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Abstract: Global Navigation Satellite System (GNSS)- and Remote Sensing (RS)-based Earth obser-
vations have a significant approach on the monitoring of natural disasters. Since the evolution and
appearance of earthquake precursors exhibit complex behavior, the need for different methods on
multiple satellite data for earthquake precursors is vital for prior and after the impending main shock.
This study provided a new approach of deep machine learning (ML)-based detection of ionosphere
and atmosphere precursors. In this study, we investigate multi-parameter precursors of different
physical nature defining the states of ionosphere and atmosphere associated with the event in Japan
on 13 February 2021 (Mw 7.1). We analyzed possible precursors from surface to ionosphere, including
Sea Surface Temperature (SST), Air Temperature (AT), Relative Humidity (RH), Outgoing Longwave
Radiation (OLR), and Total Electron Content (TEC). Furthermore, the aim is to find a possible pre-and
post-seismic anomaly by implementing standard deviation (STDEV), wavelet transformation, the
Nonlinear Autoregressive Network with Exogenous Inputs (NARX) model, and the Long Short-Term
Memory Inputs (LSTM) network. Interestingly, every method shows anomalous variations in both
atmospheric and ionospheric precursors before and after the earthquake. Moreover, the geomagnetic
irregularities are also observed seven days after the main shock during active storm days (Kp > 3.7;
Dst < −30 nT). This study demonstrates the significance of ML techniques for detecting earthquake
anomalies to support the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) mechanism for
future studies.

Keywords: earthquake precursors; machine learning; LAIC model; GPS TEC; coupling

1. Introduction

Earthquakes cause intense shaking of the Earth’s surface, with the earthquakes being
the result of the brittle failure of the lithosphere. The 21st century has brought an evalu-
ation to the field of satellite measurements, especially for earthquake precursors. Many
researchers have observed anomalies prior to major earthquakes over the epicenter at
different altitudes with various GNSS and RS satellites during the seismogenic period [1–7].
These short-term anomalies can be observed from 2 to 20 days before and 10 days after
the main event, but still, no one presented a legitimate earthquake anomaly. Interestingly,
these anomalies show positive and negative deviations beyond the defined bounds and
are not only limited to the surface but these can also be observed in the ionosphere and
atmosphere [8]. The lithosphere encounters various geophysical changes and as a result,
these changes, precursors occurred over the earthquake epicenter [9]. In general, earth-
quake precursors are categorized into three different types; surface precursors, such as
land surface temperature and SST, atmospheric precursors, such as OLR, RH, AT [5], and
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ionospheric precursors, such as TEC, electric field disturbance, and high energy particle
flux [10–13]. The propagation of earthquake anomalies from the lithosphere to ionosphere
can be defined by the LAIC hypothesis [9]. There is also another theory that correlates
the ionosphere and atmosphere precursors with the impending main shock (i.e., Positive
holes (p-holes)). During the earthquake preparation period, stressed rocks release p-holes
that result in the formation of the electric current and consequently emit electromagnetic
radiations that move upward to create vulnerability in the ionosphere [14]. Furthermore,
the idea of radon emission from the epicentral region also gained importance for the pre-
sentation of earthquake anomalies by air ionization near the Earth’s surface, followed by
emanation to the atmosphere and ultimately rising to the ionosphere [9]. In the epicentral
region, emission of gases, such as radon, from the deformation of rocks due to tectonic
stress can cause atmospheric anomalies. Moreover, ionospheric anomalies related to seismic
activity over the epicenter are also reported by GNSS TEC. However, no clear ionospheric
anomalies were observed by studying ionospheric anomalies around the 1279 earthquakes
of Mw ≥ 6 during the time period of 2000–2014 [15]. Still, there are many well-published
studies about the atmospheric and ionospheric anomalies associated with earthquakes. For
example, both positive and negative TEC anomalies are detected by utilizing statistical
analysis on ground receiver data for the Mw 7.8 Nepal earthquake [16]. Furthermore,
significant TEC variations were also observed before and after the 2014 Mw 6.9 Samothrace
earthquake [17]. An anomalous variation of more than 30 W/m2 was observed in OLR for
the Japan earthquakes and other events [5,18–21]. The reflection, emission, and absorption
of OLR are due to a complicated system of aerosols, clouds, ocean surface temperature, and
land surface temperature variations during the main shock preparation period [22]. Both
the negative and positive anomalies are observed in the SST variable, which is considered
to be the most important atmospheric precursor [23]. The emission of radon resulted in
anomalous variations of AT and RH over the epicenter, as explained in the LAIC model [9].
Similarly, stress and tectonic blocks’ movement activate the thermodynamics phenom-
ena and ionization process that result in the anomalous variations of AT and RH. Recent
earthquakes showed clear enhancement in the atmospheric and ionospheric variations
associated with main shocks [24–32]. GNSS and RS have played a vital role in understand-
ing and finding the variations in atmospheric and ionospheric parameters from various
space observations and ground stations [33–37]. The use of different algorithm on time
series data is also very common these days [38–42]. Nevertheless, there is a gigantic gap of
applications and knowledge related to the science of earthquake precursors.

