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Abstract: Mapping river beds to identify water and sandbars is a crucial task for understanding
the morphology and hydrodynamics of rivers and their ecological conditions. The main difficulties
of this task so far have been the limitations of conventional approaches, which are generally costly
(e.g., equipment, time- and human resource-demanding) and have poor flexibility to deal with all
river conditions. Currently, alternative approaches rely on remote sensing techniques, which offer
innovative tools for mapping water bodies in a quick and cost-effective manner based on relevant
spectral indices. This study aimed to compare the capability of using imagery from the Sentinel-2
and newly launched Landsat 9 satellite to achieve this goal. For a segment of the Lower Tagus River
(Portugal) with conditions of very low river discharge, comparison of the Normalized Difference
Water Index, Modified Normalized Difference Water Index, Augmented Normalized Difference Water
Index, and Automated Water Extraction Index calculated from the imagery of the two satellites
shows that the two satellites’ datasets and mapping were consistent and therefore could be used
complementarily. However, the results highlighted the need to classify satellite imagery based
on index-specific classification decision values, which is an important factor in the quality of the
information extracted.

Keywords: remote sensing; multispectral water indices; imagery classification; optimal threshold;
river morphology

1. Introduction

A key factor in understanding fluvial processes is mapping water surfaces and sand-
bars in river beds. This helps to characterize and monitor the morphologic and hydraulic
behaviors and ecological conditions of rivers. The lack of data contributes to the slow
progress in developing models in this field.

Sandbars are accumulations of sediment grains or sand and/or gravel deposits along
a river’s main bed, which vary in time and space. These formations result from the river’s
flow and sediment transport regimes [1], which lead to erosion and deposition processes
that are determined by the combination of liquid and solid discharges in the river, sediment
load grain size, and the river’s morphology, such as its slope and layout [2–6]. Larger flows
have the potential to mobilize large amounts of bed and bank material, which often leads
to the formation of new sandbars [7]. Additionally, the surface coverage of sandbars by
vegetation also plays a role that depends on multiple factors, including the inundation
frequency of the sandbars, which is conditioned by discharge, river hydraulics, and sandbar
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elevation [8]. The dynamics of sandbars affect the flow depths, control the supply and
size of dredged aggregates, lead to localized erosion and hence damage to infrastructures,
determine the navigability of rivers, and constrain the physical environment of the biota
and ecosystem services [9–15].

Sandbars in rivers are more easily perceived under conditions of low flow, whether
dictated by river regulation or hydrologic drought conditions. Conventional approaches
to monitor river sandbars during such low flow conditions are based on historical pho-
tographs, ground-based surveys, and temporally sparse aerial datasets [16–19]. Over-
all, such approaches are generally costly (e.g., equipment, time- and human resource-
demanding) and have poor flexibility to deal with all river conditions (e.g., river widths,
discharges, flow velocities). Currently, alternative approaches rely on remote sensing (RS)
techniques, which offer innovative tools for mapping water bodies based on relevant spec-
tral indices. These methodologies are time- and cost-efficient and they allow us to monitor
sandbar features over broader spatial extents.

Nowadays, RS data are available for short revisiting times and hence are expected
to have the capability to be used as tools to investigate geomorphic processes that shape
channel bars [20]. Information on the long-term morphodynamic evolution of channel bars,
which have seldom been examined for many alluvial rivers, is required to reduce possible
hazards in navigation and increase the understanding of erosion and deposition process
responses to both natural and human influences in the river.

Valuable RS optical images data sources are, for example, those from the National
Aeronautics and Space Administration (NASA), the U.S. Geological Survey (USGS), or
the Copernicus satellite missions. Examples of studies that have used RS data to inspect
the hydro-morphological evolution of rivers include those dedicated to the Mississippi
River [20] and Yangtze River [21] using Landsat 5 and Landsat 8 imagery and the Po
River [22] using Landsat 4-5-TM (Thematic Mapper sensor), Landsat 8-OLI (Operational
Land Imager), and Sentinel-2 (S2) MSI (Multispectral Instrument) imagery. Recently, the
new Landsat 9 (L9) carrying the Operational Land Imager 2 (OLI-2) was used to study
bathymetry in the Colorado and Potomac Rivers [23]. The recent imagery from the S2 and
L9 satellites is advantageous over that from previous satellites not only because of the higher
spatial and temporal resolution but also because of the multispectral channels available.
S2 includes 20 m resolution Short Wave Infrared (SWIR) bands and 10 m resolution Red,
Green, Blue, and Near Infrared (NIR) bands, thereby making water mapping based on water
indices at 10 and 20 m resolution possible [24]. L9, equipped with OLI-2, provides data with
a 14-bit dynamic range, which is an improvement above the OLI on Landsat 8. As a result
of OLI-2’s increased sensitivity to water-leaving radiation, its better radiometric resolution
presents new prospects for monitoring inland and coastal waterways [25]. However, the
application of S2 imagery in this type of study is scarce and the capability of L9 data has
not yet been appraised for this end due to the very recent launching of the L9 satellite.
It is expected that suitable multi-source data analysis could improve the time resolution
limitations of RS data [26,27], in particular, S2 and L9 data.

Based on algebraic expressions and combinations of multispectral band reflectance data,
several methods have been developed for surface water extraction from satellite imagery.
The use of indices based on optical properties and subsequent application of image classifi-
cation and segmentation methods to detect water and non-water pixels in satellite imagery
has been found to be a valuable tool for understanding river morphodynamics [28,29] and
can also have an important role in aquatic habitat assessment and ecological modeling.

