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Abstract: In recent years, the vegetation cover in urban agglomerations has been changing very
rapidly due to technogenic influence. Satellite images play a huge role in studying the dynamics of
forest vegetation. Special programs are used to process satellite images. The purpose of the study
is to analyze forest vegetation within the territory of the Tomsk agglomeration based on Landsat
remote sensing data for the period from 1990 to 2022. The novelty of the study is explained by the
development of a unique program code for the analysis of Landsat satellite data on the previously
unexplored territory of the Tomsk agglomeration with the prospect of moving to the scale of the entire
state in the future. In this study, the authors present an algorithm implemented in Python to quantify
the change in the area of vegetation in an urban agglomeration using Landsat multispectral data.
The tool allows you to read space images, calculate spectral indices (NDVI, UI, NDWI), and perform
statistical processing of interpretation results. The created tool was applied to study the dynamics of
vegetation within the Tomsk urban agglomeration during the period 1990–2022. Key findings and
conclusions: (1) The non-forest areas increased from 1990 to 1999 and from 2013 to 2022. It is very
likely that this is due to the deterioration of the standard of living in the country during these periods.
The first time interval corresponds to the post-Soviet period and the devastation in the economy in the
1990s. The second period corresponds to the implementation and strengthening of sanctions pressure
on the Russian Federation. (2) The area of territories inhabited by people has been steadily falling
since 1990. This is due to the destruction of collective agriculture in the Russian Federation and the
outflow of the population from the surrounding rural settlements to Tomsk and Seversk.

Keywords: remote sensing data; forest vegetation; urban agglomeration; Landsat; Python; NDVI; UI;
NDWI; Tomsk

1. Introduction

Urbanization of territories around the world leads to an increase in the environmental
impact on vegetation [1–4]. Forests are within the city limits, which leads to changes in
forest vegetation [5–7]. Understanding and knowledge of where these changes occur, in
what quantity and under the influence of what factors are important for assessing the
quality of the environment and determining management decisions to ensure the hygienic
and environmental safety of the population [8–10].

Satellite images play a huge role in studying the dynamics of forest vegetation [11–15].
They allow us to obtain objective information about spatial and temporal changes in
vegetation. Multispectral space images from Landsat satellites are the most suitable type
of remote sensing data for the analysis of dynamic changes at the regional level [16]. A
characteristic feature of the Landsat program is the inheritance of the spectral ranges
in which the survey is carried out, which ensures the continuity and compatibility of
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data obtained by different satellites of the Landsat series during the entire period of the
program [17–20].

There are various methods for detecting areas occupied by vegetation. They include
both visual interpretation and automatic image processing, including supervised and
unsupervised classification, and the creation of index images. An analysis of vegetation
cover dynamics can be carried out using vegetation indices obtained from time images [21].

Processing of satellite images is usually carried out using special programs [22–24].
These programs can be divided into two groups. The first group is universal systems that
allow us to solve many problems of analyzing data from remote sensing of the Earth. The
second group comprises programs (tools) developed to solve highly specialized tasks. The
undoubted advantage of such programs is that they are created to solve a specific practical
problem. Most of the steps in such programs are automated. After analyzing the existing
solutions regarding the goal of the study, it was decided to create a tool for assessing
vegetation changes within an urban agglomeration based on multi-temporal images.

In the work, an algorithm for analyzing satellite images was developed, implemented
in the Python language [25], which facilitates reading satellite images, calculating spectral
indices, calculating the cloudiness mask, and performing statistical processing of the
interpretation results. The tool performs a classification of multi-temporal images to
determine the dynamics of areas occupied by vegetation.

The purpose of the study is to analyze forest vegetation within the territory of the
Tomsk agglomeration using Landsat remote sensing data for the period from 1990 to 2022.
Main research objectives: (1) Preparation of the database of Landsat satellite images for the
period from 1990 to 2022; (2) Development of an algorithm and software implementation
based on the high-level programming language Python; (3) Spatio-temporal analysis of the
territory of the Tomsk agglomeration and the marking out of forested areas, urban areas
and areas not classified as forested; (4) The formulation of the main mechanisms that led to
the identified changes in the forest areas of the Tomsk agglomeration.