In this paper, we have studied possible ionospheric and atmospheric anomalies as-
sociated with the Mw 7.1 Namie, Japan earthquake by implementing statistical as well
as machine learning procedures (NARX and LSTM) on TEC and other remote sensing
indices, including RH, OLR, and SST. The main aim is to find a synchronized window of
the atmospheric and ionospheric anomalies within the same occurrence days. Moreover,
another aim is to find the presence of pre-and/or post-seismic anomalies. The structure of
this paper is as follows: Study area and brief description of earthquake data are described in
Sections 2 and 3, respectively. Methodology is explained in Section 4. Results are described
in Section 5. Discussion is explained in Section 6. Section 7 is dedicated to the conclusion.

2. Study Area

A strong earthquake of Mw 7.1 struck the east coast of Honshu, Japan on 13 February
2021, at 14:07:49 UTC (LT = UTC + 09:00 = 23:07:49). The epicenter was located at 73 km of
Namie, Japan (37.7◦N, 141.7◦E). The United States Geological Survey (USGS) announced
the maximum felt intensity of IX (heavy) and shaking intensity of VIII (severe) on a modified
Mercalli scale. One person died in Fukushima and around 187 people were injured. There
was a massive destruction to property with an approximate value of the damages being
9137 houses and 311 schools. The earthquake occurred as a result of thrust faulting near the
subduction zone interface plate boundary between the North American and Pacific plates
(Figure 1). Subduction was beneath the Japan Trench. The Pacific plate moves westward
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relative to the North America plate, at a velocity of 70 mm/yr. The several micro plates
in this region describe the relative motions among Pacific, North American, and Eurasian
plates. The February 13, 2021 earthquake struck in the vicinity of the rapture area of the
March 11, 2011 great Tohoku earthquake, which was widely felt along many islands of
Japan and killed almost 16,000 people. The epicenter of the February 13 earthquake was
located approximately 74 km from the epicenter of the Tohoku earthquake. After the March
2011 Mw 9.1 Tohoku earthquake, six earthquakes of Mw > 7 have occurred within 250 km
of the February 13 earthquake. The USGS website contains more tectonic and technical
information about this earthquake (https://earthquake.usgs.gov/earthquakes/eventpage/
us6000dher/executive; accessed on 11 November 2022).
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Figure 1. Geographical location of the 2021 Mw 7.1, Japan earthquake (Lat = 37.7◦N, Long = 141.7◦E)
with tectonic plates and fault lines. The epicenter is indicated by the green star and the GNSS stations
are indicated by black stars and the shaded circle area is the earthquake-impacted area estimated by
the Dobrovolsky formula.

3. Materials and Datasets
3.1. Outgoing Longwave Radiation

OLR is one of the most vital parameters used to define the Earth’s radiation emitted
from the earthquake regions. The OLR is a combination of emissions from clouds, the lower
atmosphere, ground, which have been used to investigate Earth’s radiative climate [43–46].
The OLR (W/m2) data for both the day and night are acquired at spatial resolution of 1◦

of AIRS/Aqua from Goddard Earth Sciences Data and Information Services Center (GES
DISC). The area averaged data of OLR time series covering the earthquake epicenter within
a seismogenic area (139.4◦E–143.9◦E, 35.6◦N–39.5◦N) was retrieved from GIOVANNI with
a web-based application developed by (GES DISC).

