the distribution of satellite observation stations,
relative length of the data acquisition period, and the slow-moving process of database
updating [105]. The modern equipment of gravity satellites makes it possible to obtain
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global coverage data, high precision, and resolution of measurements, providing new
opportunities for monitoring gravity field anomalies. The Gravity Recovery and Climate
Experiment (GRACE) twin satellites launched in 2002 provide global gravity data updates
every 7 to 30 days [146]. GRACE data were applied by [147] in measurements of pre-
seismic gravitational changes associated with the Mw 9.1 Sumatra–Andaman, Indonesia,
earthquake and associated tsunami of 26 December 2004 that cost almost a quarter of a
million lives.

Ref. [65] presented time-series studies of three massive earthquakes, namely, Chile
(27 February 2010), Tohuku-Oki (11 March 2011), and Indian Ocean (11 April 2012), that
weekly gravity solutions from GRACE satellite data produced striking anomalies near the
epicenter of each of these earthquakes several weeks before their occurrence. Other studies
have confirmed the value of the GRACE time-series data in the Mw 8.8 Chilean earthquake
of 2010 [148] and the 2004 Sumatra–Andaman and 2011 Tohoku-Oki earthquakes [147,149].
Ref. [150] adopted GRACE gravity data to determine the seismic changes at a higher level
of spatial resolution using a Gaussian filter algorithm to separate signals from noise and
applying a differential method to calculate spatial distributions of gravitational variations.

The summary and the main findings of this section are:

• Thermal remote sensing is one of the most frequently used techniques in pre-seismic
monitoring;

• Remote sensing of electromagnetic pulse and variations in their patterns requires a
complex mechanism with high-precision control performance;

• InSAR and GNSS enable the measurement of pre-seismic movements of deformation,
producing meaningful results;

• Remote sensing of gravitational field anomalies remains a lesser-used tool due to the
difficulties in detecting and isolating gravitational field anomalies.

3.2. Post-Earthquake Studies

Geospatial technologies also have several applications and offer advantages after
the earthquake. Recent advances in geoinformatics offer new possibilities for earthquake
emergency management [31]. Post-earthquake matters require significant attention to be
paid to rescue and relief activities, damage assessments, land deformations, etc.

In the previous sections, the most up-to-date techniques for detecting land deforma-
tions, such as InSAR and GNSS, were discussed. Horizontal and vertical deformations
ranging from tens of centimeters to several meters can be reliably detected after the im-
pact. In addition to the techniques mentioned, Web GIS platforms now play a key role in
real-time deformation mapping. For example, [151] integrated coseismic deformation data
accessed from the United States Geological Survey National Earthquake Information Cen-
ter (USGS-NEIC) into a Web GIS platform, called QuickDeform, and applied it to several
large-magnitude earthquakes. Their study has shown that the framework works robustly
and automatically generates the seismic deformation map within several minutes after the
occurrence of an earthquake, thus providing an immediate basis for a reconstruction plan.

The following sections are assigned to rescue action and damage assessment based on
geospatial techniques.

3.2.1. Post-Earthquake Rescue and Relief Activities

InSAR is invaluable not only for deformation monitoring but also to provide more
accurate information regarding the trail of destruction of major earthquakes, in comparison
with more easily accessible geodetic methods, thus providing a more refined and acute
response to emergency situations [152]. Together with detailed demographic spatial infor-
mation, InSAR satellite data can provide critical assistance to search-and-rescue teams and
their respective management. Until 2014, the foremost limitation in converting geodetic
data into an operative earthquake response was the low frequency of SAR data collection.
In addition to frequency issues, another disadvantage of SAR was its revision period—
post-seismic imaging could take up to weeks after an earthquake. Hence, SAR made a
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limited contribution to seismic response; however, since the most recent generation of SAR
satellites, this has changed. The research of [152] is regarded as having contributed in
advancing the use of SAR in earthquake emergency operations through their development
of the Sentinel-1 SAR-Based Coseismic Deformation Monitoring Service to support relief in
near real time.

Web-based geospatial platforms play a vital role in disaster relief efforts. This online
GIS technology allows one to access geospatial information through web browsers [153]. It
assists not only in rescue operations but also in the risk assessment and decision-making
phases. Ref. [154] created an online GIS decision support platform to help experts evaluate
and select from alternative risk management strategies. Ref. [155] demonstrated the role
of Web GIS in developing an appropriate disaster management strategy. Using online-
GIS platforms, geospatial information on the location of buildings, hospitals, fire stations,
shelters, road grids, and population data can be displayed in real time, which was not
possible prior to the advent of these technologies.

