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Abstract: Global navigation satellite system (GNSS) positions include various useful signals and
some unmodeled errors. In order to enhance the accuracy and extract the features of the GNSS daily
time sequence, an improved method of complete ensemble empirical mode decomposition (CEEMD)
and multi-PCA (MPCA) based on correlation coefficients and block spatial filtering was proposed.
The results showed that the mean standard deviations of the raw residual time sequence were 1.09,
1.20 and 4.79 mm, while those of the newly proposed method were 0.15, 0.20 and 2.86 mm in north,
east and up directions, respectively. The proposed method outperforms wavelet decomposition
(WD)-PCA and empirical mode decomposition (EMD)-PCA in effectively eliminating low- and high-
frequency noise, and is suitable for denoising nonlinear and nonstationary GNSS position sequences.
Furthermore, feature extraction of the denoised GNSS daily time series was based on CEEMD, which
is superior to WD and EMD. Results of noise analysis suggested that the noise components in the
original and denoised GNSS time sequence are complex. The advantages of the proposed method are
the following: (i) it fully exploits the merits of CEEMD and WD, where CEEMD is first used to obtain
the limited intrinsic modal functions (IMFs) and then to extract seasonal and trend features; (ii) it
has good adaptive processing ability via WD for noise-dominant IMFs; and (iii) it fully considers
the correlation between the different components of each station and the non-uniform behavior of
common mode error on a spatial scale.

Keywords: GNSS; feature extraction; denoising; empirical mode decomposition; PCA

1. Introduction

In recent decades, owing to the rapid development of Global Navigation Satellite
System (GNSS) technology and the continuous accumulation of observational data, a
significant amount of data pertaining to crustal movement velocity fields and crustal
deformation in plate boundary regions have been acquired. These data have been applied
in geophysics, atmospheric science and dynamic displacement detection during natural
disasters [1–7]. However, the GNSS position time sequence includes not only crustal
deformation signals, but also non-tectonic deformation signals and several systematic
errors [8–12]. Various error sources affect GNSS positioning accuracy. Researchers have
proposed various techniques to calculate the parameters of the GNSS signal time series
and the associated noise [13,14]. Research findings indicate that random fluctuations of the
GNSS position time series, typically termed as noise, can be represented by a combination
of white noise (WN) and power-law (PL) processes [15].

Owing to the superposition of all types of “signals” and “noises” in GNSS coordinate
time series, seasonal variations are apparent [16–19], which include geophysical signals
and systematic errors from various sources. To accurately classify GNSS signals into crustal
movement and other signals and achieve dependable long-term motion trends, seasonal
signals must be estimated and must be obtained accurately [20]. Moreover, a common
mode error (CME) is evident between GNSS sites, i.e., the positional error generated by the
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common movement of the GNSS sites [9,10,21]. Hence, the quality of GNSS observations
is affected significantly by these errors, which may result in inaccurate interpretations or
biased estimations of geophysical events.

To date, various spatiotemporal filtering methods have been proposed to reduce the
CME at GNSS positions, including stacking filtering (STK) [9,10] and principal component
analysis (PCA) [12,22]. STK is easy to compute but is only applicable to small-scale,
uniformly distributed GNSS networks. PCA can be applied to reduce data dimensions and
extract data correlations; however, during denoising, the primary principal components
cannot be obtained, and some signal information can be lost. For the GNSS daily coordinate
time series, Dong et al. [11] performed PCA and the Karhunen–Loeve expansion to identify
signals and unmodeled systematic errors. The results showed that one of the dominant error
sources was spatiotemporally correlated with the CME in the GNSS long-term coordinate
time series. However, PCA is effective only if the CME exhibits an almost uniform behavior,
which is based on the fact that on a certain spatial scale, the CME exhibits a non-uniform
behavior. Furthermore, PCA is mainly used to weaken the systematic colored noise in
GNSS residual signals, whereas it cannot remove WN noise in the signals.

Although the methods discussed above can reduce the noise in GNSS positions to
some degree, they do not perform any decomposition but rather process GNSS datasets in
a single dimension, whereas GNSS data are multi-scale in nature; thus the signals cannot
be decomposed into different time scales. As a new analytical method for time-frequency
localization, the wavelet transform (WT) [23–25] can decompose the original signal, obtain
the general situation of the signal on a large scale and obtain details regarding the signal on
a small scale. It is widely used in signal analysis and noise elimination [26]. Although WT
performs well in smoothing noise, no accurate method exists for identifying the wavelet
base and decomposition level. The pre-divided time and frequency characteristics of the WT
hamper its capacity to adaptively decompose signals into various time frequencies based on
the intrinsic features of signals; it is mainly used to eliminate high-frequency random noise,
but with low efficiency in eliminating low-frequency colored noise. Based on the merits of
WT and PCA, Bakshi [27] proposed a WT-based multi-scale PCA (MSPCA), which proved
to be highly efficient in multivariate monitoring. However, when denoising GNSS positions,
MSPCA considers only the correlations between the same position directions at different
sites, whereas the spatial correlation between the components of the coordinates for all
sites is disregarded. Singular spectrum analysis (SSA) [28] is effective for managing signals
with small time-domain waveform fluctuations. Moreover, for signals with significant
fluctuations, the appropriate noise platform parameters should be selected to significantly
reduce noise. However, the selection rules for the noise platform parameters are not clearly
defined [29]. Jin et al. [30] used a method combining empirical mode decomposition (EMD)
and SSA to estimate the nonlinear trend terms in the time series of actual sea level changes
with high accuracy and consistency. Kong et al. [31] performed an SSA and a Fourier
fast transform to analyze a long-term polar motion time sequence obtained via Doppler
orbitography and radio positioning integrated by satellite observations.