3.2. Relative Humidity

The RH is the ratio of the actual measured water vapor in the air to the saturation vapor
pressure at a specific temperature. The main purpose of RH is to study the global energy
budget, atmospheric dynamics, climate response related to earthquakes, and troposphere-
stratosphere exchange over the epicenter. We study the RH data for both daytime and
nighttime from AIRS/Aqua (GES DISC), GIOVANNI.

https://earthquake.usgs.gov/earthquakes/eventpage/us6000dher/executive
https://earthquake.usgs.gov/earthquakes/eventpage/us6000dher/executive


Remote Sens. 2023, 15, 1904 4 of 18

3.3. Air Temperature

AT indicates response of seismic activity in atmosphere and is used to understand the
atmospheric phenomena related to main shock. AT (K) data is acquired from the National
Oceanic and Atmospheric Administration (NOAA) at the spatial resolution of 2.5◦ × 2.5◦

along latitude × longitude. Moreover, some AT data was also retrieved from the National
Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research
(NCAR) reanalysis project.

3.4. Sea Surface Temperature

SST is one of the most significant variables used to figure out air-sea interaction and
climate scenario over the epicenter. SST (◦C) data was obtained from the Modern Resolution
Imaging Spectroradiometer (MODIS) AQUA/ASMR-E Satellite. MODIS SST data have a
very remarkable correlation with previous research for air-surface temperature information
associated with future earthquakes.

3.5. Total Electron Content

In this paper, we also retrieved TEC from three IGS stations (USUD, MTKA, and
HYDE). Two stations, USUD and MTKA (Japan), are operating in the earthquake breed
zone, while the third station, HYDE (India), is outside of the earthquake-affected zone. We
analyzed TEC data from the HYDE station to confirm the ionospheric anomalies of the
geomagnetic storm and distinguish them from the earthquake ionospheric anomalies. The
GPS TEC from these stations is retrieved via (http://www.ionolab.org/index.php?page=
index&language=en; accessed on 21 November 2022). The GPS TEC values before and after
the earthquake were examined in the earthquake preparation zone in the form of vertical
TEC (VTEC). Moreover, VTEC values were obtained from Slant TEC (STEC) and examined
in the TEC unit (1 TECU = 1016 el/m2). The STEC values were used to calculate the VTEC
values, as shown below [47].

STECh
a =

−( f 2
1 f 2

2 )

40.3( f 2
1 − f 2

2 )

(
Ph
(4,a) − c.DCBa − c.DCBh

)
(1)

VTEC = STEC× cos
[

arcsin
(

Rsinz
R + H

)]
(2)

where ( f 2
1 , f 2

2 ) are the dual frequencies received at the GPS stations, Ph
(4,a) is the difference

between the smoothed coded measurements, c is the speed of light, DCBh and DCBaare
differential code biases for GPS and satellite receiver, respectively. Similarly, R is the Earth’s
radius, z is the zenith angle of satellite, and H is the ionospheric height.

4. Methodology

We examined ionospheric and atmospheric data of 1 month (i.e., 20 days before
and 10 days after) over the epicenter in earthquake breeding zone within the Dobro-
volsky region [48]. For any earthquake, the stress radius (km) can be calculated by the
following equation:

R = 100.43M (3)

where, R and M are the preparation zone and magnitude of the earthquake, respectively.
Furthermore, the earthquake magnitude value affects the radius of the breeding zone; i.e.,
a large magnitude earthquake has larger stress radius and vice versa. The radius of the
Japan earthquake is approximately 1130 km, as calculated by the Dobrovolsky formula.

4.1. Anomaly Detection Using Statistical Method

We calculated the confidence bounds based on the mean (M) and standard deviation
(STDEV) to check and validate the any deviations in the atmospheric datasets for seismic
influence. These confidence bounds (lower and upper) were obtained from the mean

http://www.ionolab.org/index.php?page=index&language=en
http://www.ionolab.org/index.php?page=index&language=en
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and standard deviation of all the values before and after the main shock by the below
equations [10]:

UB = M + 1.6 ∗ (STDEV) (4)

LB = M− 1.6 ∗ (STDEV) (5)

The above equations declared that the calculated values falling outside these bounds
will be considered as abnormal seismic values. The * is for multiplication.