Returning to the formulation of rescue strategies, when an earthquake occurs in an
urban area, decision makers and rescuers should draw the right conclusions within the first
hours or even minutes. For this, the QuickDeform platform, which was specially developed
for immediate detection of post-earthquake deformations, can also be used as a volun-
teered geographic information base for crowdsourcing disaster data, providing support for
rescue and model validation. Immediate and open access to location information and the
spatial details of natural disasters emphasize the importance of volunteered geographic
information (VGI) in all stages of disaster management, including mitigation, preparation,
response, and recovery. Thus, the practice of civil participation in the generation of online
geospatial data points to new horizons in the development of disaster-related data. It also
allows for the rapid exchange of geographic information at minimal cost compared to other
traditional data collection methods, although this will provide additional data assembly
and management challenges [156].

Earthquakes and related events, such as tsunamis, fires, oil liquefaction, flooding, and
landslides, pose serious risks to road infrastructure. Recently, [157] proposed a Web GIS
Decision Support System called CIPCast DSS, which supports the management of highway
networks affected by earthquake damage in Italy and other European nations. Their goal
was to establish the fastest response to such damaged areas.

3.2.2. Damage Assessment

The earthquake response stage consists of activities carried out during or immediately
after the event to provide emergency assistance to victims [38]. In urban planning, the
effective support of disaster risk management, mitigation, and reduction requires the use
of a wealth of geospatial information, the handling of which has become one of the main
challenges in this field [155]. Nevertheless, geospatial technology is certain to become an
integral part of the earthquake response phase and rescue operations. In the Mw 6.6 Niigata
Chuetsu-Oki earthquake in Japan in 2007, the high-resolution satellite imagery taken after
the event was successfully overlaid onto Google Earth images. It is expected that this
program and potential successors will play an important role in post-earthquake activities
in the future [23]. The trend toward open access satellite data and freely accessible geodetic
platforms facilitates the use of the imagery in seismic responses almost immediately after
an earthquake [158].

Remote sensing data found its wide application in monitoring and earthquake-induced
damage assessment studies. Building damage is considered to be one of the most destruc-
tive occasions caused by an earthquake. Visual interpretation of very-high-resolution
images has been addressed since the first images were made available [159]. One of the
first examples is related to the 2003 Boumerdes earthquake that occurred in Algeria [160],
where several researchers argued about the use of the EMS damage scale to address the
damage detection.

Ref. [159] summarized the methods of establishing earthquake damage as follows:
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• An interpretation technique applied to a dataset after an earthquake;
• Change detection using pre- and post-earthquake images with the same sensor type

and measurement geometry;
• A change detection method using pre- and post-seismic data from different sensor

types;
• Data fusion with already-existing pre-seismic GIS layers and new in situ information

(e.g., from seismic sensors).

Radar remote sensing data are extensively used in building damage applications.
Ref. [161] compared PALSAR and TerraSAR-X observations for structural damage assess-
ment in urban areas after an earthquake. PALSAR was found to be efficient for secondary
geological disaster detection, while TerraSAR-X was shown to be better suited to building
damage estimation in urban areas due to its higher-resolution imaging. Ref. [162] used SAR
and optical imagery to assess and monitor damaged urban areas in the aftermath of the
Mw 8.0 Great Wenchuan earthquake of 2008. Ref. [96] applied a fusion of optical and radar
data to the Mw 7.6 Izmit, Turkey, earthquake of 1999 and Mw 6.6 Bam, Iran, earthquake of
2003, and concluded that SAR alone generated 70% optical imagery alone 82%, and their
fusion generated 89% correct classifications.

Optical imagery can also be used to assess individual building damage. Refs. [163,164]
used high-resolution optical images for building damage recognition following the Mw 6.3
L’Aquilla earthquake in Italy in 2009. Deep Learning (DL) is a machine learning method that
supports the automatic extraction and precise computation of feature representations [165].
Refs. [166,167] used DL with pairs of high-resolution pre- and post-earthquake optical
images to identify building damage. However, as [168,169] demonstrated, it is possible to
use only one post-event image and extract the damage in DL.