Many methods based on time-scale decomposition have been developed. Shen et al. [32]
used variational mode decomposition (VMD) combined with a correlation coefficient to de-
noise the original sequence and extract seasonal, trend, and residual terms. Xu et al. [33]
proposed a type of energy entropy mutual information as the objective function to improve
VMD combined with a wavelet packet denoising algorithm, to address inadequate decompo-
sition or to effectively denoise the time series. Montillet et al. [34] used the EMD algorithm
to decompose the GPS coordinate time series into a series of sub-time series, and then pro-
posed an algorithm to estimate the Hurst parameter for each sub-time series to calculate
the statistics of WN. He et al. [12] performed PCA to a process based on spatial filtering to
enhance the accuracy and reliability of GNSS position time series. Lu et al. [35] proposed an
EMD-PCA combined method to reduce the multipath effect and high-frequency random noise.
He et al. [36] developed a MATLAB-based denoising software named GNSS-TS-NRS, which
can denoise signals using five methods, including EMD and ensemble EMD, and can effec-
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tively perform signal processing. Lee et al. [37] used EMD and PCA to detect climate change
signals to weaken the effect of background noise and increase their ability to detect climate
change. Zhang et al. [38] proposed a wavelet decomposition (WD)-PCA combined method
to improve the vulnerability of PCA to high-frequency random noise in daily coordinate
sequences and effectively improved positioning accuracy. Lu et al. [39] proposed a GPS
time series prediction model based on complete ensemble empirical mode decomposition
(CEEMD). Based on the model identification rules, each intrinsic modal function (IMF) and
residual should be modeled separately, and the final predicted results of the GPS time series
can be calculated. For GPS multipath error extraction, Long et al. [40] proposed a new
algorithm based on the CEEMD-wavelet-SavGol model to address the mode-mixing effect
of the EMD algorithm and the limitations of wavelet denoising. Li et al. [41] developed
CEEMD-multi-PCA (CEEMD-MPCA) combined with a correlation coefficient to increase
the accuracy and feature extraction of GNSS coseismic positions with a high sampling rate.
The CEEMD-MPCA denoising method is not only suitable for the seismic feature extraction
of GNSS seismic positions, but also eliminates WN and systematic errors while retaining
earthquake waveforms with high performance by considering the correlation among the
different components of each station.

To enhance the reliability of GNSS positioning and feature extraction, an adaptive
method using CEEMD-MPCA based on correlation coefficients and block spatial filtering
is proposed herein. Compared with previous studies, our study offers the following
advantages: (i) the CEEMD method is first applied to decompose the GNSS time series
into various IMFs based on the inherent time-scale features of the data; (ii) the proposed
approach based on MPCA fully considers correlations among different components of each
station and the non-uniform behavior of the CME on a spatial scale; and (iii) the CEEMD
method is applied to the trend- and seasonal-feature extraction of the denoised GNSS
time series.

The remainder of this paper is organized as follows. The GNSS daily time series
and processing process are presented in Section 2. Section 3 describes the methodological
procedures and principles of the analysis. In Section 4, noise analysis based on Hector
software is presented. Finally, the conclusions are presented in Section 5.

2. GNSS Daily Time Series and Preprocessing Procedure

The International GNSS Service (IGS) is a high-precision international GNSS product
(https://www.igs.org/about/, accessed on 8 March 2023). Currently, approximately 506
continuously operating GNSS sites are globally distributed and use data from these sites to
publish satellite orbits, satellite clocks, zenith path delays, zenith tropospheric delays and
other products. The IGS comprises three global data centers: the Crustal Dynamics Data In-
formation System, the South Orange Performing Arts Center and the Institut Géographique
National, which can provide pseudo-range and phase observations, broadcast ephemeris
and meteorological data free of charge. The SOPAC uses “st_filter” software (http://
sopac-ftp.ucsd.edu/pub/timeseries/measures/, accessed on 8 March 2023) to combine
constrained solutions from the JPL and SOPAC analysis centers, remove the errors caused
by software and processing schemes and derive a consistent solution. The solution strategy
adopted by the analysis center and the error model used are details that can be found on
the SOPAC website (http://garner.ucsd.edu/pub/measuresESESES_products/ATBD/,
accessed on 8 March 2023).

The SOPAC provides three types of data: raw, clean and filtered. Among them, “clean”
daily time series data are generated by the removal of outliers, mean and coseismic and
non-seismic jumps from the original data. The gaps for a few missing epochs are filled using
linear interpolation. In theory, the daily time series of a “clean trend” location contains
trends, seasonal signals and spatial correlation noise.

The accuracy of the newly proposed method was assessed using a GNSS daily coordi-
nate time sequence in a 10-year span from 27 October 2010 to 27 October 2020, at 20 sites in
the SOPAC network (Figure 1). The selected 20 stations were categorized into two blocks

https://www.igs.org/about/
http://sopac-ftp.ucsd.edu/pub/timeseries/measures/
http://sopac-ftp.ucsd.edu/pub/timeseries/measures/
http://garner.ucsd.edu/pub/measuresESESES_products/ATBD/
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(10 GNSS stations in central California (Block 1) and 10 stations in southern California
(Block 2)). This selection was based on the following considerations: First, He et al. [12]
showed that in the GNSS region, block-space filtering can weaken seasonal variation, re-
duce regional effects and enhance the accuracy and reliability of GNSS data. Second, to
obtain accurate trends from continuous time sequences, the time span must be at least
2.5 years [4,42]. Finally, the selected IGS stations have a low data loss rate, as shown in
Table 1, for the 20 stations; the average data loss rates for Blocks 1 and 2 were 0.98% and
1.81%, respectively (Table 1). The low data loss rate renders it possible to analyze the GNSS
time series in both time and frequency domains. Furthermore, the 10-year observation
period was sufficient to obtain accurate trends.
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Figure 1. Distribution of International GNSS Service (IGS) reference stations.

Table 1. Data loss rates for Blocks 1 and 2.