The novelty of the presented scientific research is explained by the development of
a unique Python code for the analysis of Landsat remote sensing data on the territory of
the Tomsk agglomeration. This is a pilot study conducted in the Western Siberia region.
Previously, such studies on changes in forest cover were not carried out in the Tomsk region
in the context of changes in the social, economic and political situation in the Russian
Federation. The position of novelty should be explained in more detail. Developing our
own program code opens up prospects for its wide practical application. As known, in
the Russian Federation, there is an Information system for remote monitoring of forest
fires, named ISDM-Rosleskhoz. The main purpose of this system is to monitor, assess and
predict forest fire danger across the territory of the Russian Federation.

The operation of this system is provided by the federal state institution Aviale-
sookhrana. The developer of the program modules is the Center for Problems of Ecology
and Forest Productivity of the Russian Academy of Sciences. This center conducts a wide
range of research on forest ecology, including in cooperation with the Space Research
Institute of the Russian Academy of Sciences. Possible interaction with this center opens up
prospects for the introduction of new modules for assessing urban agglomerations, both in
the context of environmental challenges and forest fire danger. It is known that cities and ru-
ral settlements are sources of anthropogenic pressure on adjacent forested areas. Industrial
facilities have the same effect on forested areas. Therefore, the development of a unique
program code opens up prospects for improving the functionality of ISDM-Rosleskhoz.

2. Background

Landsat images are the most used source of Earth remote sensing data for a wide
range of studies [26–42]. The advantage of Landsat data is associated with the continu-
ity of observations over 50 years and the policy of free access to images [27,28]. Today,
users have access to the processed Landsat Collection 2 data. The main feature of Col-
lection 2 is a significant improvement in the absolute geolocation accuracy of the global
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ground reference dataset, which improves the compatibility of the Landsat archive over
time. Collection 2 also includes updated global DEM sources, as well as calibration and
validation updates [29,30]. Collection-based processing is important for the consistency
of preprocessed data required for time series analysis. The introduction of Landsat col-
lection processing has facilitated a shift in the use of Landsat data from single imagery to
time series analysis. Thus, one of the problems of limiting the use of Landsat data time
series associated with the need for preliminary geometric correction was solved. However,
a number of limitations remain associated with the uneven geographical and temporal
coverage of the regions of the world by Landsat data for environmental, technical and
programmatic reasons. The Landsat swath ensures that the survey of one area is repeated
once every 16 days. Seasonality and cloud cover also reduce the viability of annual land
cover renewals [28,30]. The spatial resolution of Landsat images also has serious limitations
in areas with high spatial heterogeneity [6].

Despite the above limitations, Landsat data are unique data for monitoring urban
areas [43–51]. Monitoring is carried out using a wide range of Landsat input data
analysis methods [26,28,45,47–54]. Land cover information is extracted from satellite
images using various image analysis methods that have been developed in the field of
remote sensing [40,43–45].

Mapping urban areas based on Landsat has a number of difficulties. Pixels of Landsat
images of urban areas usually contain mixed information about anthropogenic objects and
vegetation. Vegetation cover must be further extracted from the image when identifying
urban areas. Urbanized territories do not have unique spectral characteristics, and when
they are identified, there is considerable confusion with non-urban classes (for example,
with “bare” soils) [47].

The works [26,45,47–54] consider methods for classifying urbanized territories. Let us
focus on those that are of interest to us. One approach involves using spectral indices such
as normalized difference vegetation index and normalized building index to separate urban
from non-urban lands [48,50]. Another spectral approach [24] assumes that urban pixels
consist of linear combinations of three common components of land cover, vegetation,
impervious surface and soil (the so-called V–I–S model). Mapping of the urban area to be
carried out with a combination of spectral and spatial information is proposed in the work
of Guindon et al. [47]. The method consists of the following two independent classifications
based on pixels and based on segments (segment based) of elementary coverage classes.
They are then combined using rules that allow the class legend to be augmented by inferring
additional land use classes based on spatial context and automatically edited to reduce
classification errors due to spectral confusion between classes.