The use of LiDAR to recognize damage to buildings has been studied by several
researchers. Ref. [170] proposed an automatic building damage detection system based on
LiDAR data. Research by [171] introduced an algorithm that enables the use of only post-
earthquake LiDAR data to derive the degree of damage. Ref. [172] proposed a methodology
for building damage assessment based on machine learning techniques combined with high-
resolution satellite imagery and LiDAR measurements. Ref. [173] used a combination of
LiDAR with satellite images to detect building damage in the post-seismic stage, while [174]
combined LiDAR with VHR, and [175] used both LiDAR and SAR for building damage
estimation.

Certain techniques and methods for extracting information from satellite images play
a significant role. Data analysis (pixel-based or object-based approaches) is usually car-
ried out using preprocessed and geometrically adjusted data and comprises classification,
segmentation, geometric, and spectral information extraction, data selection, and aggrega-
tion [159]. Feature extraction techniques include spatial analysis, detection of changes, and
the fusion of multiple data sources with GIS layers.

Ref. [176] demonstrated a segmentation technique in which the main goal was to locate
and extract the damage to specific buildings that followed an earthquake from VHR aerial
photographs, with an assumption that their shape and dimension were already saved as a
GIS layer. A comparison of the original and detected post-event shapes produced a reliable
classification between the seismically affected and undamaged structures. This process
differs from other building damage studies in that it extracts information on damage by
inference, in contrast with extracting damage by direct classification.

Ref. [177] created a post-earthquake map, following the Mw 7.4 Palu City, Indonesia,
earthquake of 2018, which caused the loss of 2100 lives and damage to 70,000 buildings,
using Artificial Neural Networks (ANNs) and Support Vector Machine (SVM), together
with Landsat-8 and Sentinel-2 satellite image data. While the ANN and SVM methods
yielded very similar results, the Landsat images produced 86% conformity and Sentinel
only 64%. Several further methods of improving damage detection from satellite images
were covered in the literature. Ref. [81] proposed a novel method based on multiscale
adaptive feature fusion, which detects damage using textual heterogeneity. Ref. [178]
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refined the existing You Only Look Once, version 3 (YOLOv3) object detection method and
was successfully applied to collapsed building detection.

Several recent studies implemented a combination of the multiscale segmentation
method with a class of neural network called Convolutional Neural Networks (e.g., [179]),
some explored segment-by-segment comparison techniques (e.g., [180]), some dealt with
DL (e.g., [181]), some studies showed the integration of super-pixel segmentation based on
deep learning techniques (e.g., [182]), some used automatic detection (e.g., [183]), and some
used machine learning techniques [184]. Ref. [49] proposed a multitemporal coherence
analysis and [100] examined ensemble learning classifiers.

In addition to damaged residential dwellings, historical buildings are also very signifi-
cant. Numerous contributions have been made on the monitoring of heritage buildings
and monuments. Ref. [185] used terrestrial LiDAR to assess the amount of deformation
endangering the Walls of Istanbul (constructed ca. 413 AD) in Turkey. A similar study was
conducted by [186], in which terrestrial laser scanning images were used to identify cracks
caused by an earthquake. In [187], in situ measurements were combined with InSAR data
for the monitoring of historical monuments in Italy.

4. The Application of RS in Earthquake Analysis

To ensure seismic resistance in urban settlements, two key issues need to be addressed:
firstly, there is a need to develop a pre-seismic hazard mitigation program, and secondly, it
is necessary to form plans on post-seismic event decision making, both of which are aimed
at a reduction in potential economic losses [188]. This section qualifies as both pre- and
post-earthquake activities, typically covering modelling pre-event loss forecasts for various
urban areas, which are used in emergency planning.

Earthquake modelling and analysis include many techniques. The primary focus of
this review section is to explain hazard, vulnerability, and risk assessment implementa-
tion geospatially. Earthquake hazard can be defined as the probability of a potentially
destructive earthquake, characterized as an unavoidable event beyond human control, oc-
curring at a given geographic location over a specific period of time [189,190]. Earthquake
vulnerability is the amount of damage that could result from an earthquake of a given
intensity [191]. Hazard and vulnerability serve as prerequisites for risk analysis and map-
ping [192]. Earthquake risk corresponds to the combination of potential social, economic,
and cultural consequences in the built environment and people due to earthquakes. Hence,
in a place where there are no people or values that can be affected by a natural event, there
is no risk [25]. Although it is not possible to prevent earthquakes and the consequential
disaster, there are preparatory processes that can minimize damage (less vulnerability) to
human-populated localities [193,194].