Block 1 Data Loss Rate (%) Block 2 Data Loss Rate (%)

P211 1.23 CAND 3.49
P216 1.78 HOGS 0.63
P232 1.33 HUNT 1.31
P233 1.25 LAND 1.23
P234 0.46 MASW 0.5
P235 0.85 MIDA 1.46
P242 0.68 MNMC 2.73
P243 0.59 P281 1.82
P244 0.77 P789 1.01
P251 0.83 TBLP 3.95

The daily GNSS coordinate time sequences and other relevant parameters were ob-
tained for each site. The GNSS time sequence at station P242 is shown in Figure 2. Site
P242 exhibited a long-trend term of moving northeast (Figure 2a), and the mean root mean
squares of the GNSS residue were 1.46, 1.64 and 4.67 mm in the north (N), east (E) and up
(U) directions, respectively (Figure 2b), with clear seasonal variation and primarily annual
trends, particularly in the north and up components.
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3. Methods
3.1. An Improved Denoising Method for GNSS Daily Time Series

The definitions of the CEEMD method, correlation coefficient between each IMF and
raw signal are provided in Equations (A1) and (A2) in the Appendix A. Based on the meth-
ods mentioned in the appendix, an improved method involving CEEMD-MPCA combined
with the correlation coefficient and block spatial filtering was developed to enhance the
accuracy of the GNSS daily coordinate time sequence and feature extraction. In this method,
the selected GNSS network is classified into several blocks. The three-dimensional daily
GNSS data matrix is converted into a two-dimensional matrix, which is used to decompose
the GNSS daily coordinate time sequence into limited IMFs. The inflection point of the
transitional IMF is determined using the correlation coefficient. Wavelet denoising is per-
formed to filter the former noise-dominated mode, and the filtered signal is reconstructed
using the remaining matrix. Finally, MPCA is performed to reconstruct and process the
processed IMF to obtain the denoised time sequence. The details of the improved method
are as follows:

(i) The GNSS network is classified into several blocks based on the scale or range while
considering the spatial distribution of the GNSS stations.

(ii) The three-dimensional GNSS data matrix S(m, n, q) is converted into a two-dimensional
GNSS data matrix S(n, u), u = m × q, where n, m and q represent the number of
epochs, selected station and coordinate directions of each site, respectively. The three
coordinate components in order are N, E and U.

(iii) Each column in matrix S(n, u) is adaptively decomposed into K IMFs based on

the frequency level using the CEEMD method. IMFs =
{

im f j,1, im f j,2, . . . , im f j,K

}
,

j = 1, 2, . . . , u.
(iv) The CCs between the raw residual time sequence and each IMF are calculated, and the

corresponding matrix CCs =
{

ccj,1, ccj,2, . . . , ccj,K
}

are obtained. Starting from ccj,1,
the IMF component im f j,h corresponds to the first extreme value ccj,h in the CCs, and
the next IMF component im f j,h+1 is the transitional IMF.

(v) The transition IMF (noise-dominant) and noise IMFs are combined into a new matrix

XD =
{

xdj,1, xdj,2, . . . , xdj,h+1

}
, and each column of matrix XD is processed via
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wavelet denoising; subsequently, the new matrix XR =
{

xrj,1, xrj,2, . . . , xrj,h+1

}
is

obtained after denoising.
(vi) The denoised matrix XR and monochromatic IMFs are reconstructed to obtain a new

matrix XE = {xe1xe2, . . . , xen}. MPCA is applied to matrix XE and the value of
cumulative contribution rate (CCR) of the first k components is calculated.

(vii) If the value of CCR exceeds 85%, then the top k components are selected as the denoised
signals, and a new denoised matrix XF = {x f 1, x f 2, . . . , x f n} is reconstructed.

3.2. Feature Extraction of Seasonal and Trend Terms

The fundamental step in data analysis is to determine and remove nonlinear trend
terms from the data [41]. Based on EMD, the trend term is defined as follows: the trend
for a dataset with a certain time range is a function that has, at the maximum, one extreme
value or a monotone function with inherent determination [43].

One of the most evident features of the GNSS daily time sequence is the seasonal
term, which is primarily caused by the migration of surface materials, including surface
water, snow cover, vegetation changes, and tides [44,45]. Many early studies showed that
the seasonal terms of the sequence are mainly composed of semi-annual and annual cycle
terms [46,47].

After performing denoising using the proposed method, the denoised matrix XF is
used as the starting input matrix. Subsequently, CEEMD is applied to obtain the trend and
seasonal terms. The corresponding feature extraction results are calculated as follows:

XF = ISEA + ITRE + RES (1)

where ISEA represents the seasonal term of the denoised data results obtained via CEEMD,
ITRE represents the trend term extracted from the denoised data and RES represents the
residuals. The structure of the proposed method is shown in Figure 3.
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4. Results and Analysis
4.1. Results of GNSS Denoised Data

Herein, the N component of site P242 is presented as an example to assess the proposed
method. The GNSS coordinate time series were first decomposed using CEEMD into
different IMFs, and the decomposition results for the eight IMFs and one residue were
obtained (Figure 4). IMF 8 shows a clear annual variation in the GNSS daily time series,
whereas IMF 7 shows a strong seasonal cycle.
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Table 2 shows the CCs between the raw north GNSS time sequence of station P242 and
each IMF decomposed by CEEMD. The transitional IMF was IMF5. Based on our method,
IMF1–IMF4 are “noise-dominant” IMFs, IMF5 is a “transition” IMF and the remaining IMFs
are “signal-dominant” IMFs. IMF1–IMF5, as “noise-dominant” models, were combined
into a new matrix XD =

{
xdj,1, xdj,2, . . . , xdj,5

}
, j = 1, 2, . . . , u. For every column of

wavelet soft threshold denoising processing, a new matrix XR =
{

xrj,1, xrj,2, . . . , xrj,5
}

was obtained. The denoised matrix and “signal-dominant” IMFs were reconstructed to
obtain a new matrix XE. The MPCA method was used for matrix XE, and the top k
components, where the cumulative contribution rate of the first k components exceeded
85%, were selected. The final denoised matrix XF was reconstructed.

Table 2. CCs between each component location in site P242 based on the position time series and its
corresponding IMFs.