4.2. Anomaly Detection Using Wavelet Transformation

To further validate the anomalous variations of the surface and atmospheric parame-
ters, the wavelet transformation has been implemented on the OLR, AT, RH, and SST time
series data of earthquakes.

(ωΨ)(y, z) =
1
√

y

∫ +∞

−∞
f (x)Ψ∗

[
x− z

y

]
dx (6)

where, f (x) is the time series under analysis and Ψ∗ is the complex conjugate of contin-
uous wavelet function. Similarly, y and z are the scaling factor and location parameter,
respectively. In this study, M ± 1.6(STDEV) has been selected as the optimum threshold
value to detect the unusual values of the wavelet coefficients for the Japan earthquake. The
anomalies outside the confidence bounds can be related to main shock.

4.3. Anomaly Detection Using Artificial Neural Network (ANN)

ANN has offered a promising technique for the time series forecasting. Various
successful applications of this method proved that ANN can be very effective in the
forecasting and modeling of non-linear time series [49,50]. ANN uses a complicated
connection between the input and output parameters to show the anomalous pattern in the
data. In this study, we input ANN as obtained values, mean values, deviation from mean
values, upper and lower bounds values, and deviation from bounds values. Moreover, the
anomalies in atmospheric parameters were observed based on the comparison between the
observed and ANN predicted values.

4.4. Nonlinear Autoregressive Network with Exogenous Inputs (NARX)

The NARX model is widely used in time series modeling with feedback connections
enclosing various layers of the network. The dependent output signal y(t) estimation is
regressed against both the independent input signal and the output signal in the NARX
network architecture used to represent the time series. The NARX model-defining equation
is below.

y(t) = f (y(t− 1), y(t− 2), .., y
(
t− ny

)
, x(t− 1), x(t− 2), .., x(t− nx)) (7)

The network architecture and training estimation error were established repeatedly
by acquiring the output, input delays, hidden layer count, related neurons, activation
functions, and learning method. The function f is a nonlinear function. To implement the
prediction process, N observations(y1, y2, . . . , yN) were selected as the training set and the
remaining ones (yN+1, yN+2, . . . , yN+m) were considered to be the test set. In this study,
a projected network was constructed consisting of six nodes in the input layer, 10 in the
first and second hidden layers, and one in the output layer. The observed time series data,
respective time, mean value, and deviation of observed time series data from the mean
distribution are considered to be inputs. A time series of daily values are displayed within
the Dobrovolsky region as the output layer. The training patterns in the proposed network
are as follows:

y4 = f (y1, y2, y3, t1, t2, t3) (8)
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y5 = f (y2, y3, y4, t2, t3, t4) (9)

yN = f (yN−3, yN−2, yN−1, tN−3, tN−2, tN−1) (10)

Finding optimum weights that reduce prediction error (PE) is often how prediction
performance is assessed. The PE equation appears as follows:

PE = ∑N

k−0
(ŷ(t− k)− y(t− k)) (11)

where ŷ represents the output of the network. The testing patterns are:

yN+4 = f (yN+1, yN+2, yN+3, tN+1, tN+2, tN+3) (12)

yN+5 = f (yN+2, yN+3, yN+4, tN+2, tN+3, tN+4) (13)

yN+m = f (yN+m−3, yN+m−2, yN+m−1, tN+m−3, tN+m−2, tN+m−1) (14)

Finally, the deviations were calculated by comparing the variations between the actual
and the predicted values crossing the pre-defined bounds.