Given the time efficiency and the accuracy of the data, RS is used as a benchmark for
precise and rapid earthquake hazard assessments, as it takes only a brief time to make a
correct decision shortly after a disaster. Earthquake-prone areas can be easily analyzed
using RS methods and technological advances such as GeoEye-1 to ensure reliable operation
and maximum uptime in earthquake risk and damage assessment [195]. Depending on the
purpose of the analysis, the scale, and the required accuracy, geospatial data can provide
the proper input for modelling. Since many satellites and data sources that can be used to
collect earthquake data have already been discussed, some of the most reliable methods
used in the literature are presented below. In general, these methods can be categorized as
follows:

• Experimental or numerical approaches, such as the Analytic Hierarchy Process (AHP)
and the Analytical Network Process (ANP);

• Individual analytical techniques, such as Artificial Neural Networks (ANNs), Multiple
Logistic Regression (LR), Support Vector Machine (SVM), Ordered Weight Averaging
(OWA), and Random Forest (RF);

• Hybrid approaches, such as the Adaptive Neuro-fuzzy Inference System (ANFIS).
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5. Earthquake Follow-on Disasters

This section focuses on potential natural disasters following an earthquake and the
role of geospatial technology in detecting and recognizing these events. Several studies in
the literature were aimed at the identification and recognition of the secondary effects of
earthquakes through different satellite imagery and interpretation methods. Table 1 lists
some examples of natural disasters triggered by an earthquake.

Table 1. Examples of natural disasters triggered by an earthquake.

Natural
Disasters Brief Description and Consequences RS Data Acquisition System and

Corresponding Reference

Ground shaking

Ground shaking is a disruptive upwards, downwards, and
sideways vibration of the surface during an earthquake.
Effects: structural damage or collapse; may consequently
cause other hazards such as liquefaction or landslides.

InSAR [196]

GPS [197]

QuickBird [198]

IKONOS [199]

SPOT HRV [200]

PALSAR-2 [201]

Ground rupture

Ground rupture can be defined as permanent deformation
which occurs when sudden movement along a fault breaks
the earth’s surface.
Effects: fracturing, cracking, and ground displacement due to
movement of the fault.

ALOS-2 SAR [202]

ALOS-2 InSAR [203]

DInSAR [204]

Sentinel-1 [205]

LiDAR [206]

Liquefaction

Liquefaction is a phenomenon in which sediments at or near
the ground surface lose their strength in response to ground
shaking and behave like liquid.
Effects: liquefaction usually occurs under buildings and other
structures and can cause severe damage during earthquakes.

Landsat-7 [207]

sUAV-based optical
sensor [208]

Airbone LiDAR [209]

GNSS [210]

Landslides

Earthquake-induced landslide is a down slope movement of
rocks, soil, or other debris, usually caused by a strong shaking.
Effects: soil erosion, blocking of roads and railways,
destruction of buildings and other structures.

SPOT-5 [211]

ASTER [212]

QuickBird [213]

IKONOS [214]

PALSAR-2 [215]

Landsat [216]

Tsunamis

Earthquake-induced tsunami manifests itself in the form of a
series of high waves.
Effects: causes severe flooding coastal erosion, drowning, and
property damage.

TerraSAR-X [217]

SAR [218]

Worldview-2 [167]

QuickBird [219]

IKONOS [220]

Flooding

An earthquake can severely damage or break dams. The
water from the river or the reservoir would then flood the
area, damaging buildings, and in the worst case, may wash
away or drown people.

Sentinel-2 [221]

Landsat-2 [222]

SAR [223]

QuickBird [224]

Among the major environmental impacts of earthquakes, landslides and subsidence of
the Earth’s crust are covered by numerous studies. Ref. [225] explored the land subsidence
caused by the 2015 Gorkha earthquake using the SBAS-DInSAR technique applied to
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pre-seismic PALSAR images and post-seismic Sentinel-1 A/B SAR images to calculate the
spatiotemporal displacement before and after the event.