3. Materials
3.1. Study Area

The Tomsk agglomeration is one of the largest urban agglomerations in the Siberian
Federal District of Russia. The Tomsk agglomeration is formed around the administrative
center of the Tomsk region—the city of Tomsk (Figure 1). According to the draft “Schemes
of territorial planning of the Tomsk region” [55], Tomsk agglomeration includes the Tomsk
urban district, ZATO Seversk, Tomsk district, the western part of the Asinovsky district
(Asinovskoye urban settlement, Novikovskoye, Yagodnoye, Bolshedorohovskoye rural
settlements), the eastern part of the Shegarsky district (Shegarskoye and Pobedinskoye rural
settlements) and the northeastern part of the Kozhevnikovsky district (Kozhevnikovskoe
rural settlement) (Table 1).

Within the boundaries of the study area, there are two large cities of Tomsk and Seversk,
and a number of small settlements with a total population of more than 800 thousand people.
In the valleys of the Ob and Tom rivers, the main number of rural settlements and recreational
areas are concentrated.

The Tomsk agglomeration is located in the taiga zone (subzone of small-leaved forests),
and only the extreme south is included in the forest-steppe zone with a humid climate [56,57].
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According to the amount of precipitation, the region belongs to the zone of moderate moisture.
The average annual precipitation ranges from 450–650 mm, which exceeds evaporation by
100–170 mm. The average annual air temperature for a long period is 0.4 ◦C.

The relief is flat, flat with a slight slope from south to north (the minimum absolute
marks are 65–75 m, the maximum are 200 m).

Table 1. Composition of the agglomeration.

Municipality Name Territory
km2

Population
1 January 2016

Tomsk 297.20 590,826

Seversk 485.65 114,549

Tomsk area 10,035.22 72,386

West part of
Asinovskoe area:
Asino 89.85 24,615
Bolshedorohovo 249.97 950
Novikovskoe 272.93 1308
Yagodnoe 297.00 1394

Northen East part of
Kozhevnikovo area:
Kozhevnikovo 397.12 8351

East part of
Shegarskiy area:
Pobeda 223.41 2134
Shegarskoe 202.30 8789

Total agglomeration 12,550.65 825,302

Part of Tomsk region 3.96% 76.65%
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3.2. Data

In this work, remote sensing data obtained from Landsat satellites were used. Archival
images from the optical sensors of the Landsat L2 C2 products from 1990 to 2022 with low
cloudiness were downloaded from the online service of the US Geological Survey (USGS)
website [58] (Table 2). Data from Landsat-5 (TM), Landsat-7 (ETM+) and Landsat-8 (OLI)
satellites for the summer phenological period were used to study the dynamics of the area
of forest vegetation in the study area. The selected area is covered by several scenes. To
highlight the area of interest, a vector shapefile of territory boundaries was used.

Table 2. List of satellite image.

