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In precision agriculture systems, remote sensing has played an essential role in crop
and environment monitoring, and hyperspectral imaging is a particularly effective tool
in this regard. In the last few decades, a lot of research has been done on how to use
hyperspectral imaging in agriculture. This is shown by the large amount of literature that
has been written on the subject and the wide interest it has generated in many scientific
fields, such as agronomy, Earth observation, and natural science Hyperspectral images can
be used to identify and map different crop varieties, detect crop stress and disease, monitor
plant growth and development, and assess soil properties, such as moisture, organic matter,
and nutrient content. The connoting feature of hyperspectral imaging in agriculture is
related to the hundreds of spectral bands that can be challenging for the data process,
analyses, and interpretation. This complexity makes it difficult to fully comprehend the
novel opportunities that arise from accurately analyzing hyperspectral data in agriculture.

This Special Issue seeks to address some of these issues by publishing a total of 13 arti-
cles employing the hyperspectral imaging technique, with advanced cutting-edge methods
oriented to crop yield and biomass estimation [1], crop classification and phenotyping [2–4],
plant and soil nutrient status assessment [5–9], and pest and plant disease detection [10–12].
One article [13] evaluated the spectral response of vegetation using hyper and multispectral
cameras for non-destructive remote monitoring. More than half of the articles made use of
deep learning approaches; two are specifically focused on methods and models addressing
reductions in the spectral dimensionality of hyperspectral data. Two articles are in the form
of reviews [9,12]. Below is some brief information about the content of each of them.

The research in [1] integrated two open-source systems (R language hyperspectral
processing package and Python’s Auto-Sklearn machine learning technology) combined
with automated hyperspectral narrowband vegetation index calculation and the state-of-
the-art AI-based automated machine learning technology to estimate yield and biomass in
three crops (spring wheat, pea and oat mixture, and spring barley and red clover mixture).
The study demonstrates the satisfactory capability of hyperspectral analysis for yield and
biomass prediction in complex design fields through the use of two significant open-source
software systems. Moreover, the vegetation indexes (VIs) they suggested, as well as the
automatic narrowband VI calculated, might minimize data redundancy and cleaning time,
as well as the computational power hardware requirements.

Rapid progress in remote sensing technology has made it possible for airborne hy-
perspectral imagery to provide detailed spatial data and flexibility in time, paving the
way for accurate monitoring of agriculture. To extract crop spectral reflectance properties
from the airborne hyperspectral images, the research in [2] proposed a fine classification
method based on multi-feature fusion and deep learning. In this research, Gray-Level
Co-Occurrence Matrix (GLCM), morphological profiles, and endmember abundance anal-
ysis were used to extract a range of information from images (including texture, shape,
and material composition) to exploit the spatial information of the hyperspectral imagery.
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Then, the spatial information is fused with the original spectral information to gener-
ate a classification result by using a deep neural network with conditional random field
(DNN + CRF) model. The results proved that the method proposed helps to improve the
accuracy of crop classification.

The recognition of shadowed and non-shadowed regions has become a crucial as-
pect in remote sensing in vegetation mapping. The canopy represents a complex and
constantly changing environment where leaves interact with light. Consequently, shadows
can significantly affect the estimation of biochemical or physiological status. In the study
of [3], the authors introduced a series of processes to analyze an image, including a 1D
CNN model (able to extract features from an image by processing its pixel values along a
single dimension) to automatically characterize the spectral variation in wheat leaves and
spikes in shadowed and non-shadowed regions. To achieve these objectives, two convolu-
tional neural networks were employed to automatically map wheat canopy components
in shadowed and sunlit regions and to determine their specific spectral signatures. The
first method uses pixel vectors of the full spectral features as inputs to the CNN model,
whereas the second method integrates the dimension reduction technique, known as linear
discriminate analysis (LDA), along with the CNN to increase the feature discrimination and
improves computational efficiency. Both the proposed methods achieved values equal to or
slightly higher than 97% accuracy, but CNN-LDA was able to enhance the interpretability
of the spectral information and to reduce the computational complexity and the processing
time by half compared to the CNN-RAW method.