Two earthquakes of Mw 8.1 and Mw 7.1. that occurred in 2017 in the southwest area
of Mexico caused significant subsidence and morphological change [226]. To study the
effects of this subsidence, [227] used four interferometric pairs obtained from the Sentinel-1
radar satellite in IW (Interferometric Wide Swath), TOPS (Terrain Observation by Pro-
gressive Scan), SLC (Single Look Complex) mode. Refs. [228,229] undertook landslide
vulnerability mapping using optical remote sensing combined with SAR/InSAR. Ref. [230]
used a combination of three different satellite images to study the degree of subsidence
caused by an earthquake. Ref. [231] determined the amount of vertical uplift by merging
seismological data with DInSAR measurements. Ref. [232] examined rates of spatial and
temporal distribution of strain due to earthquake sequences. Recently, novel advanced
approaches have been proposed for the detection of landslides caused by earthquakes.
Ref. [233] suggested a new method that facilitates the automatic identification of landslides,
providing fast and efficient information for disaster mitigation. Ref. [234] conducted an
experimental analysis using different machine learning techniques to map landslide sus-
ceptibility accurately. Ref. [235] used GIS-integrated remote sensing data to map landslide
susceptibility by applying frequency ratio and logistic regression methods.

Ref. [234] studied the Ms 7.0 earthquake that struck China on 8 August 2017, triggering
several landslides. The authors compared the performance of three computational models,
namely, random forest (RF), logistic regression (LR), and support vector machine (SVM), to
explore the qualitative characteristics of the distributions of propensity to landslides caused
by an earthquake. Floods and tsunamis are other destructive secondary events following
an earthquake. Ref. [217] identified flooded areas caused by the Tohoku 2011 earthquake
by calculating the backscattering coefficients from TerraSAR-X intensity images.

Ref. [167] also studied the secondary effects of Tohoku 2011, using a U-Net Neural Net-
work based on the Deep Learning technique to produce an earthquake–tsunami damage
map. Refs. [219,220] combined remote sensing data with conventional surveying of inun-
dation depths to classify building damage caused by the great Chilean tsunami. Tsunami
fragility curves were used to classify the degree of damage to buildings and calculated
using IKONOS images derived before and after the great Indian Ocean tsunami.

6. Limitations and Challenges

Although there are many possible uses for geospatial data in earthquake science and
engineering, several challenges limit their wider usage. A review by [159] summarized the
key limitations of using RS for earthquake damage assessment into three categories: the
class of sensor and its orientation according to the area of interest; the capability of spatial
resolution, which determines the size and level of detail of a target that can be detected by
a sensor, both in terms of the degree of damage and in terms of the spatial or geographical
feature; and temporal resolution, since the amount of time needed to revisit the area of
interest provides the level and quantity of information on changes that have occurred.

Other challenges are described in this section. According to the literature, there are
some limitations of geaospatial technology in data capturing. For instance, monitoring of
the lithosphere using geospatial technologies has some limitations. It is still difficult to
observe the tectonic movement and energy changes in the lithosphere directly, due to the
impossibility of reaching such a depth. For this, the use of special equipment makes sense,
such as the Kola Super-Deep Borehole (KSBD), which is the deepest penetration (more than
10,000 km depth) into the Earth’s crust and is located on the Kola Peninsula [236]. Another
limitation is related to capturing weak gravity anomalies. Gravity anomalies, as another
pre-earthquake indicator, can also be influenced by the environment. Gravity anomalies
may have consequences of non-seismic changes, such as after structural construction or
extreme temperatures changes [237]. In addition, recent studies have shown that major
changes in the gravitational field observed from satellites are directly related to large seismic
events [105]. Hence, small seismic events cannot be predicted. GNSS measurements, as
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another example of geospatial data capturing difficulties, are usually influenced by satellite
and receiver clock errors, multipath errors, measurement noise, and satellite ephemeris
errors. In earthquake prediction studies, a high-density GNSS network is required to obtain
accurate data; therefore, this variable could reduce the reliability of the outcomes [238].