ID Name Date Satellite Cloud Cover, % Path/Row

1 LT05_L2SP_148020_19890626_20201008_02_T1 26 June 1989 LANDSAT_5 1.0 148/20

2 LT05_L2SP_148021_19900613_20200915_02_T1 13 June 1990 LANDSAT_5 2.0 148/21

3 LE07_L2SP_147020_19990709_20200918_02_T1 9 July 1999 LANDSAT_7 0.0 147/20

4 LE07_L2SP_147021_19990709_20200918_02_T1 9 July 1999 LANDSAT_7 0.0 147/21

5 LE07_L2SP_149020_19990707_20200918_02_T1 7 July 1999 LANDSAT_7 0.0 149/20

6 LE07_L2SP_149021_19990707_20200918_02_T1 7 July 1999 LANDSAT_7 0.0 149/21

7 LT05_L2SP_148020_20070714_20200830_02_T1 14 July 2007 LANDSAT_5 0.0 148/20

8 LT05_L2SP_148021_20070714_20200830_02_T1 14 July 2007 LANDSAT_5 0.0 148/21

9 LC08_L2SP_148020_20130714_20200912_02_T1 14 July 2013 LANDSAT_8 0.9 148/20

10 LC08_L2SP_148021_20130714_20200912_02_T1 14 July 2013 LANDSAT_8 0.01 148/21

11 LC08_L2SP_148020_20200818_20200823_02_T1 18 August 2020 LANDSAT_8 5.1 148/20

12 LC08_L2SP_148021_20200802_20200914_02_T1 2 August 2020 LANDSAT_8 0.09 148/21

13 LC09_L2SP_148020_20220613_20220615_02_T1 13 June 2022 LANDSAT_9 1.74 148/20

14 LC08_L2SP_149021_20220612_20220617_02_T1 12 June 2022 LANDSAT_8 9.88 149/21

15 LC09_L2SP_147021_20220809_20220811_02_T1 9 August 2022 LANDSAT_9 1.2 147/21

The work utilizes 5 bands (Blue, Red, Green, Near Infrared and Short Wave Infrared),
which have spatial definition of 30 m (Table 3).

Table 3. The 30 m Spatial Resolution Bands.

Band Landsat 5 TM LANDSAT 7 ETM+ Landsat 8/9 OLI

Band number: Wavelength Band number: Wavelength Band number: Wavelength

Blue Band 1: 0.45–0.52 Band 1: 0.45–0.52 Band 2: 0.45–0.51

Green Band 2: 0.52–0.60 Band 2: 0.52–0.60 Band 3: 0.53–0.59

Red Band 3: 0.63–0.69 Band 3: 0.63–0.69 Band 4: 0.64–0.67

Near Infrared Band 4: 0.76–0.90 Band 4: 0.77–0.90 Band 5: 0.85–0.88

SWIR 2 Band 7: 2.08–2.35 Band 7: 2.08–2.35 Band 7: 2.11–2.29

3.3. Spectral Indexes

Combinations of spectral bands of images provide information about the Earth’s sur-
face. Below is a brief description of the spectral indices used in this work. The Normalized
Differential Vegetation Index (NDVI) indicates the presence and condition of vegetation and
is widely used for vegetation mapping [59]. The construction of the index is based on the
fact that the chlorophyll of plant leaves reflects radiation in the near infrared range of the
electromagnetic spectrum and absorbs in the red [60,61]. Thus, the presence of vegetation
in each pixel of the image is determined by the difference between the intensities of the
reflected light in the infrared and red ranges, divided by the sum of their intensities (1). The
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ratio of the brightness values in these two channels allows you to separate the vegetation
from other objects. The range of NDVI values varies from −1 to 1; for vegetation, the NDVI
index takes on positive values.

NDVI = (NIR − RED)/(NIR + RED), (1)

where NIR is the value of pixels in the near infrared region of the spectrum; RED—value of
pixels in the red region of the spectrum.

The open water surface can be determined based on the fact that water reflects much
less light in the infrared than in the visible [62]. The input features are well defined by the
values of the normalized difference water index (NDWI). NDWI was calculated using the
formula proposed in [63]:

NDWI = (Green − NIR)/(Green + NIR), (2)

where NIR is near infrared, and Green is reflection in the green region of the spectrum.
The Urban Index (UI) [64–66] was used to interpret urban areas. The index uses

NIR and SWIR2 (near infrared and shortwave infrared) channels to highlight built-up
areas. This factor allows you to muffle the difference in surface illumination, as well as
atmospheric effects.

UI = (SWIR2 − NIR)/(SWIR2 + NIR), (3)

where SWIR2 is shortwave infrared, and NIR is near infrared.
The question of algorithm validation always arises when proprietary software is used.

It should be noted that the developed script performs image analysis using well-known
and proven formulas for calculating spectral indices. Such formulas are standard, they are
used in many works and their additional verification is not required. However, in 2022,
ground-based observations were carried out on the territory of the Tomsk agglomeration
in order to compare image processing data and actually recorded conditions in a specific
area at the monitoring point. The location of the control points is shown in Figure 1.
In subsequent years, an annual analysis of field observation data and the results of the
developed script will be carried out. We emphasize that the script uses well-known verified
formulas for calculating spectral indices.