IMF c1 c2 c3 c4 c5 c6 c7 c8

N 0.41 0.37 0.32 0.29 0.32 0.41 0.76 0.51

The raw and denoised GNSS coordinate time sequence at station P242 in the N
direction and their corresponding residual time series are shown in Figure 5. Clear nonlinear
variations and oscillations with time were exhibited in the raw coordinate time series, which
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indicates that the raw GNSS time series was affected by WN, and the colored noise was
nonlinear and nonstationary (Figure 5a). The proposed method was smoother than WD-
PCA and EMD-PCA, indicating that the proposed method not only effectively eliminated
noise at high frequencies, but also reduced noise at low frequencies. Nonlinear oscillations
and random fluctuations with high frequencies were observed in the raw residual time
series (Figure 5b), indicating the presence of WN with high frequencies and systematic noise
with low frequencies in the raw GNSS daily coordinate sequence. The proposed method
can eliminate more noise at both high and low frequencies than WD-PCA and EMD-PCA.
WD-PCA considers the advantages of wavelet denoising and PCA in removing noise at
both high and low frequencies. Meanwhile, EMD-PCA considers the advantages of EMD
and PCA in partially removing low-frequency noise. Furthermore, the proposed method
combines the advantages of CEEMD-WD and MPCA, which consider the correlation
between all directions of the station and eliminate various noises effectively. CEEMD is
more accurate than the other methods because of its highly adaptive and data-driven ability
to decompose GNSS datasets into IMFs of different frequencies.

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 23 
 

 

variations and oscillations with time were exhibited in the raw coordinate time series, 

which indicates that the raw GNSS time series was affected by WN, and the colored noise 

was nonlinear and nonstationary (Figure 5a). The proposed method was smoother than 

WD-PCA and EMD-PCA, indicating that the proposed method not only effectively elim-

inated noise at high frequencies, but also reduced noise at low frequencies. Nonlinear os-

cillations and random fluctuations with high frequencies were observed in the raw resid-

ual time series (Figure 5b), indicating the presence of WN with high frequencies and sys-

tematic noise with low frequencies in the raw GNSS daily coordinate sequence. The pro-

posed method can eliminate more noise at both high and low frequencies than WD-PCA 

and EMD-PCA. WD-PCA considers the advantages of wavelet denoising and PCA in re-

moving noise at both high and low frequencies. Meanwhile, EMD-PCA considers the ad-

vantages of EMD and PCA in partially removing low-frequency noise. Furthermore, the 

proposed method combines the advantages of CEEMD-WD and MPCA, which consider 

the correlation between all directions of the station and eliminate various noises effec-

tively. CEEMD is more accurate than the other methods because of its highly adaptive and 

data-driven ability to decompose GNSS datasets into IMFs of different frequencies. 

 

Figure 5. (a) Raw and denoised GNSS coordinate time series in N direction of site P242, and (b) their 

corresponding residual time series. (Black lines: raw time series; green lines: resuls via WD-PCA; 

blue lines: resuls via EMD-PCA; red lines: resuls via the propsed method). 

To analyze the denoising effect more comprehensively using the proposed method, 

the raw and denoised GNSS coordinate time sequences in the U direction for Blocks 1 

(Figure 6) and 2 (Figure A1) are shown. The raw GNSS daily time sequence contains cen-

timeter-level fluctuations, namely low-frequency colored noise and clear random oscilla-

tions with high frequencies. The denoised coordinate time series was much smoother than 

the original time series, indicating that the denoising effect is better. For example, the time 

series of station P242 shows apparent annual cycles, which may be due to changes in the 

surface environment composed of sea level, continental water and atmospheric load 

changes, thus resulting in periodic changes in crustal deformation [44,48]. 

Figure 5. (a) Raw and denoised GNSS coordinate time series in N direction of site P242, and (b) their
corresponding residual time series. (Black lines: raw time series; green lines: resuls via WD-PCA;
blue lines: resuls via EMD-PCA; red lines: resuls via the propsed method).

To analyze the denoising effect more comprehensively using the proposed method, the
raw and denoised GNSS coordinate time sequences in the U direction for Blocks 1 (Figure 6)
and 2 (Figure A1) are shown. The raw GNSS daily time sequence contains centimeter-level
fluctuations, namely low-frequency colored noise and clear random oscillations with high
frequencies. The denoised coordinate time series was much smoother than the original
time series, indicating that the denoising effect is better. For example, the time series of
station P242 shows apparent annual cycles, which may be due to changes in the surface
environment composed of sea level, continental water and atmospheric load changes, thus
resulting in periodic changes in crustal deformation [44,48].
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To quantitatively describe the improvement in the accuracy of the GNSS daily po-
sitions, the standard deviations (STDs) of the GNSS residual time sequences of various
methods at each station are shown in Figure 7. Regardless of the block, the STDs of the origi-
nal data were the highest. The EMD-PCA method exhibited the least improvement in terms
of accuracy, whereas the proposed method exhibited the most significant improvement.

For Block 1, the horizontal components of the proposed method were significantly
better than the up component of the other methods. For the N component, the STDs of the
original residual data, WD-PCA, EMD-PCA and the proposed method were [0.86–2.02],
[0.20–1.71], [0.41–1.98] and [0.17–0.58], respectively. For the E component, the STDs of
the original residual time series, WD-PCA, EMD-PCA and the proposed method were
[1.09–1.66], [0.34–0.93], [0.62–1.46] and [0.16–0.38], respectively. The proposed approach
exhibited a significantly higher accuracy than the other approaches in the horizontal
direction because the coordinate time sequences of each station in the horizontal direction
indicated a stronger correlation, and MPCA can theoretically fully utilize the correlation
between different coordinate components to remove noise (Figure 7). In the up direction,
the accuracies achieved by the three methods for stations P216, P232, P233, P235 and
P242 were similar. At the remaining stations, the proposed method exhibited a slightly
higher accuracy than the other methods. The STD ranges of the original residual time
series, WD-PCA, EMD-PCA and C-MPCA data were [4.50–13.02], [2.29–12.36], [2.45–12.71]
and [2.35–12.46], respectively, because the correlation between the U components of each
station was weak. Considering the correlation between different coordinate components,
the filtering effect in the U component was not significant.
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For Block 2, the proposed approach showed higher accuracy in the northern regions
than the other approaches, except for the MIDA and TBLP stations. For the N component,
the STDs of the original residual data, WD-PCA, EMD-PCA and the proposed method
were [0.83–1.46], [0.15–0.33], [0.25–0.64] and [0.04–0.29], respectively. The median error of
the proposed method exceeded that of the WD-PCA method, which was mainly due to the
inferior decomposition effect of CEEMD at this station, which resulted in the low filtering
accuracy of these two stations. In the east direction, except for TBLP station, the accuracy
of the proposed method exceeded that of the other methods. For the E component, the
STD ranges of data obtained by the original residual time series, WD-PCA, EMD-PCA and
the proposed method were [1.00–1.64], [0.20–0.36], [0.37–0.95] and [0.15–0.26], respectively.
For the U component, the STD ranges of the raw residual data, WD-PCA, EMD-PCA
and C-MPCA were [4.24–6.26], [2.54–4.73], [2.92–5.51] and [2.11–4.40], respectively. For
the LAND and MASW stations, the WD-PCA method performed slightly better than the
EMD-PCA and the proposed method, whereas for the other stations, the proposed method
performed better than the other methods. This is because the correlation between the
U components of each station was weak. Considering the correlation between different
coordinate components, the filtering effect of the upper components was not significant.