The channel bar area, which can be assumed to correspond to the non-water pixels, has
been commonly employed as a proxy to assess a sandbar’s dynamics [21]. Likely for simplic-
ity, many studies have considered class separation values of spectral indices [30], without
assessing their applicability. However, appropriate class separation values (i.e., thresholds)
should be established to distinguish water surfaces/bodies from other land cover fea-
tures, which should be defined on a case-by-case basis for the different multispectra-based
data/outputs. The identification of these critical values has been discussed by different



Remote Sens. 2023, 15, 1927 3 of 23

authors, arguing that the application of a fixed threshold value when using water indices to
separate water from the background is disputable. For example, Ji et al. (2009) [31] stated
that the threshold was a dynamic value that changed depending on the subpixel land cover
characteristics.

The aim of this study was to explore different methodologies for mapping surface
water and sandbars in rivers using data from the S2 and the newly launched L9 satellite
in order to better understand the usefulness of data from both origins for this task. This
study, which focused on a segment of the Lower Tagus River in Portugal, presents the
first assessment of the potential of L9 for estimating water and sandbar surfaces in fluvial
systems. Several spectral water indices were used to identify water and sandbars in the
river bed. The results obtained for the water and sandbar areas were compared and the
classification of surface attributes based on case-dependent decision values was assessed.

2. Materials
2.1. Site Description, Hydrology, and Hydraulics

This study focused on a selected segment of the main bed of the Tagus River, located
in Portugal (Figure 1). This river segment had a length of about 11 km and an area of
≈4.12 km2; the central point coordinates were: 39◦19′36′′N; 8◦31′44′′W. At this location,
the river is embedded in an area dominated by irrigated agriculture.

Tagus River

Spain

Portugal

Figure 1. Identification of the river segment investigated in this study (left) and its location in the
Tagus River (right). The view of the river segment, which captured a condition of very low river
discharge that occurred in the summer of 2022, reveals the extensive presence of sandbars along the
river bed.

The Tagus River has its source in the center of the Iberian Peninsula (Western Europe)
in Sierra de Albarracín (Spain), at an altitude of 1593 m a.s.l., and runs through approxi-
mately 1100 km until it outflows near Lisbon (Portugal) to the Atlantic Ocean (Figure 1).
It is the longest river in the Iberian Peninsula. Its basin extends thus across Portugal and
Spain, being the largest river basin in the Portuguese territory and the third largest in the
Iberian Peninsula, with an area of about 81,310 km2 (e.g., refs. [32,33]) with ≈68% in Spain
and ≈32% in Portugal. In this area, the climate is typically Mediterranean with two clearly
different periods: a long dry summer season and a wet season during winter and early
spring. In the Tagus basin, precipitation is characterized by strong variability, including
interannual variability. The mean annual temperature ranges from 8 ◦C in the mountain
peaks in the northern part of the basin to 17 ◦C in the western part; the mean annual
precipitation ranges from 1800 mm to less than 400 mm [34].

Several studies have reported a decline in the availability of water resources in the
Mediterranean region since the 1980s—e.g., ref. [35], including Spain and Portugal. This
is partly caused by a generalized decrease in annual precipitation in this region mainly
since the middle of the last century—e.g., refs. [36–38], which was accompanied by an
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increase in average temperatures—e.g., refs. [39–41]. These regional climatic trends, which
are also predicted by climate change scenarios for the coming decades, and intensive water
use have led to a reduction in streamflow in many river basins in this region over the
past decades [42]. The main anthropic activities in Spain that have been identified [33] to
influence streamflow, leading to its decline in both highly regulated and non-regulated
rivers [43,44], are: (a) increasing use of water for irrigation; (b) overexploitation of ground-
water resources; (c) inter-basin water transfers; and (d) processes of afforestation due to the
abandonment of traditional rainfed crops. These activities also affect the Tagus River—e.g.,
ref. [33], with water management decisions in the Spanish territory greatly affecting water
availability in the downstream country, Portugal. Overall, sustainability issues are being
discussed by the governmental agencies responsible for water issues of both countries.

Currently, the Tagus River is heavily regulated by dams. Nevertheless, the river
exhibits extreme seasonal and interannual discharge variability, with peak discharges up
to 30 times larger than the average discharge [45,46]. On average (1930–2015), this river
drains 14,946 hm3 of water annually, of which 6189 hm3 has its origin in Portugal [47].

Based on the analysis of a (time) series of cross-sectional profiles of the Lower Tagus
River, a study conducted about two decades ago [48] concluded that the silting up of the
Tagus River’s river bed had lost importance and was no longer observed. The evolution
of the river bed between Alferrarede and Vila Franca de Xira, in the period from 1971/72
to 1998/99, was studied by the National Laboratory of Civil Engineering [49]. However,
Fernandes et al. (2020) [50] identified the recently increased meandering of the flow
channel and abundant deposition of coarse inorganic material within the Tagus River’s
main channel, namely upstream of the city of Santarém (39◦14′2′′N; 8◦41′10′′W), and
in the mouths of tributaries, which was reducing the river flow transport capacity and
accentuating the risks of adjacent land flooding due to relatively low discharges.

In 2022, a severe drought affected several regions of Europe due to a persistent
negative precipitation anomaly. This situation widely impacted river discharges across
Europe, including Portugal and Spain. In the Iberian Peninsula, the 2022 water deficit
was also aggravated by heat waves registered in late spring and summer. These types of
events are critical for Portugal, where an intensification of the frequency and severity of
droughts has been witnessed since the 1980s and particularly affect the territory south of the
Tagus River, which is well known for its vulnerability to droughts and desertification [51].
The consequences are manifold, since low flow conditions affect hydroelectric energy
production, water supply, provision of ecosystem services, and the ecological status of
the river. For example, forced by the hydrologic scenario, several dams in the Tagus
River suspended their hydroelectric production in 2022 [52]. Additionally, the extremely
low discharge values reached in 2022 revealed features of the morphology of the Tagus’s
river bed in the study area, namely sandbars that are seldom exposed and were directly
observable; the sandbars are well perceived in Figure 1.