4. Methods

The general research methodology is shown in Figure 2. Previously, images in the
GeoTIFF format of the Landsat satellite system for the specified time period are downloaded
from the site, and cloudiness is less than 5%. A database of temporary images of the territory
is being formed. In addition to images for the study, it is required to prepare the boundaries
of the study area in vector format to highlight the area of interest in the images.

ArcGIS is a complete system for working with data. The functionality of ArcGIS
has been extended with Erdas Imagine modules, which allows you to perform complex
analysis and image processing. However, like any paid software product, ArcGIS has
limitations. To use the program, you must have an up-to-date ArcGIS license. Your
computer hardware and operating system must meet the minimum requirements. These
requirements are necessary to run the ArcGIS program for execution. The ArcGIS user
does not have full access to the processing process and control over each step. In addition,
the user must have extensive knowledge to take full advantage of the unique features and
data analysis tools in ArcGIS. To solve the exploration problem, the user will need to build
a solution model in ModelBuilder to run the workflow, or create a Python script outside of
ArcGIS or in ArcGIS.
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The presented Python script was created to perform an analysis of the dynamics of
vegetation change in urban areas based on the analysis of Landsat images in automatic
mode and does not require any specialized knowledge from the user. The user’s function
is to run the script and provide input. The script can be run standalone on any computer
and is independent of ArcGIS licenses and changes in new versions of the program. The
next goal of updating the script is to add calculation of other spectral indices for Landsat
images, perform Sentinel image processing and provide online access to the Script.

The imaging stage consists of processing all available datasets. Image pixel data
presented in the dimensionless value DN are recalculated for digital processing of Landsat
images into reflectance [67]. “Lighted” pixels and clouds with their shadows are excluded
from processing. Raster images of various channels necessary for processing and calculation
of indices are loaded into the program. Then, the images are cropped according to the area
of interest, a mask is applied to the selected images in the shape-file format with territory
boundaries. The study area is located at the intersection of images, so several scenes (from
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2 to 4) are used for each time period. The scenes covering the area can be in different
coordinate systems (WGS84 44N and WGS84 45N). Before forming a solid region of interest,
the processed data are reprojected into WGS84 (EPSG:4326) and combined into a mosaic.

The next stage consists of vegetation identification based on the data prepared in the
previous stages. The presence or absence of vegetation is determined by the values of the
Normalized Difference Vegetation Index (NDVI). The range of index values is from −1 to 1.
For vegetation, the NDVI index takes positive values. In this work, we are interested in
pixels in which the NDVI values are in the range from 0.2 to 0.7.

For more accurate results, area masks were used (cloud mask—based on the QA_PIXEL.tif
band provided in the raster set; water surface mask—based on the normalized NDWI water
index). Indices are calculated for each selected period from 1990 to 2022. The calculation
of the area occupied by vegetation and the city is made in the program and issued as a
table of results. It is possible to export processing results to ArcGIS, convert raster data
to vector data, and build thematic maps. The algorithm is implemented in Python using
Rasterio, Fiona and Numpy libraries. The algorithm is built in such a way that it works with
individual scenes. The operations described below apply to each scene and are performed
sequentially until all have been processed. The channels of interest were selected in each
scene based on the configuration file.

A script for searching and uploading images is included in the tool. The following
input data were used to script processing, namely, folder address, year and area of interest
(vector shapefile with borders). At the initial stage, the script is used to find the folders
corresponding to the selected year. If there are two images, then there will be two folders.
The metadata of each image were loaded. Definite satellite on which the survey was made
is determined by the metadata (in our case, it is LANDSAT 5/LANDSAT 7/LANDSAT
8/LANDSAT 9). Date of shooting (year, month and day) were used. The script has the
ability to work with data archives. The script is used to unzip the data and save it to a
folder, and only then the metadata will be downloaded.

Next step is the procedure for creating a cloud mask and preparing band rasters for
calculating spectral indices. In the folder of each multichannel image, the script is used
to find an image for the cloud mask (*QA_PIXEL.tif), to read it, to crop it to the area of
interest, and to reproject it at the final stage. At the output, binary raster with masked
clouds (0—clouds; 1—everything else) has been obtained.

