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Abstract: Latent heat flux (LE) plays an essential role in the hydrological cycle, surface energy balance,
and climate change, but the spatial resolution of site-scale LE extremely limits its application potential
over a regional scale. To overcome the limitation, five transfer learning models were constructed based
on artificial neural networks (ANNs), random forests (RFs), extreme gradient boosting (XGBoost),
support vector machine (SVM), and light gradient boosting machine (LightGBM) to upscale LE from
site scale to regional scale in Heihe River basin (HRB). The instance-transfer approach that utilizes
data samples outside of HRB was used in the transfer learning models. Moreover, the Bayesian-based
three-cornered hat (BTCH) method was used to fuse the best three upscaling results from ANN, RF,
and XGBoost models to improve the accuracy of the results. The results indicated that the transfer
learning models perform best when the transfer ratio (the data samples ratio between external and
HRB dataset) was 0.6. Specifically, the coefficient of determination (R2) and root mean squared errors
(RMSE) of LE upscaled by ANN model was improved or reduced by 6% or 17% than the model
without external data. Furthermore, the BTCH method can effectively improve the performance of
single transfer learning model with the highest accuracy (R2 = 0.83, RMSE = 18.84 W/m2). Finally, the
LE upscaling model based on transfer learning model demonstrated great potential in HRB, which
may be applicable to similar research in other regions.

Keywords: artificial neural networks; random forests; extreme gradient boosting; transfer learning;
product ensemble

1. Introduction

Latent heat flux (LE) or evapotranspiration (ET) is an important process of hydrological
cycle and surface energy balance [1–3], including soil and open water evaporation, plant
transpiration, and canopy interception evaporation. LE is vital for climate change, which
accounts for about 60% of global precipitation [4]. As irrigation water use increases, so does
competition for water across regions. The basin-scale LE plays a crucial role in directing
the efficient distribution and administration of water resources.

Currently, the methods of obtaining LE mainly include lysimeters, eddy covariance
(EC) systems, large aperture scintillometers (LASs) and optical-microwave scintillometers
(OMSs) at the site scale or field scale [5–7]. The regional-scale LE can be acquired through
remote sensing estimation methods such as empirical statistical method [8,9], energy
balance method [10–12], and variational data assimilation method [13–15]. However, most
of the methods are still only applicable to small scales, and some errors will occur when the
study area is extended to watershed or global scale. In addition, many parameters in the
models cannot be measured directly due to the limitations of ground-based observations
unless they are obtained by empirical estimation or parameter optimization, which will
result in a strong geographical variability of the final calculated LE.
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To acquire the accurate regional LE, many researchers have made numerous attempts
at upscaling approaches based on ground-measured observations. The common upscaling
methods include four major groupings, and the detailed descriptions are as follow. The
first group averages the values of the ground sampling points directly [16] or weights them
according to the area or footprint range [17,18]. It is easy and effective to obtain the regional
information from site data through these methods, but limited by the spatial heterogeneity
and reasonable sampling strategy. Establishing empirical regression models is another
widely used method, which involves creating a correlation between land surface variables
and the target variable based on site-scale datasets, and subsequently extrapolating the
relationship to a basin-scale level [19]. Nevertheless, the empirical regression method,
although useful for small areas, may not be suitable for extrapolation to larger areas. The
third group, called “geostatistical methods”, mainly studies the natural phenomena with
spatial correlation based on kriging theoretical framework or Bayesian theory framework,
and it is widely used in the study of spatial scale expansion from point scale to regional
scale [20,21]. The fourth group is based on machine learning techniques such as artificial
neural networks [22], random forests [23], and so on [24–27]. However, what is captured
by machine learning is limited to the training set that is input to the model. As a result,
predictions in ranges outside the training set are not as effective, especially for extreme
weather [28].