Table 3 presents the mean STD in each direction for the overall, Block 1 and Block 2
regions. For the overall denoising, the average STDs of the original residual data, WD-PCA
and EMD-PCA in the N, E and U directions were (1.12, 1.28, 5.25) mm, (0.45, 0.53, 3.70)
mm and (0.56, 0.68, 3.91) mm, respectively. However, the average STDs of the proposed
approach were 0.31, 0.30, 3.46 mm in the N, E and U directions, respectively. Furthermore,
after separating the GNSS network into two blocks by determining each block’s scale or
range and considering the spatial distribution of the GNSS stations, for Block 1 region
in the N, E and U directions, the average STDs of the raw residual data, WD-PCA and
EMD-PCA were (1.15, 1.36, 5.70) mm, (0.57, 0.51, 4.32) mm and (0.76, 0.87, 4.59) mm,
respectively. However, the average STDs of the proposed approach were 0.27, 0.29 and
4.03 mm, respectively. For Block 2 in the N, E and U directions, the average STDs of the
original residual data, WD-PCA and EMD-PCA were (1.09, 1.20, 4.79) mm, (0.28, 0.28, 3.19)
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mm and (0.50, 0.57, 3.58) mm, respectively. However, the average STDs of the proposed
approach were 0.15, 0.20 and 2.86 mm, respectively. The original residual time series
exhibited the highest STDs, followed by EMD-PCA, whereas the STDs shown by WD-PCA
were lower because WD can accurately separate high-frequency WN and irregular periods.
By contrast, the proposed method exhibited the lowest mean STD. This is because the
CEEMD method can accurately decompose the GNSS coordinate time series, whereas our
method takes the correlations between the different coordinate directions for each station
in consideration.

Table 3. Average standard deviations of raw and denoised residual data (mm).

Methods
Overall Denoising Block 1 Block 2

N E U N E U N E U

Original 1.12 1.28 5.25 1.15 1.36 5.7 1.09 1.2 4.79
WD-PCA 0.45 0.53 3.7 0.57 0.51 4.32 0.28 0.28 3.19

EMD-PCA 0.56 0.68 3.91 0.76 0.87 4.59 0.5 0.57 3.58
Our method 0.31 0.3 3.46 0.27 0.29 4.03 0.15 0.2 2.86

4.2. Feature Extraction of Seasonal and Trend Items

The CEEMD method was subsequently applied to decompose the denoised GNSS
coordinate time sequences into numerous IMFs to obtain the trend and seasonal terms,
and each IMF was arranged based on frequency, as described by Wu et al. [43]. The
decomposed results of the denoised GNSS data via CEEMD in the N direction at station
P242 are presented and compared with the properties of WD and EMD (Figure A2). d1–d6,
d7–d8 and a8, which were extracted using WD, denote the noise, seasonal and trend terms,
respectively (Figure A2a). IMF1–IMF3, IMF4–IMF5 and Res, which were extracted using
EMD, denote the noise, seasonal and trend terms, respectively (Figure A2b). IMF1–IMF7,
IMF8–IMF9, and Res extracted via CEEMD denote the noise, seasonal and trend terms,
respectively (Figure A2c).

WD and EMD can be used to perform feature extraction on a time sequence. However,
for WD, the amplitudes of the noise part are larger, which indicates that noise exerts a more
significant effect on feature extraction. The EMD exhibits a modal overlap. To demonstrate
the feature extraction ability of the CEEMD method, the similarity of the slope of the trend
term and the Pearson correlation coefficients (PCCs) of the seasonal term were used for the
denoised GNSS coordinate time series.

(1) Comparison results between trend terms.

WD, EMD and CEEMD were applied to trend extraction for Blocks 1 and 2. The slopes
of the original sequences and the trend terms were used to verify the superiority of the
trend extraction. The similarity of the slope between the raw data and trend terms was
calculated as follows:

Similarity =
Msi
Osi

i = 1, 2, . . . , u (2)

where Similarity represents the similarity between trend terms, Msi represents the slope of
the ith trend term and Osi represents the slope of the ith original data.

The similarity in the slope between the trend term and the denoised GNSS time series
is presented in Table 4. The closer the trend term is to the slope value of the raw GNSS
data, the more reliable is the extracted result. Based on Table 4, CEEMD is more stable and
reliable than EMD and WD. The accuracy of CEEMD is 99.99%, which was higher than that
of WD (99.96%) and EMD (97.60%), demonstrating that CEEMD is superior to WD and
EMD in terms of trend-term extraction.
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Table 4. Similarity between denoised GNSS time series and trend term obtained via WD, EMD and
CEEMD, separately.

Block 1
Similar degree (%)

Block 2
Similar Degree (%)

WD EMD CEEMD WD EMD CEEMD

P211 99.97 99.91 99.99 CAND 99.97 99.94 99.97
P216 99.99 99.65 99.98 HOGS 99.95 99.99 99.99
P232 99.99 99.89 99.99 HUNT 99.95 99.96 99.99
P233 99.96 99.89 99.98 LAND 99.96 99.97 99.99
P234 99.97 99.99 99.99 MASW 99.97 99.95 99.99
P235 99.97 100 100 MIDA 99.98 100 99.99
P242 99.89 99.99 99.98 MNMC 99.93 99.96 99.97
P243 99.96 99.98 99.99 P281 99.97 99.42 99.99
P244 99.93 53.65 99.97 P789 99.95 99.91 100
P251 99.95 99.97 100 TBLP 99.95 99.8 99.96

(2) Comparison results between seasonal terms.