The reliability of remote sensing data is also adversely impacted by significant diurnal
variations. The issue of diurnal variations has been highlighted in various plant pheno-
typing studies, but only a few studies have attempted to model the changing patterns of
diurnal effects to enable accurate prediction of the degree of their impact. In this view,
the research of [4] collected time-series field images with very high sampling frequen-
cies (2.5 min) for corn plants from the vegetative stage to the reproductive stage in the
2019 growing season, for a total of 8631 hyperspectral images. The analysis of these images
showed that while diurnal variations significantly affect almost all the image-derived phe-
notyping features, the diurnal changes follow stable patterns. Consequently, it is possible to
predict imaging deviations by modeling the evolving patterns. The present study provides
a comprehensive report on the specific diurnal patterns of various plant phenotyping fea-
tures, including Normalized Difference Vegetation Index (NDVI), Relative Water Content
(RWC), and single spectrum bands. The outcomes of this study will aid researchers in
making more informed decisions regarding the optimal imaging time window during a
day with greater confidence. Furthermore, the findings can be leveraged to calibrate or
compensate for the time effect in remote sensing outcomes.

Airborne hyperspectral images can provide high-resolution spectral data over large
areas, which can be used to generate detailed maps of nutrient status. By analyzing the
reflectance values in specific wavelength bands, it is possible to estimate the concentration
of different nutrients in the plant tissue. The research paper [5] utilized spectral data from
a push-broom imaging spectrometer covering a range of 400–2500 nm and leaf samples
from grapevine canopies that were laboratory-analyzed for six essential nutrient values.
The optimal bands for nutrient regression models were selected based on this analysis. The
study revealed that an ensemble feature-ranking approach, which employed six distinct
machine learning feature selection techniques, produced regression results similar to those
obtained using standard Partial Least Squares Regression (PLSR) feature selection and
regression, while selecting fewer wavelengths. The authors identified a set of biochemically
consistent bands (606 nm, 641 nm, and 1494 nm) for predicting nitrogen content.

Remote sensing of plant nitrogen status using satellite imagery is a valuable tool for
monitoring and managing the nitrogen flow in agriculture, but available data for validation
of satellite-based remote sensing of N are scarce. Therefore, the research paper [6] used
field spectrometer measurements set at the same Sentinel-2 satellite wavelengths, which
are specifically designed for vegetation monitoring by the ESA. The study evaluated the
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performance of normalized ratio indices (NRIs), random forest regression (RFR), and
Gaussian process regression (GPR) for predicting plant-N-related traits on several world
datasets, including multiple crops, field sites, and years. The results highlighted that
spectral indices, such as normalized ratio indices (NRIs), performed well, but the RFR and
GPR methods outperformed the NRIs. The study also identified the short-wave infrared
(SWIR) region as key spectral bands for estimating plant nitrogen concentration. Moreover,
the Gaussian process regression band analysis tool showed that five bands were sufficient
for accurate estimation of plant N traits and leaf area index (LAI).

To prepare for the upcoming new-generation imaging spectrometer missions and the
unprecedented inflow of hyperspectral data, it is necessary to develop optimized models
that can routinely generate vegetation traits. For the sustainable use of nutrients, the
CHIME (Copernicus Hyperspectral Imaging Mission—European Space Agency (ESA))
requirement document selects chlorophyll content as an essential eco-physiological variable
for photosynthetic functioning and a major parameter for the monitoring of plant nitrogen
uptake during crop development. In this framework, the research paper [7] evaluated the
performance in the retrieval of selected maize traits of two hybrid approaches, with and
without an active learning technique, for the retrieval of chlorophyll and N content from
hyperspectral data, comparing several combinations of spectral and sample dimensionality
reductions. The results achieved in the study revealed that both hybrid approaches were
able to estimate chlorophyll and nitrogen with high accuracy at the canopy level. However,
only the hybrid framework with the active learning technique was able to accurately retrieve
the chlorophyll and leaf nitrogen content, confirming the complexity of trait retrieval at the
leaf level from canopy reflectance.

Hybrid models that combine radiative transfer models with machine learning al-
gorithms are, therefore, preferred, but they face an additional challenge due to spectral
collinearity. To address this challenge, other authors [8] developed a workflow to opti-
mize hybrid hyperspectral retrieval models, first reducing the sampling domain through
active learning and then comparing two methods for reducing spectral dimensionality:
principal components analysis (PCA) and band ranking. The results revealed that the PCA
strategy produced slightly better retrieval results than the band-ranking procedure for
all variables considered (specific leaf area, leaf area index, canopy water content, canopy
chlorophyll content, the fraction of absorbed photosynthetic active radiation, and fractional
vegetation cover). Both modeling approaches achieved meaningful mapping results over a
heterogeneous landscape, including multiple cover types.