For this study, data from a nearby hydrometric gauging station (Almourol station,
17G/02H) of the Portuguese hydrometric network of Agência Portuguesa do Ambiente
(APA), published on the website of Serviço Nacional de Informação de Recursos Hídricos
(SNIRH, https://snirh.apambiente.pt, accessed on 12 September 2022), were inspected. For
the Almourol station, the coordinates are 39◦27′38′′N 8◦22′31′′W at 19 m above sea level
(a.s.l.); the drained area at the measuring section was 67,482 km2, with an average altitude
of 137 m a.s.l. and an average slope of 7.8%. This station was located approximately 16 km
upstream of the study site; there were no main tributaries between the Almourol station
and the study site.

Records from the Almourol station (Figure 2a) revealed that low discharges were
persistent during the last decade. For this station, Figure 2b shows the daily discharges
observed from the beginning of the hydrologic year 2021/2022 (1 October 2021) until
25 October 2022. During 39 days (18 June–26 July 2022), the average daily discharges
ranged between 16.07 and 33.34 m3/s (average discharge in this period was 22.81 m3/s),
whereas the historical mean discharges in June and July (1990/1991–2019/2020) were about

https://snirh.apambiente.pt
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143 and 128 m3/s, respectively. This low flow event in 2022 had undisputable negative
impacts on the associated ecosystems and river ecosystem services.
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Figure 2. Data from Almourol hydrometric station (17G/02H), which was located just upstream
of the studied river segment: (a) annual discharge time series for the period 1990/91–2019/2020;
(b) daily discharge time series, for the period 1 October 2021–25 October 2022. A period of exceptional
low river discharge occurred in the summer of 2022.

2.2. Remote Sensing Data
2.2.1. Sentinel-2 Satellite Data

S2 data were acquired from the Copernicus Open Access Hub European Space Agen-
cies (https://scihub.copernicus.eu/, accessed on 3 September 2022). S2 was launched on
23 June 2015 by the European Space Agency (ESA) and is a high-resolution, multispectral
imaging mission. It includes two twin satellites (Sentinel-2A and Sentinel-2B) that fly in the
same orbit (a sun-synchronous orbit at a mean altitude of 786 km) but offset 180 degrees to
give a revisit frequency of 5 days at the equator. The S2 instruments sense a 290 km wide
swath and 13 spectral bands, although at different spatial resolutions: four bands at 10 m
spatial resolution, six bands at 20 m, and three bands at 60 m [53]. The spectral separation
of each band into individual wavelengths is accomplished by stripe filters mounted on top
of the satellite sensors.

Level 2A images (orthoimages in UTM/WGS84 projection) from S2, recorded on 8 July
2022 (average daily discharge was 24.8 m3/s; see Figure 2b), were selected for this study.
The images were cloud free and already atmosphere-corrected. Some attributes of the S2
satellite imagery are shown in Table 1.

2.2.2. Landsat 9 Satellite Data

L9 satellite was successfully launched on 27 September 2021, and L9 data were avail-
able to the public on 10 February 2022. L9 is a partnership between NASA and USGS and
carries OLI-2 and Thermal Infrared Sensor 2 (TIRS–2). The radiometric resolution of the
sensor is improved to 14-bit quantization. The L9 orbit replaces the current orbit of Landsat
7 and is temporally offset in relation to the Landsat 8 and S2 orbits.

This study used L9 Collection 2 Surface Reflectance (L9C2_SR) data that have been
geometric and radiometric corrected by USGS and downloaded from the USGS platform
(https://earthexplorer.usgs.gov, accessed on 3 September 2022), namely cloud free images
that were obtained on 7 July 2022 (average daily discharge was 24.9 m3/s; see Figure 2b).
The selection of the L9 data took into consideration the proximal dates of the S2 and
L9 records and the discharge of the river. The L9 multispectral wavelength bands’ data
imagery were available at 30 m full spatial resolution and are described in Table 1, together
with some of their attributes.

https://scihub.copernicus.eu/
https://earthexplorer.usgs.gov
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Table 1. Attributes of the Sentinel-2 (S2) and Landsat 9 (L9) satellite imagery used in this study. NIR
stands for near infrared and SWIR for shortwave infrared.

Satellite Acquisition
Date/Time

MSI Tile or
Path-Roth Entity ID Band ID Band

Band
Central

Wavelength
(nm)

Band Width
(nm)

Spatial
Resolution

(m)

S2
8 July 2022

11:21:31
(UTC)

T29SND S2ASIL2A20220708
T112131N0400R037

B2 Blue 490 65 10
B3 Green 560 35 10
B4 Red 665 30 10

B8A NIR 865 20 20
B11 SWIR1 1610 90 20
B12 SWIR2 2190 180 20

L9
7 July 2022

11:14:37
(UTC)

204-33 LC09L2SP204033202
207072022070902T1

B2 Blue 482 20 30
B3 Green 562 75 30
B4 Red 655 50 30
B5 NIR 865 40 30
B6 SWIR1 1610 100 30
B7 SWIR2 2200 200 30

3. Methods
3.1. Methodology Overview

Figure 3 shows a schematic flowchart that illustrates the methodological steps that
were used in this study for mapping water and non water (i.e., sandbars) in fluvial sys-
tems. After preprocessing the S2 and L9 images, 6 bands were selected to calculate the
Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index
(MNDWI), Augmented Normalized Difference Water Index (ANDWI), and Automated
Water Extraction Index (AWEI), namely AWEIsh (i.e., with shadow) and AWEInsh (i.e.,
with no shadow). The approach was applied to both S2 and L9 satellite imagery.