The performances of WD, EMD and CEEMD in extracting seasonal items were com-
pared, and the PCC was used to establish the superiority of CEEMD (Table 5).

Table 5. Similarity of seasonal terms based on WD, EMD and CEEMD.

Block 1
PCCs

Block 2
PCCs

WD EMD CEEMD WD EMD CEEMD

P211 0.01 0.05 0.39 CAND 0.02 0.2 0.31
P216 0.12 0.21 0.31 HOGS 0.01 0.35 0.4
P232 0.01 0.03 0.37 HUNT 0.01 0.06 0.39
P233 0.13 0.34 0.31 LAND 0.02 0.36 0.4
P234 0.01 0.06 0.37 MASW 0.13 0.35 0.42
P235 0.01 0.3 0.36 MIDA 0.12 0.23 0.35
P242 0.13 0.38 0.36 MNMC 0.01 0.35 0.34
P243 0.12 0.22 0.32 P281 0.29 0.05 0.4
P244 0.31 0.1 0.34 P789 0.29 0.23 0.32
P251 0.13 0.15 0.32 TBLP 0.28 0.37 0.38

For Block 1, the average PCCs of the seasonal terms extracted via WD, EMD and
CEEMD were 0.10, 0.18 and 0.35, respectively, whereas for Block 2, they were 0.12, 0.26
and 0.37, respectively (Table 5). The average PCCs obtained by CEEMD in Block 1 were
250.0% and 94.4% higher than those obtained by WD and EMD, respectively, whereas those
in Block 2 were higher by 208.3% and 43.2%, respectively. These results demonstrate that
CEEMD is more accurate than EMD and WD for the extraction of seasonal items. The
seasonal terms extracted via CEEMD and the other parameters in Blocks 1 and 2 are shown
in Figure 8a,b, respectively. Seasonal terms are indicated by yellow lines, GNSS detrended
signals are illustrated by grey lines and the errors in GNSS data, which reflect the errors in
GNSS signals, are represented by black I-shaped lines. The results showed that the seasonal
terms extracted via CEEMD are consistent with the residual time series.
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4.3. Noise Analysis

Typical methods for the noise characteristic analysis of GNSS data include maximum
likelihood estimation (MLE) and power spectrum analysis. For noise analysis in a time se-
quence, the nature and intensity of noise in the GNSS data are determined in the frequency
and time domains, respectively. Bos et al. [13] developed a technique that substantially
increases the efficiency of the MLE method, which has since been improved [49]. Addi-
tionally, more advanced and computationally expensive methods, such as Markov chain
Monte Carlo methods [14,50] and wavelet analysis [51], have been proposed to obtain
unbiased probability distributions for noise in the time series. The definition of the related
information criterion (IC) is provided in Appendix A.3.

He et al., objectively selected the best noise model by investigating various criteria
such as the AIC and BIC [52]. The performance of the models investigated was quantified
by analyzing 500 batches of simulated time series with lengths of 8.2, 16.4 and 24.6 years
and known noise characteristics. He et al. processed a time series before jointly estimating
stochastic and functional models using a maximum log-likelihood estimator via Hector
software [13,53]. To prevent the over-selection of noise models with numerous parameters,
the optimal noise model was selected based on the log-likelihood value and information
criteria (i.e., AIC, BIC and BIC_tp). He et al., applied these information criteria to Monte
Carlo simulations of synthetic time series and obtained highly reliable results [54]. In this
study, the Hector software package was employed to estimate the parameters of various
combinations of noise models, which were then used to analyze the noise in raw and
denoised GNSS residual sequences at the selected GNSS sites in the two blocks. The AIC,
BIC and BIC_tp were applied to describe the feasibility of each noise model. WN, WN
plus PL noise (WN + PL), WN plus flicker noise (WN + FN), WN plus random walk noise
(WN + RW), WN + FN + RW, generalized Gaussian–Markov noise (GGM) and WN plus
generalized Gaussian–Markov noise (WN + GGM) were considered in the noise analysis.

The percentages of each noise model with the lowest AIC, BIC and BIC_tp values in
the raw and denoised residual sequences of the selected GNSS stations (N, E and U) in
Blocks 1 and 2 are shown in Table 6. The values of the AIC, BIC and BIC_tp were mostly
consistent, thus demonstrating the reliability of the AIC, BIC and BIC_tp criteria used to
determine the best noise model. Additionally, the optimal noise model for the raw GNSS
residual sequence in the selected Blocks 1 and 2 regions can be regarded as a combination
of the WN + FN + RW model with percentages of 46.7% and 46.7%, respectively, which is
based on the BIC_tp criterion for the selection of the best noise model. Furthermore, the
percentage of the WN + FN models was 26.7% in the Block 1 region, whereas that of the
WN + PL model was 23.3% in the Block 2 region.

For the WD-PCA method for most cases in the selected Blocks 1 and 2 regions, a
combination of GGM + WN can be regarded as the optimal noise model, followed by
the GGM model. For the EMD-PCA method for most cases in the selected Blocks 1 and
2 regions, a combination of WN + FN + RW could be regarded as the optimal noise model,
whereas the GCM model in Block 1 and WN + FN in Block 2 can be regarded as the second-
most optimal model. For the proposed method, a combination of WN + GGM model can be
regarded as the optimal noise model for most cases in the selected Blocks 1 and 2 networks,
whereas the GGM model in Block 1 and GGM + WN model in Block 2 can be regarded
as the second-best model. One can conclude that the noise components in the raw and
denoised GNSS sequences are complex and that applying only one model to all the GNSS
positions in the selected GNSS region is unreasonable (Table 6).
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Table 6. Percentage of each noise model with the lowest values of the Akaike information criterion
(AIC), Bayesian information criterion (BIC) and BIC_tp of the raw and denoised GNSS residual
sequences at Blocks 1 and 2 (the value in bold indicates the optimal noise model (%)).