As the world's population keeps growing, there is more demand for agricultural
products. This means that it is important to manage macronutrients like nitrogen (N), phos-
phorus (P), and potassium (K) in a way that is good for the environment and helps farmers
grow more crops. The review paper [9] examined the current state of the art in applications
of remote sensing technology in agricultural applications, particularly in the monitoring of
NPK availability for commonly grown crops in Africa. The study involved an extensive lit-
erature review of the use of airborne imaging technology, processing and analysis methods,
and farming practices related to hyperspectral imagery for soil agriculture investigations.
The review focused on the period between 2008 and 2021, examining publications on
hyperspectral imaging technology and its applications in monitoring macronutrient status
for crops. The study identified knowledge gaps and challenges related to the acquisition,
processing, and analysis of hyperspectral imagery for soil agriculture investigations. The
review proposed a hyperspectral data-based research protocol to quantify the variability in
NPK in soil and crops at the field scale, with the aim of optimizing fertilizer application.

Hyperspectral imaging is a powerful tool for detecting and monitoring changes in
plant health and physiology caused by biotic and abiotic stresses. Through analysis of the
spectral signature of light reflected by plant leaves, researchers can detect subtle changes in
the biochemical composition and structure of plants early, which is crucial to minimize dis-
ease spread and enable real-time management practices. The research paper [10] evaluated
the individual and interactive effects of the root-knot nematode (Meloidogyne incognita)
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and drought on the physiology and growth of different nematode-resistant genotypes. In
this study, a maximum likelihood classification model of hyperspectral data was utilized,
along with various dimensionality reduction techniques, to identify root-knot nematode
and drought stress, and the findings demonstrate that RKN can be detected as early as
10 days after infestation, and RKN and drought stresses can be noticed with over 98%
accuracy using bands ranging from 350 to 1000 nm and 350 to 2500 nm.

As we've seen, remote sensing can often be used to find pests. This is because a plant's
defense mechanism is triggered when it is stressed by a pest, and this usually shows up as
a change in the leaf's reflectance. In this view, the main goal of the research paper [11] was
to study the use of hyperspectral proximal remote sensing and gas exchange parameters
to characterize peanut leaf responses to herbivory by two major pests in South American
peanut (Arachis hypogaea) production, namely Stegasta bosqueella (Lepidoptera: Gelechiidae)
and Spodoptera cosmioides (Lepidoptera: Noctuidae). The authors observed that peanut leaf
reflectance differs between herbivory caused by the two larval species but was similar
in both real and simulated defoliation. Additionally, differences in photosynthetic rate,
stomatal conductance, transpiration, and photosynthetic water use efficiency were observed
only between the two species and not between real and simulated larval defoliation.

The advancement of imaging and data processing technologies has led to the rapid
development of virus detection methods using remote and proximal optical sensors. The
article [12] provided an overview of optical sensing methodologies, data processing, and
disease classification modelling methods from a multidisciplinary perspective. It reviews
a diverse range of tools from traditional molecular biology approaches to state-of-the-art
optical non-destructive approaches that provide rapid spatial scale detection methods.

Finally, with the increasing availability of unmanned-aerial-vehicle-based commercial
solutions on the market, it is essential to provide clear information on the performance of
these products to guide end users in their selection and utilization for precision agriculture
applications. A research article [13] compared two products, the multispectral camera
DJI P4M and the hyperspectral SENOP HSC-2. The authors evaluated the accuracy of
both cameras on six typical targets found in vineyards, including bare soil, bare-stony soil,
stony soil, soil with dry grass, partially grass-covered soil, and canopy. The performance
of the cameras was evaluated by calculating three commonly used vegetation indices
(VIs) and determining the percentage error compared to ground-truth spectroradiometer
measurements. Overall, the hyperspectral camera achieved higher accuracy with a lower
percentage of error. Both cameras performed better on pure canopy pixel targets than on
mixed targets.

This overview is an attempt to summarize the novel opportunities that arise from
hyperspectral data analysis in agriculture. By leveraging the high spectral resolution
of hyperspectral sensors, researchers and farmers can obtain detailed information about
crops, including their health, nutrient status, and water content. These approaches will
contribute to improving decision making within complex systems, with minimal human
interaction, and provide a scalable framework for integrating expert knowledge of the
Precision Agriculture system. The research published in this Special Issue demonstrates
the significant potential of hyperspectral data analysis in transforming agriculture and
enhancing food security.
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