Although previous methods have elevated the site-scale LE to regional scale to some
extent, these methods have mostly considered data within regions or near sites but not
in other similar regions, and the advent of transfer learning provides a new perspective.
Transfer learning is inspired by the ability to transfer knowledge across domains and aims
to use knowledge from the source domain to improve the learning performance of the target
domain or to reduce the number of labeled examples required for the target domain [29]. It
can be divided into instance transfer, feature-representation transfer, parameter transfer,
and relational-knowledge transfer based on the content of the transfer [30]. Instance
transfer means that the dataset of the source domain can be reused together with the data
of the target domain after corresponding processing, and has a wide range of applications
due to its relatively simple principle. Wu and Dietterich [31] integrated source domain
data into the support vector machine framework to improve classification performance.
Feature-representation transfer aims to find the good feature representation and minimize
the error of classification or regression model in the target domain. Parameter transfer
is essentially the migration of parameters or weights from the source task to the target
task to save the training time of the model. As the weights of the loss functions may
vary, assigning larger weights to the loss functions in the target domain ensures better
performance in the target domain. Lawrence and Platt [32] proposed an efficient method
for learning the parameters of a Gaussian process (GP), called multi-task informative vector
machine (MT-IVM), for handling multi-task learning situations. Schwaighofer and Kai
Yu [33] combined hierarchical Bayesian (HB) with GP for multi-task learning. Unlike the
above three transfer learning methods, the relational-knowledge transfer deals with the
transfer learning problems in the relational domain and involves the non-independent and
identically distributed data. Mihalkova et al. [34] proposed transfer via automatic mapping
and revision (TAMAR), which uses Markov logic networks (MLNs) to transfer relational
knowledge across relational domains. Zhao et al. [35] introduced transfer learning into
the field of natural hazards, providing a new idea for improving machine learning-based
assessment methods by transferring prior knowledge of different catchments.

Sometimes, the capability of an individual transfer learning model is limited due to
the limitation of the number of sites and land cover types, in which case the fusion of
multiple models seems to solve this problem. In contrast to other fusion methods [36,37],
the Bayesian-based three-cornered hat (BTCH) approach enables the integration of products
without using any a priori knowledge, and optimizes the use of available information,
ultimately enhancing the quality and accuracy of data fusion. Given the robustness of
machine learning models and the effectiveness of fusion algorithm, this study investigated
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the performance of five transfer learning methods and the BTCH fusion method based on
the observed data from the Heihe River basin (HRB) sites and similar external datasets.
Five machine learning algorithms are employed in this research, which are artificial neural
networks (ANNs), random forests (RFs), support vector machine (SVM), extreme gradient
boosting (XGBoost, version 1.3.1, Python 3.6), and light gradient boosting machine (Light-
GBM), respectively, and the best three of them are selected for fusion to obtain the optimal
upscaled daily LE with the spatial resolution of 1 km in 2018.

2. Materials
2.1. Study Area

The HRB, located in Northwest China, has a dry and cold climate typical of a temperate
continental monsoon region. In the upstream of HRB, the climate is wet and cold, with
annual-averaged air temperatures below 2 ◦C, and annual precipitation is about 350 mm.
The main land cover types include forest (mainly Qinghai spruce), grassland (alpine
meadow), etc. The midstream region is located in Hexi Corridor, where annual precipitation
decreases from 250 mm in the south to less than 100 mm in the north, mainly covered
by oases, oasis–desert transition zone, desert grassland, and desert. Most of the oases in
the midstream are artificial oases covered with maize. The desert species are scarce but
drought-tolerant, which are spatially distributed in patchy patterns. The downstream is
extremely dry, with annual precipitation less than 50 mm, and the dominant landscapes
are desert and natural oases (Tamarix and Populus Euphratica) (Figure 1).
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Figure 1. Land cover and flux tower site locations of the HRB. ENF—evergreen needleleaf forest;
DBF—deciduous broadleaf forest; MF—mixed forest; WET—permanent wetlands; GRA—grasslands;
CSH—closed shrublands; OSH—open shrublands; SAV—savannas; WSA—woody savannas;
CRO—croplands; URB—urban and built-up; BSV—barren or sparsely vegetated; SNO—snow and
ice; WAT—water bodies.
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2.2. Data in Heihe River Basin

The dataset of hydrometeorological observation network in Heihe Watershed allied
telemetry experimental research (HiWATER), the dataset of Heihe integrated observatory
network in Qilian Mountains integrated observatory network, and the dataset of flux
observation matrix in the multi-scale observation experiment on evapotranspiration over
heterogeneous land surfaces (HiWATER-MUSOEXE) are used in this study (https://data.
tpdc.ac.cn/home, accessed on 1 February 2023). LE and meteorological observations were
obtained at 21 stations for model validation at site, including 3 barren or sparsely vegetated
(BSV) sites, 12 cropland (CRO) sites, 1 closed shrubland (CSH) site, 1 deciduous broadleaf
forest (DBF) site, and 4 grassland (GRA) sites. The specific information of the above sites
was summarized in Table 1 [5,7,17,38–40], and the distribution can be found in Figure 1.
The upstream sites basically include the main vegetation types in the upstream of HRB,
namely alpine meadow and Qinghai spruce. Sites in the midstream are primarily covered
by cropland, and intensive observation was carried out in the oases from June to September
2012. The downstream sites are densely distributed near the oases.