Bitmaps of the blue, green, red, near infrared, shortwave infrared channels are repro-
jected and clipped to the region of interest, and DN pixel values are converted to reflection
values. At the output, our own new bitmap in reflectance values and new metadata for the
multiband raster were obtained for each channel.

Next, the indices were calculated, and index maps for each scene were build. At the
output, rasters with calculated indices NDVI, UI and NDWI were obtained (Figures 3 and 4).

Mapping of forest and urban areas is carried out using arithmetic operations. A map of
man-made areas is built by combining images of the built-up area index (UI from −0.2 to 1),
cloudiness mask, water index and bare soil index. The vegetation map is built using the
NDVI index from 0.2 to 0.7, the cloud mask, the water index and the built-up area index.

Data were merged after processing all the folders with images of each year. It was
checked that the data source of all input images is the same. Separate scenes are combined
into a mosaic to obtain an integral territory. For example, at the input, several rasters for
the red channel were used. Then, one raster and new metadata (new projection, raster size)
were obtained at the output. Results were written in binary rasters.

The following statistical values were calculated, namely, total area, area occupied by
man-made objects and area occupied by vegetation. The necessary rasters were saved to
files for building maps.
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5. Results and Discussion

A multi-index approach was applied to detect areas of occupied vegetation and built-
up areas. At the first step, the images are selected and coordinated. Cropping images by
the region of interest and combining them into mosaics allowed us to obtain all spectral
bands and indices for the territory under consideration. The combination of binary rasters
for vegetation and for the city area is shown in Figure 5.
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(d)—2013 year; (e)—2020 year; (f)—2022 year. Red box is maximum changes after initial state.

When using remote sensing data to assess wintering in the forest cover, different time
steps can be used to evaluate satellite images. Often, a regular time grid is used with a
step of 5 years. This is the correct approach to assessing changes in forest cover when
assessing the impact of weather, climate, and successional processes within a biogeocenosis.
However, in this work, this approach is not acceptable and is erroneous. It is necessary
to use a heterogeneous grid over time with irregular time steps, chronologically linked to
anchor points among social, economic and political events during the analysis of changes
in forest cover in the context of social, economic and political impacts. The main reference
points are presented in Table 4.

Table 4. Control points in chronological order.

N Year Evant Impact

1 1990 USSR was destroyed Economical chaos in the Russian Federation

2 1999 Political elites transfer New aims to stable situation in the Russian Federation

3 2007 All-Russian reformation of Forestry Reduction in forest services, transfer of responsibilities from
state to regional level

4 2013 Last stable year before sanctions against the
Russian Federation Sanctions led to economical problems in the Russian Federation

5 2020 COVID-19 Pandemic Corruption of external connections with partners in the world,
unemployment was increased

6 2022 Current time, new sanctions against the Russian
Federation Sanctions led to economical problems in the Russian Federation

It can be emphasized that the interval of 5 years is in no way connected with these
events in the social, economic and political sphere of the country as a whole and the Tomsk
agglomeration in particular.
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Figure 6 shows the dynamics of vegetation change in the presented years. The al-
gorithm makes it possible to identify forests, other territories and urban areas. It can be
seen in Figure 5a that in 1990, there was an insignificant share of other territories in the
Tomsk agglomeration. This period should be used as some initial reference. As is known,
in 1990–1991, the destruction of the Soviet Union took place [68]. With the acquisition of
independence in the Russian Federation in the 1990s came lawlessness and the destruction
of all subsystems of the state, including forestry. These negative changes also affected the
Tomsk agglomeration. Illegal logging and burning of forests began during this period.
Moreover, no one removed the logging residues at the felling sites. The following figure,
Figure 5b, shows a large number of areas that are not classified as a forest or urban area. In
fact, these are scorched stands, cuttings and garbage dumps. Additionally, by 1999, these
territories had reached the maximum area. At the end of 1999, in the Russian Federation,
there was a change in the ruling elites under the leadership of the new president [69].
The country took a course towards improving the economic and social components of
life. Figure 5c shows that forest fragmentation has significantly decreased in the Tomsk
agglomeration. These processes continued until 2013 (Figure 5d). However, it was not
possible to completely get rid of the fragmentation of forest tracts. This is probably due
to the adoption of the new Forest Code of the Russian Federation [70]. The launched
processes of forestry transformation began to have a negative impact. On the other hand,
in 2012, there were massive forest fires in the Tomsk region [71], including the territory
of the Tomsk agglomeration. Logging residues, landfills and windfall as a result of these
forest fires burned out to a large extent in that year. Figure 5e shows that by 2020, forest
fragmentation has increased again. This is due to the implementation in 2014 of economic
sanctions against the Russian Federation. This led to a decrease in the standard of living of
the population [72]. The marginal part of the population, especially the rural one, again
began to practice illegal logging and ignore garbage disposal. Figure 5f shows that these
processes have intensified even more. It can be assumed that, on the one hand, this is due
to the decline in the economy due to the coronavirus pandemic [73]. On the other hand, in
2022, the sanctions pressure on the Russian Federation was unprecedentedly increased.