4.5. Long Short-Term Memory (LSTM)

The LSTM model can analyze the dynamic temporal pattern in time series data while
running through time. A closed layer of the LSTM has three units (output, input, and nine
forget) to conduct the flow of information to the memory cell. The mathematical functions
of the three units are as follows:

iu = σ(Wixt + WHi Ht−1 + bi) (15)

fu = σ(W f xt + WH f Ht−1 + b f ) (16)

ou = σ(Woxt + WHo Ht−1 + bo) (17)

ct = ct−1 ⊗ ( fu)t + (iu)t ⊗ tanh(Wcxt + WHc Ht−1 + bc) (18)

Ht = ot ⊗ tanh(ct−1) (19)

yt = Ht (20)

The above equations illustrate input unit, forget unit, output unit, current memory
cell unit, hidden unit, and output cell, respectively, at time t. The kernel functions are
represented by σ and tanh, whereas Ht−1 denotes the previously hidden unit and ct shows
the current cell unit. Moreover, b and W indicate bias variables and weight matrices of
three units and memory cell units, respectively. Similarly, ⊗ indicates the element-wise
multiplication between the output, input, and cell units of closed layers.

5. Results

In this study, we analyzed multiple atmospheric and ionospheric datasets for possible
earthquake precursors by various statistical as well as ML methods before and after the
Japan earthquake. The resulting anomalies are discussed in detail.
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5.1. Outgoing Longwave Radiation

We studied the variations in both daytime and nighttime OLR values over the epicenter
of the Japan earthquake (Figure 2). The time series analysis of OLR daytime showed
immense deviations over the epicenter with considerable anomalies prior to the Japan
earthquake. There was an obvious positive anomaly of 36 W/m2 on six days before the
earthquake (Figure 2a).
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Figure 2. (a) Daytime OLR averaged time series data with confidence bounds, (b) Time series data of
OLR nighttime with confidence bounds, (c) The deviation of daytime OLR values from confidence
bounds, (d) Nighttime OLR deviation from the confidence bounds, (e) Wavelet transformation of the
daytime OLR time series data, (f) Wavelet transformation analysis of nighttime OLR time series data.
The white dashed line marks cone of influence and red dashed line shows the earthquake day. The *
is for multiplication.

Similarly, a positive anomaly of 11.4 W/m2 was also observed on the fifth day before
the main shock. The time series analysis of OLR nighttime also showed a positive anomaly
of 16 W/m2 on the sixth day before the earthquake (Figure 2b). On the other hand, the
wavelet transformation method implemented on OLR values for daytime and nighttime
has demonstrated more evidence about the earthquake-induced anomalies. A clear OLR
daytime anomaly of high magnitude occurred on the sixth and fifth days before the main
shock (Figure 2e) and a significant nighttime OLR on the fifth day before the main shock
(Figure 2f). Moreover, the deviations of NARX-predicted OLR daytime values showed
clear anomalies within the five-day window before the seismic event (Figure 3c). Figure 3g
showed a clear variation in LSTM-predicted OLR daytime values within the five-day
window before the main event. NARX- and LSTM-predicted OLR nighttime values also
endorse the anomalies within the 10-day window of the pre-seismic event (Figure 3d–h).
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Figure 3. (a) Time series data variations between the observed OLR daytime values and NARX-
predicted OLR daytime values, (b) Nighttime variations between the observed OLR values and
NARX-predicted OLR, (c) Deviation of NARX-predicted OLR daytime values from the observed
daytime OLR values, (d) Deviation of NARX-predicted OLR nighttime values from the observed
nighttime OLR values, (e) Time series data variations between the observed OLR daytime values
and LSTM train OLR daytime values, (f) Nighttime variations between observed OLR values and
LSTM train OLR, (g) Deviation of LSTM-predicted OLR daytime values from Observed daytime OLR
values, (h) Deviation of LSTM-predicted OLR nighttime values from Observed daytime OLR values.
The red dashed line shows earthquake day.

5.2. Relative Humidity

The RH data for both daytime and nighttime are evaluated to observe the varia-
tions prior to the Japan event. Time series analysis of the RH daytime values showed a
negative anomaly of −8% on the sixth day before the main earthquake day (Figure 4a).
Analysis of RH nighttime values also showed a negative anomaly below the bound of
Mean−1.6*STDEV of −6% on the fifth day prior to the main shock (Figure 4b). We also
noticed sharp variation in the continuous wavelet transformation in both daytime and
nighttime RH values of high magnitude within the 10-day window prior to the main shock
(Figure 4e,f). NARX- and LSTM-predicted RH daytime values showed a clear negative
anomaly on the sixth day before the event (Figure 5c–g). Moreover, Figure 5 showed
clear deviations on the sixth and fifth day before the earthquake for both NARX- and
LSTM-predicted values in nighttime RH.