Geospatial data capturing challenges can also be seen in seismic damage assessments.
The structural format of sensors and data collection tools limits the application of satellite
data in capturing the full spectrum of damage associated with earthquakes. There are
plenty of data acquisition techniques and methods, such as nadir-looking, side-looking,
and sensor data collection, that directly measure the third dimension, just as LiDAR does.
Aerial and spaceborne nadir-looking sensors (e.g., very-high-resolution optical sensors) can
collect data on the structural state of building roofs and levels of debris in the vicinity but
cannot display damage on the outer walls of the building. Side-view sensors (e.g., optical
oblique photography) are capable of collecting more information and are more suitable for
assessing levels of damage, but they might create difficulties when comparing acquired
data with the ground. In addition, they are also less available, as the only broadly accessible
side-looking spaceborne sensors rely on radar, whose effectiveness in metropolitan areas is
severely hampered by multipath issues.

Environmental and meteorological factors are a further challenge. These adversely
affect the accuracy and validity of geospatial data—inclement weather conditions, hilly
terrain, and dense vegetation substantially reduce the accuracy of data acquired before and
after an earthquake. For example, as mentioned in the pre-earthquake section (Section 3.1),
it is possible to capture electromagnetic anomalies 3–6 days prior to an earthquake. How-
ever, in addition to the fact that electromagnetic fields in the ionosphere are vulnerable
to environmental conditions, waves are also emitted from ground-based VLF, ULF, and
ELF transmitters, radio stations, and also harmonic emissions from power lines. This
phenomenon results in particle perturbation in the ionosphere and emission bands, thus
causing false assumptions about the detection of earthquakes. The troposphere and iono-
sphere might also cause delays in GNSS measurement and affect the accuracy of high
frequencies.

The current inherent characteristics of geospatial technology are another topic. Some
limitations and challenges are related to the nature of geospatial technologies. The issue
of obtaining data in the shortest time and challenges of providing a reliable product to
emergency responders are some of the obvious weaknesses [239]. Distortions in satellite
images (Sun–Earth–Sensor geometry) and their calibration also have an impact on satellite
observations. Each sensor has a different spatial resolution, which also affects the data
content in each image. Some of these issues may be addressed in the future through
innovation and improvements in this area.

Another challenge is related to inherent characteristics of the precursor. Some of these
characteristics provide additional difficulties in terms of detection and interpretation. For
instance, concerning predictions, the only method is observing temperature changes prior
to the event. However, thermal remote sensing data can also be affected by environmental
and meteorological factors, such as thick cloud cover, snowstorms, heavy precipitation,
vegetation layers, landform types, and altitude [56]. As an example, the outgoing longwave
radiation (OLR) from the crust can be used as an earthquake precursor. However, this
radiation is very sensitive to the meteorological parameters of temperature and humidity.
Another earthquake precursor is surface latent heat flux (SLHF), which is strongly affected
by water vapor molecules and the ion composition of the atmospheric aerosol [240].

An example of having both inherent limitations of RS and problems caused by nature
can be seen in monitoring the linear infrastructure deformation [241]. First, when a linear
infrastructure is located in a vegetation coverage area, it is difficult to use the InSAR to
effectively measure its displacement owing to the temporal decorrelation effect. Another
difficulty is that it is challenging to obtain the monitoring deformation of ultra-long-distance
linear infrastructure. The simultaneous meeting of both high-resolution and large-area
deformation measurement requirements is a critical problem.
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Our current knowledge of the modeling and simulation techniques is considered as a
limiting factor. The reason is that when predicting earthquakes, the weaknesses in applied
models can cause problems. Once the precursors have been measured, it is necessary to
create an integrated predictive model, which may already incorporate several abnormalities
or precursors. To date, in the literature, most prediction models have been based on a
single component with a very limited set of remote sensing data. Satellite and terrestrial
observations are usually not considered in the latest forecasting models. The CQuake
system was developed for coastal earthquakes and its data are limited to SLHF, weather and
atmospheric factors, and previous seismic records. The Lithosphere–Cover–Atmosphere
(LCA) model is another example that analyzes the parameters of several thermal anomalies
in its predictions [242]. Another area of testing is related to the limitations in algorithms
and methods used for extracting information from satellite images. The use of extraction
algorithms impacts the data output of data [7,243].