Indices calculation
NDWI, MNDWI, ANDWI, AWEIsh and AWEInsh

Manual detection
of class separation

threshold value

Dynamic detection of class
separation threshold value

(Otsu method)

Water and non-water maps

Data set pre-processing

Inputs

Processing steps

OutputsWater 
indices maps

Histograms calculation

Satellite images

Figure 3. Flowchart illustrating the methodological steps that were carried out in this study for
mapping water and non-water (sandbars) surfaces using Sentinel-2 and Landsat 9 satellite imagery.
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3.2. Spectral Water Indices

The different reflectance data that were obtained from S2 and L9 satellites, especially
those that relied on the Red, Green, Blue, NIR, and SWIR wavelength bands, could be
used to calculate spectral (water) indices that were effective in assessing different attributes
of the Earth’s surface, particularly for detecting surface water at the image’s pixel scale.
Spectral water indices were single numbers calculated arithmetically (e.g., ratio, difference)
using two or more spectral bands. Based on these indices, the separation of water bodies
from other land cover features was determined by the application of appropriate index
classification decision values [54], which were index specific. The classification was deter-
mined by the characteristics of the surface’s reflectance. For example, the NDWI, defined
by McFeeters (1996) [55], is widely accepted for this purpose, as well as the MNDWI [56],
but other indices such as the ANDWI [57] and the AWEI can also identify water features.
AWEI was proposed by Feyisa et al. (2014) [58] and embraces two variants: AWEIsh, which
was designed primarily to remove shadow pixels from imagery, and AWEInsh, which was
designed for areas with an urban background.

This study applied these five indices (Table 2), which are briefly described below, for
data analysis. The Raster Calculator Tool in open software QGIS v3.6 was applied to the
orthoimages of each spectral wavelength band. Three of these indices show a form of
normalized difference (NDWI, MNDWI and ANDWI); they are constrained within [−1, +1]
and their thresholds to distinguish water and non-water surfaces are close to zero. High
values are associated with water surfaces and low values are associated with land surface
features. The two additional indices (AWEIsh and AWEInsh) show other arithmetic forms;
they take values over wider ranges and their thresholds move away from zero.

Table 2. Spectral water indices used for imaging water feature extraction.

Index Abbreviation Formula References

Normalized Difference
Water Index NDWI Green − NIR

Green + NIR [55]

Modified Normalized
Difference Water Index MNDWI Green − SWIR1

Green + SWIR1 [56]

Augmented Normalized
Difference Water Index ANDWI Blue + Green + Red − NIR − SWIR1 − SWIR2

Blue + Green + Red + NIR + SWIR1 + SWIR2 [57]

Automated Water
Extraction Index

AWEIsh Blue + 2.5×Green− 1.5× (NIR + SWIR1)− 0.25× SWIR2
[58]AWEInsh 4× (Green− SWIR1)− (0.25×NIR + 2.75× SWIR2)

NDWI: McFeeters (1996) [55] proposed the well-known NDWI to detect and assess the
extent of surface water in wetland environments. The imagery classification is based on the
strongest absorption of NIR wavelengths by water in relation to vegetation and the strongest
reflectance of NIR wavelengths by vegetation in relation to water. For this purpose, NDWI
uses the green and NIR spectral wavelength bands: it maximizes the reflectance of a water
body in the green band while minimizing that in the NIR band. Although NDWI was
designed with a zero threshold to distinguish water and land surfaces, this value varies
depending on the sensor and image properties [59]. NDWI has been found able to identify
water pixels quite accurately—e.g., refs. [60–62].

MNDWI: Xu (2006) developed this index [56], which uses the SWIR band instead of
NIR. In general, compared to NDWI, water bodies yield greater positive MNDWI values
because water bodies generally absorb more SWIR light than NIR light. Soil, vegetation,
and built-up classes lead to smaller negative MNDWI values because these land surface
classes reflect more SWIR light than green light [63]. MNDWI has been found to provide
more accurate results than the conventional NDWI—e.g., refs. [64–66].

ANDWI: Rad et al. (2021) [57] proposed the ANDWI, which is based on an expanded
set of spectral bands (Blue, Green, Red, NIR, SWIR1, and SWIR2) to maximize the con-
trast between water and non-water pixels. It successfully suppresses the omission and
commission errors caused by land cover (e.g., rooftops) and/or natural events (e.g., dust



Remote Sens. 2023, 15, 1927 8 of 23

storms) [57]. Imaging classification for differentiating water from non-water pixels was
discussed by Rad et al. (2022) [67]. This index was applied to quantify and understand the
presence of surface water by a meagre number of studies (e.g., ref. [68]) since it was only
recently proposed.

AWEIsh and AWEInsh: Feyisa et al. (2014) [58] proposed the AWEI to identify
water features. It includes two variants: AWEIsh was designed primarily to remove
shadow pixels, whereas AWEInsh was dedicated to areas with an urban background.
AWEI aims to maximize the separability of water and non-water pixels through band
addition, differencing, and applying different coefficients [69]. It uses visible, NIR, and
SWIR wavelength bands.

Since the S2 data are available at different spatial resolutions, depending on the
wavelength band (Table 1), resampling of the data was needed to calculate indices that
combined different wavelength bands’ data. Due to the procedures needed to perform
changes on a pixel basis, the resampling required by the different spatial resolution of the
MSI sensor was unquestionably a relevant source of errors [70,71]. Nevertheless, to ensure
that the resolutions of the six bands from S2 imagery used in this study were consistent, the
data of the visible and NIR bands were resampled using the nearest neighbor resampling
technique before calculating the water indices—e.g., ref. [72].