An analysis of the area of urban areas (territories with a population) shows a gradual
reduction in these areas from 1990 until the present. Along with the collapse of the Soviet
Union in the Russian Federation, there was a destruction of agriculture. As a result of these
negative processes, there was an outflow of the population from rural areas to large cities
of the Tomsk agglomeration, such as Tomsk and Seversk.

The dynamics of vegetation in the Tomsk agglomeration is shown in the Table 5. The
area occupied by vegetation increased from 1990 to 2013. This is especially noticeable in
the southern part of the territory, where there is an overgrowth of empty territories.

Table 5. Vegetation dynamics from 1990–2022 in the Tomsk agglomeration.

Year Vegetation Area, km2

1990 9758.949

1999 9324.871

2007 10,650.63

2013 11,137.16

2020 10,108.4

2022 10,011.07

The dynamics of changes in the territories covered with vegetation can be traced in
the results obtained. Nevertheless, it should be noted that when using optical images, it is
difficult to separate the territory of bare soils from technogenic territories (Figure 6). They
have a close spectral response and, accordingly, do not align with indices [74]. The use of
additional radar survey data should help in solving this problem, since it will allow us to
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take into account the heterogeneity of the surface. Additionally, the use of a more frequent
time series will allow us to determine the most “cloudless years” and use these data for
analysis. The assessment of the accuracy of the results at this stage of the work was carried
out visually using a topographic map of the area.
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It should be noted that a pilot study of the territory of the Tomsk agglomeration
was carried out. In the future, the study area should be extended at the first stage to the
entire territory of the Tomsk region [75]. At the second stage, the territory of the Siberian
Federal District should be considered. At the last stage, a similar study should be carried
out on the scale of the territory of the entire the Russian Federation. In addition, future
studies should involve data from the MODIS Terra/Aqua [76] and Sentinel-2A [77] satellite
systems to analyze the fire component of vegetation transformation processes within the
Tomsk agglomeration and larger territories of the Russian Federation.

Moreover, the study has some limitations, which should be discussed separately. First,
forested areas are considered in general, without distinguishing coniferous, deciduous and
mixed forests, as well as herbaceous vegetation. In the future, it would be logical to conduct
a study with the differentiation of forested areas. Secondly, when analyzing satellite data,
such linear sources of anthropogenic load as the railway, roads and riverbeds were not
analyzed [78,79]. Accounting for these objects could contribute to a more accurate expla-
nation of changes in the forest area of the territory of the Tomsk agglomeration. Thirdly,
as already mentioned, it is necessary to take into account at least MODIS Terra/Aqua
satellite data. At the moment, they have not been used. A joint analysis of data on thermal
anomalies could support a number of arguments in favor of the announced mechanisms
for the transformation of the forest massif of the Tomsk agglomeration.