5.3. Air Temperature

In this paper, we also studied the AT values of the Japan earthquake, which showed
a clear positive anomaly on the fifth day before the main shock (Figure 6a). Moreover,
an obvious positive anomaly also occurred beyond the Mean+1.6*STDEV bound on 8th
February with a deviation of 2K. The continuous wavelet transformation showed a variation
of high magnitude within the five-day period before the main earthquake (Figure 6c).
NARX- and LSTM-predicted AT values also showed clear anomalies within five days
before the main shock day (Figure 7a–c).
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Figure 5. (a) Data variations between the observed RH daytime values and NARX-predicted RH
daytime values, (b) Nighttime variations between the observed RH values and NARX-predicted RH,
(c) Deviation of NARX-predicted RH daytime values from Observed daytime RH values, (d) Deviation
of NARX-predicted RH nighttime values from Observed nighttime RH values, (e) Time series data
variations between observed RH daytime values and LSTM train RH daytime values, (f) Nighttime
variations between observed RH values and LSTM train RH, (g) Deviation of LSTM-predicted RH
daytime values from Observed daytime RH values, (h) Deviation of LSTM-predicted RH nighttime
values from Observed daytime RH values. The red dashed line shows the earthquake day.
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5.4. Sea Surface Temperature

We also studied the time series data of SST, which showed a clear negative anomaly
of −4.5 ◦C on 7th February; i.e., six days before the earthquake (Figure 8a). This sudden
decrease is observed on the sixth day before the main shock of the Japan event. Simi-
larly, continuous wavelet transformation showed variations of high magnitude within −8
to −5 days before the earthquake, which is synchronized with the time series anomaly
(Figure 8c). The comparison of NARX- and LSTM-predicted SST values with observed
values also showed clear deviations −7 and −6 days prior to the main shock (Figure 9b–d).
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Figure 9. (a) Data variations between observed time series MODIS-SST and NARX-predicted SST
values, (b) Deviation of NARX-predicted SST values from Observed SST values, (c) Variations
between observed MODIS-SST values and LSTM train SST values, (d) Deviation of LSTM-predicted
SST values from Observed SST data. The red dashed line shows earthquake day.
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5.5. Total Electron Content

TEC data retrieved from the two IGS stations (USUD and MTKA) within the breed-
ing zone of the Mw 7.1, Japan earthquake showed clear seismo-ionospheric anomalies.
IGS station (HYDE) variation was also observed outside the seismic preparation zone to
illustrate the earthquake- and storm-induced TEC anomalies. Figure 10 illustrates the
associated VTEC variations recorded at two IGS stations, which operate within the seismic
preparation zone. Prominent positive deviations were observed −6 and −5 days before
the main shock in both USUD and MTKA stations during quiet storm days. These anoma-
lies are synchronized with the atmospheric anomalies and occurred in the same window
as atmospheric anomalies. Similarly, NARX- and LSTM-predicted values also showed
clear deviations in VTEC values on the 7th and 8th February for the two IGS stations i.e.,
USUD and MTKA (Figures 11 and 12). USUD VTEC showed positive anomalies of 7.5 and
1.8 TECU on seven and nine days after the major event (Figure 10c). Figure 10d showed
positive variations of 6.6, 1.6, and 6.7 TECU for MTKA VTEC on seven, eight, and nine
days after the earthquake day, respectively. Positive TEC deviations were also observed
seven and eight days after the seismic event for HYDE station (Figure 10e). During active
storm days, VTEC variations for three IGS stations (USUD, MTKA, and HYDE) showed
positive anomalies from 7–10 days after the earthquake day. NARX- and LSTM-predicted
VTEC also showed clear deviations from 20th to 23rd February for three IGS stations during
active storm days (Figures 11d and 12d). All the atmospheric and ionospheric anomalies
are listed in Tables 1–3.
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Figure 10. The solar and geomagnetic storm indices (a) Kp and (b) Dst of Japan earthquake, (c)
Statistical analysis of USUD (IGS station Japan) VTEC with IQR bounds, (d) Analysis of MTKA
(IGS station Japan) VTEC with pre-defined IQR bounds, (e) Time series analysis of HYDE (IGS
station India) VTEC with IQR bounds, (f) Deviation of time series statistical analysis of VTEC for all
available stations (USUD, MTKA, and HYDE). The red dashed line shows the earthquake day. The *
is for multiplication.
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Figure 11. (a) Variation of USUD VTEC with NARX-predicted VTEC, (b) Time series variation of
MTKA VTEC with NARX-predicted VTEC, (c) Variation of HYDE VTEC with NARX-predicted VTEC,
(d) Deviation of NARX-predicted VTEC from USUD, MTKA, and HYDE VTEC. The red dashed line
shows the earthquake day.
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viation of LSTM train VTEC from USUD, MTKA, and HYDE VTEC. The red dashed line shows
earthquake day.
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Table 1. The anomalies detected using statistical method.