According to our review, SAR and its related technologies (InSAR, D-InSAR, etc.)
are a vast area of research. This paragraph summarizes the current issues with these
technologies. The major limitation of InSAR technology in earthquake applications is
that it is sensitive to one-dimensional motion along the line of sight (LOS) [10], while
ground deformation is generally characterized using three-dimensional data [244]. To
determine three-dimensional deformations with InSAR requires a satellite with both left
and right viewing capability in a non-polar orbit. Another weakness of InSAR technology
is that the maximum recoverable displacement of InSAR depends on the band wavelength.
Diversified terrain and slope topography also hamper the visibility of SAR sensors. Thus,
selection of the appropriate orbit and SAR data type is crucial. Furthermore, each InSAR
technique is applicable to specific research objectives. The study of crustal deformations
is limited to landslides [141]. The major drawbacks of D-InSAR technology include poor
temporal resolution [69], spatial-temporal decorrelation [245], tropospheric and ionospheric
signal noise [246], and its limited output capacity of one-dimensional measurements in the
line of sight (LOS) [247].

In some cases, complexity could be considered as a limitation. For instance, the
technical part of InSAR processing is sometimes equivocal and difficult to understand [248].
Cost and data accessibility can be considered as other challenges, for instance, PS-InSAR
with a millimeter accuracy, which is a promising technique for earthquake deformation
monitoring, though it is not easily accessible. Another example is about LiDAR data, which
are very accurate data with a variety of applications in earthquake studies; however, they
entail higher data acquisition costs and greater processing time [79]. Although LiDAR is a
great source for many accurate measurements, it is not without weak points. For example,
LiDAR can detect partial or complete collapse more effectively than optical or radar data
but offers no advantage in terms of side damage detection.

Despite the many limitations of geospatial techniques in earthquake studies, the
advantages are innumerable. Earth observation data are the basis for disaster monitoring
because of their wide-scale coverage, rapid processing capability, and the high impact of
observed phenomena in terms of both human and economic losses. Thereby, geospatial
is an ongoing technology, which will always be in demand. The future of geospatial
technology in the domain of natural hazards, based on its history of constant advances and
the harnessing of global forces to counter the growing threat of climate change, is certain
to produce novel techniques that overcome many of the limitations encountered in this
review of earthquake research and technology.

7. Conclusions

With the rapid development of spatial information and computer sciences, GIS and
remote sensing are now more widely used in relation to earthquakes and seismology.
This review paper summarized the most recent and commonly used geospatial products,
techniques, and applications in terms of the range of pre- and post-earthquake activities.
Information was grouped into four categories: (1) the role of geospatial data in earthquake
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studies; (2) the role of remote sensing at different stages of an earthquake; (3) the application
of RS in earthquake analysis; (4) earthquake follow-on disasters.

Despite numerous achievements in seismic science and earthquake engineering over
the last few years, geospatial technology remains invaluable in minimizing the damage
caused by earthquakes. For instance, inadequate knowledge about the spatial distributions
of debris makes accessing locations for earthquake emergency responses far more difficult.
In addition, the rapid assessment of the after-effects of an earthquake using geospatial tech-
nologies can significantly improve emergency response time, reduce the risk, and minimize
human causalities during an earthquake. Geospatial data compensate for the shortage
of spatial data concerning damage distribution and location, and this information can be
used to validate and improve the analytical models used to predict earthquake damage.
Subsequently, improving these models will enhance earthquake-resistant design methods,
which, in turn, will result in less damage from future earthquakes. GIS technology also
facilitates the rapid processing of complex information, which supports the development
of special strategies to mitigate the effects of natural disasters.

Several studies have confirmed that the SAR technique is a powerful tool for detecting
slow movement of the Earth’s crust at a variety of scales. SAR has also revealed funda-
mental limitations in modeling earthquake focal mechanisms. The method has proven
its suitability in detecting the ground deformations that may precede seismic events and,
therefore, is critically important in predicting strategies that advance the quest to uncover
the diagnostic precursors of large earthquakes.

Regarding earthquake prediction, no operational methods have, to date, been consid-
ered successful in accurately predicting earthquake occurrence. Our study confirms that
this necessitates establishing comprehensive multiparameter analytical systems.

In conclusion, the study evidenced that geospatial techniques are predominantly
employed in the post-earthquake phases. Efforts to strengthen the application of geospatial
technology in the field of earthquake and seismic research, improving capacity in the
collection of spatial data collection of seismic events, to enhance the social value and impact
of earthquake-related information, demand further research. There is no phase, before,
during, or after the earthquake event, in which some form of RS should not be incorporated.
Based on the ongoing progress in the technology and the regular launching of new satellites
with improved sensor refinement, much more can be expected from remote sensing.
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