3.3. Imagery Classification Decision Value

All of the water indices described in Section 3.2 allowed water and non-water pixels to
be classified by applying a threshold value, i.e., a classification decision value. This value
should be adjusted to different indices and imagery of different classification priorities. The
identification of the threshold value is of great importance for the accurate delimitation
of water bodies and it can be performed (i) manually—e.g., refs. [73,74], (ii) through a
dynamic threshold selection method (e.g., Otsu method [75], or Jeffries–Matusita (J–M)
distance method [76], or (iii) using automated methods—e.g., refs. [54,77]. Nevertheless, the
selection of suitable class delimitation values is a sensitive issue that has direct implications
for mapping surface attributes and class analysis. Sezgin and Sakur (2004) [78] investigated
different methods to separate classes based on decision values.

For example, for NDWI- or MNDWI-based mapping of water bodies, the critical
values are often assumed to be zero (larger index values are associated with the presence
of water). However, some studies showed that a value of zero may not always generate
the best segmentation results for all situations [29,56,64]; in practice, multispectral images
acquired by different satellite platforms at different regions and times always have different
characteristics, which demands a case-by-case decision. Xu et al. (2005) [73] manually
searched for water class critical NDWI and MNDWI values and Feyisa et al. (2014) [58]
manually investigated multiple values and selected the value that revealed the smallest
sum of the commission and omission errors as the optimal value. Manual decisions in
selecting critical class separation thresholds are usually based on histogram empirical
analysis—e.g., ref. [79].

The Otsu method [75] is a commonly used method in image processing to search for
the class (i.e., segment) separation critical value in bimodal histograms of pixel values for
the target image. The method has two components: a measure of within-class homogeneity
and a measure of between-class heterogeneity. It is based on the minimum within-class
variance (σ2

w) criterion, with the variance being chosen as the within-class homogeneity
measure because relatively homogeneous classes generally have low variance. The method
finds a threshold that maximizes the between-class variance (σ2

B), considering two classes
in the image, C1 and C2, with C1 denoting pixels with levels [1, . . . , k] and C2 denoting
pixels with levels [k + 1, . . . , L]. Then, the Otsu thresholding algorithm is described by the
following equations:
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σ2
w = ω1σ2

1 + ω2σ2
2 (1)

σ2
B = ω1(µ1 − µ)2 + ω2(µ2 − µ)2 (2)

µ = ω1µ1 + ω2µ2 (3)

ω1 + ω2 = 1 (4)

σ2
B(k
∗) = max

1≤k≤L
σ2

B(k) (5)

where ω1 and ω2, µ1 and µ2, and σ2
1 and σ2

2 are the probabilities of class occurrence, the
class mean levels, and the class variances, respectively; µ is the total mean level of the
original image; and k∗ is the optimal threshold (at level k).

This method is not biased by case-specific image contrast or brightness conditions
(e.g., ref. [80]); it has been found to generate a comparatively satisfactory result regardless
of whether the image histogram is obviously bimodal. However, since land cover is only
classified into two classes by the Otsu algorithm, it is likely that the water class would be
classified with other types of land cover with higher or similar water index values [81].

Another approach in class separation that has been widely used in remote sensing is
the Jeffries–Matusita (J–M) distance method, which applies a statistical class separability
criterion [54,77,82–84]. This method assesses the J–M distance (i.e., a distance in statistical,
not metric, terms) between a pair of class-specific probability functions (usually, assumed
Gaussian), and thus their separability. It uses the J–M distance as a measure of the potential
correctness of the classification results. This distance is asymptotic to 2 when signatures are
completely different and tends to 0 when signatures are identical. Thus, a small J–M value
indicates that the separation is poor and there will likely be many misclassified objects. For
the two probability distributions created by a feature, corresponding respectively to two
classes C1 and C2 (in this case, for water and non-water body samples) of size n1 and n2,
the J–M distance is defined as [54]:

JM(C1, C2) = 2
(

1− e−B(C1,C2)
)

(6)

where B(C1, C2) is the Bhattacharya distance, given by:

B(C1, C2) =
1
2

ln

(
σ2

1 + σ2
2

2σ1σ2

)
+

1
4

(
(µ1 − µ2)

2

σ2
1 + σ2

2

)
(7)

with µ1 and µ2 and σ2
1 and σ2

2 being the object characteristic mean values and variances of
the distributions for classes C1 and C2, respectively. For simplicity, JM will be used to refer
to the J–M distance.

In this study, the spectral indices’ histograms were inspected, and water and non-
water class separation values were determined based on (i) empirical manual decisions
and (ii) application of the within-class minimum variance criterion. The different estimated
critical values were compared based on the J–M distance method. This procedure was
adopted as a tool (i.e., a feature-ranking measure) for handling the binary classification
problem over the available datasets, therefore assessing the estimated class decision values
for each satellite data-based index. Outcomes in terms of the water/non-water areal
coverage of the studied river segment and its mapping were also compared.

Figure 3 shows a schematic flowchart that illustrates the methodological steps that
were used in this study for mapping water and non water (i.e., sandbars) in fluvial systems.
The approach was applied to both S2 and L9 satellite imagery.
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4. Results
4.1. Comparison between the S2 and L9 Spectral Water Indices Maps

For a selected segment of the Tagus River (Section 2.1), maps of the water indices
NDWI, MNDWI, ANDWI, AWEIsh, and AWEInsh calculated using the S2 and L9 satellite
data are shown in Figures 4 and 5, respectively. The grey scale used in the different maps
was adjusted to each of the indices since the values of the calculated indices ranged between
different limit values; however, the same scale was used for comparison purposes for the
same index but different satellites’ data. For NDWI, MNDWI, and ANDWI, the range of
pixel values observed was wider for S2 than for L9. For AWEIsh, the difference in range
between the S2 and L9 values was relatively small. For AWEInsh, the spread in the values
was similar for the S2 and L9 data, although overall, the index pixel values for L9 were
higher than for S2.