Parameters Anomalous Day
Deviations from UB and LB

Pre-EQ Post-EQ

OLR (Daytime) −6, −5 36, 11.4 W/m2 Nil
OLR (Nighttime) −6 18 W/m2 Nil

RH (Daytime) −6 −8% Nil
RH (Nighttime) −5 −6% Nil

AT −5 2 ◦K Nil
SST −6 −4.5 ◦C Nil

VTEC (USUD) −6, −5, 7, 9 3, 1.5 TECU 7.5, 1.8 TECU
VTEC (MTKA) −6, −5, 7, 8, 9 2.32, 0.5 TECU 6.6, 1.5, 6.7 TECU
VTEC (HYDE) 7, 8 Nil 5.95, 0.8 TECU

6. Discussion

In this paper, we analyzed OLR, RH, AT, SST, and TEC time series data’s possible
deviations within the preparation zone of the Japan earthquake. We found these anomalies
due to the immense energy release during the main shock days; Ouzounov [51] showed
the earthquake energy outflow towards the atmosphere. Emission of gases from the Earth’s
crust caused OLR anomalies, variations in AT and RH, and also resulted in air ionization,
which is a notable process in the local area of active faults. There exists a strong correlation
between the radon variations during the earthquake preparation period with RH, and AT
in the LAI coupling over the epicenter [9,52]. There are various studies on abnormal AT
resulting in lowest RH (decrease in RH due to the cooling process of hot gases emitted from
the seismic region), which is a possible earthquake precursor. In this study, we also found
a significant increase in OLR as a result of sudden earthquake energy release before the
main shock (Figure 2), followed by abnormal decrement in RH due to emission of hot gases
from the epicentral region (Figure 4). Similarly, OLR is a very important parameter and it
can be efficiently used as a possible short-term earthquake precursor [52]. Similarly, rise in
surface temperature can also increase OLR, specifically in the earthquake breeding zone. In
this paper, daily OLR, RH, and AT deviations over the epicenter of the Japan earthquake
showed anomalous behavior beyond the confidence bounds as well as with the machine
learning techniques. Previous studies also suggested the decrement in RH and increment
in other atmosphere indices before the earthquake [5,6,25,30,31,51,52]. However, we found
synchronized and co-located atmospheric and ionospheric anomalies on the fifth and sixth
days before the main shock, followed by abnormalities in the data of nearby GPS stations
(Tables 1–3). The analysis in this study can be further supported by the LAIC hypothesis,
which also compromised synchronized anomalies over the epicenter. Variations of OLR,
RH, and AT values were also considered as evidence of seismic-induced deformation along
the fault lines of seismic event regions [6,53]. SST data also showed strong evidence of
disturbance around the earthquake and support of the study of other atmospheric anoma-
lies. Therefore, this finding is consistent and compatible with previous studies [23,54,55].
There are several studies about the LAIC coupling in pre-and post-seismic effects for
various events. However, some studies suggested that the earthquake-induced positive
holes within the breeding zone could variant the air ionization and consequently rise the
electrical conductivity [56,57]. Furthermore, Pulinets and Ouzounov [9] demonstrated that
ionospheric VTEC anomalies occurrence from the radon emission of tectonic-stressed rocks
during the earthquake preparation period. Additionally, high energy alpha particles, which
are ionized by the initial emissions from the earthquake, could raise air conductivity by
radioactive decay of the radon [7,58,59]. Moreover, the LAIC phenomenon was explained
by the numerical simulations of ionospheric ionization at the lower and upper edge of the
atmosphere by the induced earthquake upward electric field [60–63]. Furthermore, Kuo [60]
demonstrated that the increase or decrease in ionospheric perturbations can occur only
above the epicenter due to plasma flow from the epicenter. Moreover, many studies have
reported several atmospheric and ionospheric anomalies within 2–3 months before and
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after the earthquake by implementation of the LAIC model [64,65]. We found significant
positive and negative anomalies in both atmospheric and ionospheric parameters associ-
ated with the Mw 7.1, Japan earthquake. However, there is still a need for observations and
analysis for detailed calculations of different earthquake precursors.