Block Noise Model
Raw WD-PCA EMD-PCA Our Method

AIC BIC BIC_tp AIC BIC BIC_tp AIC BIC BIC_tp AIC BIC BIC_tp

1

WN 0 0 0 0 0 0 0 0 0 0 0 0
WN + PL 0 0 10 0 0 0 0 0 0 0 0 0
WN + FN 23.3 30 26.7 0 0 0 23.3 36.7 3.3 0 0 0

WN + FN + RW 43.3 36.7 46.7 0 0 0 46.7 33.3 53.3 0 0 0
WN + RW 0 6.7 6.7 0 3.3 3.3 3.3 13.3 20 13.3 30 13.3

GGM 23.3 26.7 10 36.7 40 20 10 10 0 3.3 30 46.7
WN + GGM 10 0 0 63.3 56.7 76.7 16.7 6.7 23.3 83.3 40 40

2

WN 0 0 0 0 0 0 0 0 0 0 0 0
WN + PL 23.3 10 23.3 0 0 0 0 0 0 0 0 0
WN + FN 10 26.7 20 0 0 0 0 6.7 6.7 0 0 0

WN + FN + RW 60 46.7 46.7 0 0 0 70 46.7 3.3 0 0 0
WN + RW 0 6.7 0 0 3.3 3.3 6.7 23.3 0 10 16.7 13.3

GGM 3.3 10 6.7 20 26.7 33.3 0 0 53.3 46.7 46.7 23.3
WN + GGM 3.3 0 3.3 80 70 63.3 23.3 23.3 36.7 43.3 36.7 63.3

The power spectra of the raw and denoised GNSS residual sequences in the three
directions at station P242 are shown in Figure A3. No significant period was removed
by CEEMD, while WD-PCA and EMD-PCA eliminated high- and low-frequency noise,
respectively; however, the clearance level was limited. The proposed method performed
better than WD-PCA and EMD-PCA in eliminating low- and high-frequency noise, respec-
tively. For high-frequency noise in the right side, both WD-PCA and the proposed method
exhibited a favorable denoising effect, indicating that the two approaches can fully utilize
the merits of the WD method for eliminating high-frequency noise. For the low-frequency
noise in the intermediate section, the proposed method was significantly better than the
other two methods for all three components. This indicates that the proposed method fully
exploits the merits of CEEMD and WD, where CEEMD is first used to obtain various IMFs
as well as because of its good adaptive processing ability by WD for noise-dominant IMFs.
For the lower-frequency noise in the left side, the proposed method performed better than
the other two methods, particularly for the horizontal components. This indicates that the
proposed method fully considers the correlation between the different components of each
station and the non-uniform behavior of the CME on a spatial scale.

5. Conclusions

To enhance the accuracy of GNSS positioning and feature extraction, an adaptive
method using CEEMD and MPCA based on correlation coefficients and block spatial
filtering was proposed. The proposed approach fully exploits the merits of CEEMD and
WD to remove high- and low-frequency noise. Furthermore, the proposed method fully
considers the correlation between the different components of each station and the non-
uniform behavior of the CME on a spatial scale to eliminate low-frequency noise. Finally,
the seasonal- and trend-term features of the denoised GNSS sequences were extracted using
the CEEMD method. The properties of the proposed approach were estimated using a
GNSS daily time series from two blocks in California, USA. The following four conclusions
were drawn.

(1) Compared with other typically applied approaches, the newly proposed approaches
were more accurate in denoising the GNSS daily time series. In the Block 1 region
in the N, E and U directions, the mean STDs of the raw residual data, WD-PCA and
EMD-PCA were (1.15, 1.36, 5.70) mm, (0.57, 0.51, 4.32) mm and (0.76, 0.87, 4.59) mm,
respectively, whereas those of the proposed approach were 0.27, 0.29 and 4.03 mm,
respectively. In Block 2 in the N, E and U directions, the mean STDs of the raw residual
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data, WD-PCA and EMD-PCA were (1.09, 1.20, 4.79) mm, (0.28, 0.28, 3.19) mm and
(0.50, 0.57, 3.58) mm, respectively, whereas those of the proposed approach were 0.15,
0.20 and 2.86 mm, respectively. The performance of the proposed approach across the
two regions was consistent, indicating that it can effectively decrease noise at low-
and high-frequency in GNSS daily sequences. The proposed method is suitable for
denoising nonlinear and nonstationary GNSS position sequences.

(2) WD, EMD and CEEMD were used to extract the features from the GNSS daily data.
The results of the trend-feature extraction showed that the accuracy of CEEMD was
99.99% for trend-term feature extraction in the denoised GNSS daily sequences, which
was higher than the 99.96% and 97.60% accuracy levels exhibited by WD for EMD,
respectively. Compared with WD and EMD, CEEMD was more reliable and stable
in Blocks 1 and 2. The results of seasonal-feature extraction demonstrated that the
average PCC extracted via CEEMD was 0.36, which was 63.6% and 27.3% higher than
those of WD and EMD, respectively. These results showed that the seasonal terms
obtained by CEEMD were consistent with the residual time series, and that CEEMD
is more reliable than WD and EMD.

(3) For the raw GNSS data for most cases in Blocks 1 and 2, the WN + FN + RW model
was the optimal noise model. For WD-PCA and EMD-PCA for most cases in Blocks 1
and 2, the WN + GGM and WN + FN + RW models were the best noise models. For
the proposed method, the WN + GGM model was the best noise model in Blocks 1
and 2. The second-best model was the GGM model in Block 1 and the GGM + WN
model in Block 2. These results were obtained possibly because the components of
the noise in the raw and denoised GNSS data were complex, and that applying only
one model to all the GNSS positions in the selected GNSS region is unreasonable.