The corresponding S2 and L9 data histograms (Figures 4 and 5) were not unimodal,
which revealed the presence of different types of surfaces/classes, i.e., subareas that were
dominated by different attributes. In this case, those attributes corresponded broadly to the
presence of water and non water (here, related to sandbars). Comparatively, the AWEI indices’
histograms revealed a stronger signal for water surfaces than the other indices’ histograms.

To better appraise the relationship between the S2 and L9 data, correlations between
the satellite-based indices were explored. Figure 6 shows scatterplots of cross-comparison
between water indices (NDWI, MNDWI, ANDWI, AWEIsh, AWEInsh) calculated at the
pixel scale based on S2 and L9 satellite images for 2000 randomly selected data points. The
linear relationship between paired pixel-scale index values and the correlation coefficients
are shown in the respective panels (Figure 6); the linear regression line is also shown.
Overall, for the tested area, a cross-comparison of the S2 and L9 indices showed that
there was good agreement between the S2 and L9 datasets, as shown in Figure 6. The
highest correlation coefficient was found for AWEInsh (0.95) and the lowest was found
for NDWI (0.83). Among the normalized indices and for the classification criteria applied,
MNDWI was the index for which the S2 and L9 data agreed best, whereas the biggest
discrepancy was found for NDWI. The plots in Figure 6 revealed the dominance of two
types of surfaces, which is shown by the uneven distribution of data points in the studied
domain, in particular, the identification of two “sub-sets” for water and non-water surfaces.
Outliers were not removed, which could have been generated by very low reflectance
values (often occurring over water surfaces) that may have caused stability problems,
particularly when computing band ratios [70]. For the five indices, the mean pixel values
estimated using the S2 data were larger than those estimated using the L9 data for NDWI
and AWEIsh, and they were smaller for the other indices.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4. Cont.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4. Using Sentinel-2 imagery. (a,c,e,g,i) Spectral water indices maps of a segment of the Tagus
River (Portugal) for NDWI, MNDWI, ANDWI, AWEIsh, and AWEInsh; the darker colors indicate
non-water features. (b,d,f,h,j) Corresponding data histograms. The data spatial resolution is 20 m.
The date of observation was 8 July 2022.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5. Using Landsat 9 imagery. (a,c,e,g,i) Spectral water indices maps of a segment of the Tagus
River (Portugal) for NDWI, MNDWI, ANDWI, AWEIsh, and AWEInsh; the darker colors indicate
non-water features. (b,d,f,h,j) Corresponding data histograms. The data spatial resolution is 30 m.
The date of observation was 7 July 2022.
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Figure 6. Correlation analysis of pixel=based water index values calculated from Sentinel-2 and
Landsat 9 imagery: (a) NDWI; (b) MNDWI; (c) ANDWI; (d) AWEIsh; and (e) AWEInsh. The
corresponding linear regression lines, equations, and correlation coefficients are shown.

4.2. Impact of Class Separation Decision Value on Water Body Mapping

For the NDWI, MNDWI, ANDWI, and AWEI data obtained using S2 and L9 satellite
imagery, Table 3 shows the water/non-water class separation values for each index, esti-
mated from the analysis of the histograms (Figures 4 and 5) based on manual decision. As
expected, the class separation thresholds found for NDWI, MNDWI, and ANDWI were
close to zero, whereas they moved away from zero for AWEIsh and AWEInsh. Table 3
also shows the corresponding percentage area for the classes water and non-water in the
selected river segment. The classification decisions of the S2 and L9 datasets were assessed
by calculating J–M scores (Table 3).
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Table 3. Water and non-water class separation index values obtained from Sentinel-2 (S2) and Landsat
9 (L9) satellite imagery, estimated from manual decision analysis of the histograms. Pixel spatial
resolution is 20 m for S2 and 30 m for L9.

Satellite Water Indices Pixel Value
Mean

Class Separation
Value from

Manual Decision

Water Class Area
(%)

Non-Water Class
Area (%) J–M Distance

S2

NDWI −0.088 −0.022 32.4 67.6 1.85
MNDWI −0.142 −0.075 35.6 64.4 1.89
ANDWI −0.119 −0.053 33.8 66.2 1.99
AWEIsh −0.289 −0.225 43.9 56.1 1.95

AWEInsh −1.455 −1.350 45.4 54.6 1.98

L9

NDWI −0.100 −0.055 33.4 66.6 1.84
MNDWI −0.115 −0.066 39.1 60.9 1.97
ANDWI −0.110 −0.039 33.6 66.4 1.94
AWEIsh −0.338 −0.285 43.0 57.0 1.97

AWEInsh −1.045 −0.943 43.0 57.0 1.97

For the same datasets, the approach based on the minimum within-class variance cri-
terion led to the estimated class separation index values, and the corresponding percentage
area for the water and non-water classes and J–M distances shown in Table 4.

Table 4. Water and non-water class separation index values obtained from Sentinel-2 (S2) and
Landsat 9 (L9) satellite imagery estimated from minimum within-class variance criterion. Pixel
spatial resolution is 20 m for S2 and 30 m for L9.