Table 2. Detected anomalies using NARX model.

Parameters Anomalous Day
Deviations from NARX Predicted Values

Pre-EQ Post-EQ

OLR (Daytime) −6, −5 58, 19.8 W/m2 Nil
OLR (Nighttime) −6, −5 48, 6 W/m2 Nil

RH (Daytime) −6 −15% Nil
RH (Nighttime) −6, −5 −6, −27% Nil

AT −5 8 ◦K Nil
SST −7, −6 −2.9, −9.7 ◦C Nil

VTEC (USUD) −6, −5, 7, 9 3.2, 2.9 TECU 7.6, 1.7 TECU
VTEC (MTKA) −6, −5, 7, 8, 9 3.3, 1.48 TECU 7.3, 1.8, 6.3 TECU
VTEC (HYDE) 7, 8 Nil 9.7, 6.47 TECU

Table 3. Detected anomalies using LSTM method.

Parameters Anomalous Day
Deviations from LSTM Predicted Values

Pre-EQ Post-EQ

OLR (Daytime) −6, −5 53.8, 26 W/m2 Nil
OLR (Nighttime) −6, −5 54, 9 W/m2 Nil

RH (Daytime) −6 −15.7% Nil
RH (Nighttime) −6, −5 −13.3, −34.5% Nil

AT −5 7 ◦K Nil
SST −7, −6 −2, −8 ◦C Nil

VTEC (USUD) −6, −5, 7, 9 3.18, 2 TECU 7.4, 2.1 TECU
VTEC (MTKA) −6, −5, 7, 8, 9 3.23, 1.39 TECU 6.5, 1.6, 5.8 TECU
VTEC (HYDE) 7, 8 Nil 9.63, 6.32 TECU

7. Conclusions

In this paper, we have investigated the possible atmospheric and ionospheric anoma-
lies associated with the large magnitude earthquake of Mw 7.1 in Japan from various
ground-and space-measurements. The main findings are: For the daytime and nighttime
analysis, the unusual variations in the atmospheric constituents beyond the confidence
bounds occurred−6 and−5 days before the earthquake main shock. Moreover, the wavelet
transformation and NARX and LSTM train data also endorse the anomalous behavior of
atmospheric anomalies on the same days as the statistical method. The abnormal variations
in OLR, SST, AT, and RH validate the coupling of the earthquake and atmosphere by
the LAIC hypothesis. The sudden drop in RH confirmed the cooling of hot gases from
seismogenic regions in LAIC phenomenon, followed by a sudden increase in OLR and SST
due to abnormal ions and water particle drift from the lower atmosphere toward the upper
atmosphere. Moreover, we also found synchronized and co-located ionosphere anomalies
−6 and −5 days before the main shock with the two available stations (USUD and MTKA)
within the Dobrovolsky region during quiet geomagnetic storms. All these anomalies in
the atmosphere and ionosphere are due to electric field generation around the epicenter,
where the charge particle propagated to the atmosphere and ionosphere via the p-hole
and radon emission to form the LAIC mechanism. The statistical and ML data showed
clear earthquake variations; however, more techniques are needed to develop forecasting
of possible earthquake precursors from the available satellite clusters.
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