Furthermore, own unique software for analyzing satellite data was developed as a
result of the study. No commercial packages have been used for these purposes. This
may allow the developed software to be put into operation in the future as part of the
Information System for Remote Monitoring of Forest Fires, ISDM-Rosleskhoz [80]. The
operator of this system is Avialesookhrana of the Russian Federation. The ISDM-Rosleskhoz
system allows you to analyze information on the territory of the entire Russian Federation.
In the future, the modernization of ISDM-Rosleskhoz using the program code developed
in the framework of this study can help improve the quality of planning and forestry
management in the Russian Federation.
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The algorithm for analyzing the dynamics of the area of forest vegetation is imple-
mented in Python. The script uses Rasterio and Fiona tools [81,82]. It allows you to
automatically select prepared satellite images and the boundaries of the study area. Land-
sat input data and a territory boundary vector file were used for the scenario. When you
run the tool, you are asked for the path to the spacemen and to the borders file. As a result
of the script execution, thematic maps were created, which show the spatial distribution of
vegetation from 1990 to 2022. A comparison of the obtained results makes it possible to
trace the change in time and space in the area of vegetation. Maps with generalized results
of the performed space-time analysis within the Tomsk agglomeration are presented. The
developed methodology and algorithm for working with Landsat satellite images provide
an opportunity to assess the state and dynamics of spatial and temporal changes in the
vegetation cover in the study area.

The second aspect related to the novelty of the study should be considered. In addition
to the technological novelty associated with the development of its own program code,
the results of the study are new in the context of assessing changes in the forest cover
of the Tomsk agglomeration under the influence of local, domestic and external social,
economic and political factors. The vast majority of scientific studies on the application
of remote sensing are regional studies. Such results, of course, cannot be extrapolated to
other territories. However, this is their novelty, value and uniqueness in obtaining new
knowledge about the processes taking place in such territories. It should be noted that in
the Russian Federation, no one has assessed changes in forest cover with their linkage to
social, environmental and political processes in the country and the world. It would be
erroneous to link changes in the forest cover of urban agglomerations only with climatic
and weather changes, forest successions within the forest biogeocenosis. This article reveals
the patterns of changes in forest cover in the Tomsk agglomeration in their connection with
economic, social and political processes. This is the second aspect of the novelty of the
study. The choice of the territory of the Tomsk agglomeration is not accidental. The most
significant climatic changes occur in Western Siberia [73], where the Tomsk agglomeration
is located. Therefore, the study of changes in forest cover in this area in the context of social,
economic and political factors is of particular importance. It is remote sensing technologies
that make it possible to determine these changes.

6. Conclusions

The first study of the territory of the Tomsk agglomeration was carried out. In the
future, the study area should be extended to larger territories of the Russian Federation,
including the entire territory of the state. In addition, future studies should involve
data from the MODIS Terra/Aqua and Sentinel-2A satellite systems to analyze the fire
component of vegetation transformation processes within the Tomsk agglomeration and
larger territories of the Russian Federation.

Key results and conclusions:
(1) The area of non-forested areas increased from 1990 to 1999 and from 2013 to

2022. It is very likely that this is due to the deterioration of the standard of living in the
country during these periods. The first time interval corresponds to the post-Soviet period
and the devastation in the economy in the 1990s. The second period corresponds to the
implementation and strengthening of sanctions pressure on the Russian Federation.

(2) The area of territories inhabited by people has been steadily falling since 1990. This
is due to the destruction of collective agriculture in the Russian Federation and the outflow
of the population from the surrounding rural settlements to Tomsk and Seversk.

The development of unique software will make it possible to put it into operation in
the foreseeable future as part of the Information System for Remote Monitoring of Forest
Fires ISDM-Rosleskhoz. In the future, this will contribute to improving the quality of
planning and forestry management in the Russian Federation.

In the future, the study area should be extended at the first stage to the entire territory
of the Tomsk region. At the second stage, the territory of the Siberian Federal District
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should be considered. At the last stage, a similar study should be carried out on the scale
of the territory of the entire Russian Federation. In addition, future studies should involve
data from the MODIS Terra/Aqua and Sentinel-2A satellite systems to analyze the fire
component of vegetation transformation processes within the Tomsk agglomeration and
larger territories of the Russian Federation. Moreover, separate vegetation types will be
analyzed within the future researches.
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