Satellite Water Indices Pixel Value
Mean

Class Separation
Value from min.
Class Variance

Water Class Area
(%)

Non-Water Class
Area (%) J–M Distance

S2

NDWI −0.088 −0.071 36.4 63.6 1.76
MNDWI −0.142 −0.103 38.0 62.0 1.87
ANDWI −0.119 −0.085 36.5 63.5 1.88
AWEIsh −0.289 −0.225 43.4 56.6 1.97

AWEInsh −1.455 −1.424 46.1 53.9 1.98

L9

NDWI −0.100 −0.094 36.3 63.7 1.74
MNDWI −0.115 −0.082 41.0 59.0 1.97
ANDWI −0.110 −0.078 39.1 60.9 1.96
AWEIsh −0.338 −0.271 43.1 56.9 1.98

AWEInsh −1.045 −1.074 45.4 54.6 1.96

Overall, the results in Tables 3 and 4 indicated that the presence of different fea-
tures/classes in the S2 and L9 data could not be ignored (JM > 0.5) and that the segmenta-
tion applied to all of the indices was consistent (JM > 1.75). However, for both criteria used
to classify water and non-water surfaces, class separability was apparently less clear for
NDWI than for other indices (Figure 7a).

In comparative terms, AWEI imagery (for both AWEIsh and AWEInsh) identified
more water than the other indices (NDWI, MNDWI, and ANDWI). Except for AWEIsh,
the class separation values (Tables 3 and 4) estimated by applying the Otsu method were
smaller than those estimated by manual decision. This trend was found for the S2 and L9
data. As a consequence, the estimated water surface area was generally slightly larger for
the imagery classification based on the Otsu method (Tables 3 and 4, Figure 7b). This type
of result was also reported by, for example, Rad et al. (2022) [67].

For this case study, the incremental difference in water surface coverage estimated from
NDWI and AWEInsh was, on average, about 10% (Figures 7 and 8), which corresponded
to a reduction in the estimated dominance of sandbars in the river bed. In this case, the
results suggested that AWEI could underestimate the presence of sandbars. The results also
showed that MNDWI identified a larger area for the water surface than NDWI (although
smaller than the AWEI estimates), regardless of the approach used to estimate the class
separation critical index value and the data’s origin (S2 and L9). On average, the water
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surface area obtained for ANDWI was similar to the result obtained for NDWI for both
class segmentation criteria, although ANDWI led to larger J–M distances.
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Figure 7. Comparison of classification results obtained for the NDWI, MNDWI, ANDWI, AWEIsh,
and AWEInsh calculated from Sentinel-2 (S2) and Landsat 9 (L9) data, applying manual decision
and the minimum within-class variance (Otsu method) criterion: (a) J–M distance found for the class
segmentation decision values; (b) water surface percentage area in the studied segment of the Lower
Tagus River (Portugal). The classes are for water and non-water (i.e., sandbars) surfaces. The 1:1 line
is shown for reference. The remote sensing data spatial resolution is 20 m for S2 (8 July 2022) and
30 m for L9 (7 July 2022), for similar discharge conditions.

Although the remote sensing data observation dates corresponded to two consecu-
tive days, discharge at the nearby Almourol hydrometric station (Section 2.1) was similar
on 7 July (24.9 m3/s) and 8 July (24.8 m3/s), which corresponded to the observation
dates of the L9 and S2 data, respectively. Since the water/non-water class areas may
vary significantly with a small fluctuation in the river stage due to the low gradients of
sandbars—e.g., ref. [21], satellite images of similar river stages are required to reduce
errors in assessing sandbars.
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Figure 8. Relationship between the percentage area estimated for the water surface in the selected
segment of the Lower Tagus River (Portugal) and the water/non-water class segmentation decision
values (estimated manually and by the Otsu method) used to classify the spectral water indices:
(a) NDWI, MNDWI, and ANDWI; and (b) AWEIsh and AWEInsh. Data are from Sentinel-2 (S2) and
Landsat 9 (L9). The remote sensing data spatial resolution is 20 m for S2 (8 July 2022) and 30 m for L9
(7 July 2022), for similar discharge conditions.

In relation to the very low flow condition in the river, for the individual indices and
the two satellites, the difference in classifying water and non-water surfaces was larger for
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NDWI, MDWI, and ANDWI than for the AWEI (Figure 8). However, this study did not
allow us to discuss these results further or generalize trends in the outcomes.

4.3. Sentinel-2 and Landsat 9 Spectra-Based Water and Non-Water Mapping

The water body was extracted by segmenting the NDWI, MNDWI, ANDWI, and
AWEI images using the corresponding classification threshold values estimated by manual
decision (Table 3). The resulting binary maps for water and non-water (sandbars) classes
are shown in Figures 9 and 10 for the S2 and L9 data, respectively.

(a) (b)

Non-Water

(f)

(c) (d)

(e) (f)

Water

Figure 9. (a) View of the selected segment of the Lower Tagus River (Portugal) and adjacent areas.
(b–f) Water and sandbar (non-water) mapping of the river segment based on the classification of
water indices calculated using Sentinel 2 data (8 July 2022). The class separation threshold was
estimated by manual decision. Data resolution is 20 m.
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(a) (b)

Non-Water

(c) (d)

(e) (f)

Water

Figure 10. (a) View of the selected segment of the Lower Tagus River (Portugal) and adjacent areas.
(b–f) Water and sandbar (non-water) mapping for the river segment based on the classification of
water indices calculated using Landsat 9 data (7 July 2022). The class separation threshold was
estimated by manual decision. Data resolution is 30 m.