(4) Results of spectral analysis suggest that the proposed method is better than the
other two methods for all three components. The proposed method is suitable for
denoising nonlinear and nonstationary GNSS data. The advantage of the proposed
method is that it fully exploits the merits of CEEMD and WD. CEEMD was first used
to obtain various IMFs and then to obtain noise-dominant IMFs owing to its good
adaptive processing ability. Finally, it fully considers the correlation between the
different components of each station and the non-uniform behavior of the CME on a
spatial scale.
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Appendix A

Appendix A.1. CEEMD Method

EMD is a signal decomposition method based on the adaptive decomposition of
nonlinear and non-stationary data proposed by Huang, et al. [55]. For achieving signal
decomposition, the traditional Fourier transform and wavelet transform project the signal to
a pre-set function. In contrast, EMD without any predetermined basis function adaptively
decomposes a time sequence into finite IMFs through continuous “screening” based on
the inherent time-scale characteristics of a time sequence itself. Decomposed IMFs must
meet two conditions: (i) the extreme number for one IMF is no more than one zero crossing
number; (ii) the average value of the envelope determined by the minimum and maximum
is zero [55]. For the given signal S(t), the “screening” algorithm is used to obtain the first
IMF step, as follows:

(1) The locations of all the local minima and maxima in the signal S(t) are identified.
(2) Interpolate a natural cubic spline through the local maxima (minima) to find the

largest (smallest) envelope of S(t).
(3) Calculate the mean values: a(t) = (max(t) + min(t))/2.
(4) Remove details with: A(t) = S(t) − a(t).
(5) Repeat steps (1) to (4) on d(t) until the stopping criterion is met; the resulting d(t) is

referred to as an IMF, Ii(t).
(6) Compute the residual with: R(t) = S(t) − Ii(t).
(7) Iterate steps (1) to (6) until no more IMFs are available.

Here, the original datasets can be expressed as:

S(t) =
n

∑
i = 1

Ii(t)+Rn(t) (A1)

where Ii represents the ith IMF component, and n refers to the number of IMFs. Rn(t)
represents the final residue. The order of frequency for all decomposed IMFs is from high
to low. IMFs can reveal the time series of the multi-scale turbulence characteristics of
the residue.

In a multi-year position time series, IMF components with high frequency are generally
deleted directly as noise, and the GNSS coordinate sequences can be denoised by the
reconstruction of the remainder of IMFs [56,57]. Yet IMFs obtained by EMD usually exhibit
mode mixing (noise and signal overlap), and the simple reconstruction of IMF components
leads to poor denoising.

Based on the EMD method proposed by Huang, et al. [55], the ensemble empirical
mode decomposition (EEMD) method was developed by adding white noise to the signal
to reduce the mode mixing phenomenon of the EMD method. However, the EEMD method
still has problems, including residual noise, unequal number of modes, large reconstruction
error, and poor completeness of decomposition. Therefore, the complete ensemble empirical
mode decomposition (CEEMD) method was developed by Yeh, et al. [58], where auxiliary
white noise in pairs of negative and positive datasets is added to the raw dataset and can
effectively improve the decomposition efficiency. Let the band decomposition signal be
S(t) and let f (t) = S(t). The calculation procedures of the CEEMD algorithm are as below:
In each stage of decomposition, a specific white noise is added, and a unique residual is
calculated to obtain each IMF to complete the exact original signal reconstruction. The
application results show that CEEMD is an effecient method in high-frequency denoising
and low-frequency information extraction.

After signal decomposition using the CEEMD method, a series of IMFs ranked from
high to low frequency can be obtained. During decomposition, remaining auxiliary noise in
the dataset reconstruction can be eliminated effectively, which is advantageous in analyzing
non-stationary and non-linear time sequence.
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Appendix A.2. Correlation Coefficient between Each IMF and the Raw Signal

The IMFs obtained by CEEMD are arranged from high to low frequency according
to signal attributes. IMFs with High frequencies primarily include random white noise,
whereas IMFs with low frequencies typically include valid signals. Daniel [59] demon-
strated that within the first several high-frequency IMF components, the principal function
of white noise in each IMF gradually decreases, and the principal function of the signal
gradually increases. Kaslovsky and Meyer [59] illustrated that the decomposed IMFs
could be divided into three categories: (i) noise IMFs with white noise as the main compo-
nent; (ii) transitional IMFs containing both noises and signals; and (iii) signal-dominant
monochromatic IMFs.

The correlation coefficient (CC) between each IMF and the raw signal could be applied
to fix the inflection point between the noise-controlled and signal-controlled IMFs. The
CCs between each IMF and the raw signal can be defined as:

cci,j(Xj, ri,j) =
∑
m
(Xi − Xi)(ri,j − ri,j)√

∑
m
(Xi − Xi)

2
∑
m
(ri,j − ri,j)

2
(A2)

where Xj is the jth signal, ri,j represents the ith IMF component of Xj obtained by CEEMD,
and m is the raw signal’s length.

According to the definition of transitional IMF by Li, et al. [60], the inflection point
of the transitional IMF is as follows: from the first IMF, the IMF corresponding to the first
extreme value of the CC is confirmed, and the latter is taken as the inflection point of
transitional IMF.

Appendix A.3. Definition of IC

The definition of Akaike Information Criterion (AIC) is as below:

AIC = −2 log(L) + 2h (A3)

where L and h represent likelihood function and the number of model-fitting parame-
ters [61], respectively.

The optimal model has the lowest AIC value and codes the most information with the
smallest number of fitting parameters. AIC relative to h has a certain minimum value, and
the model of appropriate order is determined by the value of h at the minimum. In general,
when model complexity increases (h), L also increases so that the AIC declines. Yet, when
the value of h is too large, the growth rate of the likelihood-function slows down, which
leads to an increase in AIC, and overfitting occurs and the model becomes too complex.
AIC can enhance model fitting and avoid overfitting. AIC has also been developed for other
criteria, such as the Bayesian Information Criterion (BIC) [62], which contains a severe
penalty by replacing 2h terms with h· ln(u) and introducing additional model parameters.
When the sample sizes are considered, penalty term of the AIC will be smaller than that
of BIC. When the samples sizes are too large, the complexity of the model resulted from
high-accuracy can be effectively prevented.

The Bayesian modification of the AIC (BIC) is defined as:

BIC = h· log (u) − 2 log (L) (A4)

where h and u represent the number of model fitting parameters and the samples, respec-
tively, and L is the likelihood function.

In order to avoid the approximation of assuming that u is very large [63], Schwarz [64]
reintroduced the original factor 2π into the derivation of the BIC, which we can call
here BIC_tp:

BIC_tp = −2 log(L) + log(
u

2π
)h (A5)
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Figure A1. The effect of the developed denoising method in U direction for block 2. The grey lines
denote original GNSS daily time series; the red lines denote the denoised GNSS daily time series; and
the black I-shapes indicate errors with corresponding to GNSS positions.
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