4.4. Details of S2 and L9 Water and Non-Water Mapping

In order to better understand differences in mapping isolated sandbars based on water
indexes calculated using the S2 and L9 data, two sub-sections of the area mapped in this
study were investigated. These sub-sections illustrated some of the types of morphology
found in the river bed: (i) a large single sandbar (Figure 11) and (ii) multiple isolated
sandbars (Figure 12). The graphical scale used in Figures 11 and 12 is larger than the
scale used in Figures 9 and 10, thus allowing a more detailed inspection of the pixel-based
classification. It highlights the need to adjust classification criteria on a case-by-case basis.
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Sentinel-2 NDWI MNDWI ANDWI AWEISH AWEINSH

Landsat 9 NDWI MNDWI ANDWI AWEISH AWEINSH

Non-Water WaterReference site

Figure 11. Detailed view of the river bed mapping in a section of the river dominated by the presence
of a large single sandbar. The two panels more to left show 20 m Sentinel-2 RGB image (top row) and
30 m Landsat 9 RGB image (bottom row). The other panels show the corresponding mapping that
resulted from the analysis of the five water indices (NDWI, MMNDWI, ANDWI, AWEInsh, AWEIsh)
using the same criteria applied in Figures 9 and 10.

Sentinel-2 NDWI MNDWI ANDWI AWEISH AWEINSH

Water Non-WaterReference site

Landsat 9 NDWI MNDWI ANDWI AWEISH AWEINSH

Figure 12. Detailed view of the river bed mapping in a section of the river that exhibits the presence
of multiple sandbars. The two panels more to left show 20 m Sentinel-2 RGB image (top row) and
30 m Landsat 9 RGB image (bottom row). The other panels show the corresponding mapping that
resulted from the analysis of the five water indices (NDWI, MMNDWI, ANDWI, AWEInsh, AWEIsh)
using the same criteria applied in Figures 9 and 10.

5. Discussion

This study was supported by the calculation and analysis of five satellite-based water
indices, which each relied on different combinations of diverse spectral bands. In general,
the results obtained for a given index showed that water/sandbar mapping can be affected
more by inadequate decisions in image classification (Figure 8) than by differences in the
response signal in the different spectral water indices. This is thus a key issue that needs to
be addressed carefully in all studies using spectral indices, namely the task of identifying
image classification decision values. When available, ground truth should be taken into
consideration. A recommendation for studies that face limitations in terms of ground truth
data availability would be the broadening of the indicator suite used in assessments of land
surface attributes and imagery classification.

The water and sandbar mapping of the river segment (Figures 9 and 10) produced in
this study and the results obtained for the areal coverage of the two classes (Tables 3 and 4
and Figure 8) suggested that the S2 and L9 data were comparable despite the lower spatial
resolution of the L9 data in relation to the S2 data.
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The inspection of the small-sized river segments shown in Figures 11 and 12 suggested
that, for S2 and L9 data, some of the water index-based classifications over or underesti-
mated the presence of the target sandbars. AWEIsh underestimated sandbars (as a result of
the classification decision value used for AWEIsh and/or the signal captured by this index),
which could explain the smaller number of pixels for the non-water class obtained for this
index in comparison to the other indices. The overestimation of the target sandbars was
associated especially with S2 data for water indices MNDWI and ANDWI, likely due to the
use of the SWIR band in these indices.

Nevertheless, overall, the finding related to the comparability of results using the S2
and L9 imagery broadens the opportunity to acquire relevant data and map water and
sandbar surface features at different times. In particular, it increases the frequency of
available RS imagery time frames since the orbits of the S2 and L9 satellites are offset. As
the L9 satellite was launched on 27 September 2021, there are as yet few studies dedicated
to exploring the imagery obtained by this satellite and seldom studies comparing or
combining S2 and L9 satellite imagery. With respect to applications of S2 satellite imagery
for land surface classification, namely for extracting water and sandbars in fluvial systems,
several studies have reported successful applications that were comparable to the outcomes
of this study [22,81,85]. To the best of our knowledge, currently, reference applications of
L9 imagery for the same purpose discussed in this work are not available. Although there
are presently commercial satellites that produce data of higher spatial resolution, the S2
and L9 imagery constitutes an important asset in research and for practical applications in
fluvial monitoring because the data are freely available.

The volume of emerged channel bars could be estimated by combining satellite im-
agery and river stage data [20] or through satellite imagery analysis using a machine
learning framework [86]. This feature can be used as a control variable for identifying
temporal changes in the channel bars in suitable time frames.

6. Conclusions

In general, conventional approaches to study the presence of sandbars in river beds
are costly and require a large deal of logistics, human resources, and technologies. All of
these factors contribute to hampering the availability of relevant information on river bed
conditions. In particular, since sandbars are revealed by low water levels, conventional
approaches often miss the opportunity to survey these forms under low flow conditions.
By contrast, in such situations, RS satellite-based approaches have the capability to allow
us to efficiently inspect river bed conditions, map the corresponding presence of water and
sandbars, and quantify their areas, which build up at the level of the water in the river.

The results confirmed that the pixel value distributions (i.e., histograms) for different
spectral water indices are crucial to informing satellite imagery classification, which needs
to be supported by careful identification of suitable class separation decision values. This
step needs to be addressed cautiously, in particular for allowing data from different sources
to be used complementarily. In addition, the results showed that sandbar mapping can be
affected more by inadequate decisions in image classification than by differences in the
response signal of different spectral water indices.

This study found that the water body mapping obtained from the S2 and L9 datasets
was comparable. This opens opportunities to combine the analysis of relevant data on
water and non-water (sandbars) surface features from the S2 and L9 satellites. In partic-
ular, it suggests that L9 satellite-based mapping offers the possibility to complement the
information obtained using S2 imagery, at least for the type of application discussed in this
study. This increases the frequency of available RS imagery time frames since the orbits of
the S2 and L9 satellites are offset. This study contributes to increasing the understanding
of the capabilities and applications of the recently launched L9, namely for assessing the
morphodynamic, hydraulic, and ecological conditions of rivers.
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