Table 1. Summary of eddy covariance flux tower sites in HRB.

NO. Site Name Longitude (W◦) Latitude (N◦) Land Cover Period

1 Arou 100.4643 38.0473 GRA 2013/1–2019/12
2 Daman 100.3722 38.8555 CRO 2013/1–2019/12
3 Dashalong 98.9406 38.8399 GRA 2013/8–2019/12
4 Huazhaizi desert steppe 100.3186 38.7652 BSV 2016/1–2017/12
5 Desert 100.9872 42.1135 BSV 2016/1–2019/12
6 Mixed forest 101.1335 41.9903 DBF 2013/7–2019/12
7 Sidaoqiao 101.1374 42.0012 CSH 2016/1–2019/12
8 Yakou 100.2421 38.0142 GRA 2016/1–2019/12
9 Bajitan Gobi 100.3042 38.9150 BSV 2012/8–2015/4
10 Jingyangling 101.1160 37.8384 GRA 2018/1–2019/12
11 Ponit 1 100.3582 38.8932 CRO 2012/6–2012/9
12 Ponit 2 100.3541 38.8870 CRO 2012/6–2012/9
13 Ponit 3 100.3763 38.8905 CRO 2012/6–2012/9
14 Ponit 4 100.3575 38.8775 CRO 2012/6–2012/9
15 Ponit 5 100.3507 38.8757 CRO 2012/6–2012/9
16 Ponit 6 100.3597 38.8712 CRO 2012/6–2012/9
17 Ponit 7 100.3652 38.8768 CRO 2012/6–2012/9
18 Ponit 8 100.3765 38.8725 CRO 2012/6–2012/9
19 Ponit 9 100.3855 38.8724 CRO 2012/6–2012/9
20 Ponit 11 100.3420 38.8699 CRO 2012/6–2012/9
21 Ponit 12 100.3663 38.8652 CRO 2012/6–2012/9

Site-scale LE can be observed by eddy covariance systems, and the raw observations
were 10 Hz data, which have been post-processed by EddyPro software developed by Li-Cor
for obtaining 30 min flux data (http://www.licor.com/env/products/eddy_covariance/
software.html, accessed on 1 February 2023). In addition, the study preprocessed the data
accordingly: (1) The half-hour flux data were aggregated to daily scale; (2) Bowen ratio
correction was used to correct energy balance closure of the heat flux [41].

The meteorological variables were observed synchronously by automatic weather
stations, including air temperature (Ta), humidity (RH), wind speed (WS), atmospheric
pressure (Pa), precipitation (P), vapor pressure deficit (VPD), soil moisture (SM), and net
radiation (Rn). The daily automatic weather station data were calculated by averaging
10 min raw data, and the precipitation was accumulated for 30 days to minimize the effect
of canopy interception.

LE obtained from LAS observations at the three stations of Arou, Daman, and Sidao-
qiao during the HiWATER and HiWATER-MUSOEXE experiments in 2018 were also used as
independent validation data for the upscaled results [5,38,39]. LAS express the turbulence

https://data.tpdc.ac.cn/home
https://data.tpdc.ac.cn/home
http://www.licor.com/env/products/eddy_covariance/software.html
http://www.licor.com/env/products/eddy_covariance/software.html
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intensity of the atmosphere by measuring the structural parameters of the air refraction
index, which in turn derives the sensible heat flux (H), and calculates LE using the surface
energy balance residual method by combining Rn and soil heat fluxes (G) observed by
automatic weather stations.

2.3. External Data of Heihe River Basin

In our study, in addition to selecting relevant stations within HRB as training data for
the model, observation sites outside the basin were also selected to expand the training set.

Five flux sites located in the upstream of HRB (Figure 1), namely Xiyinghe site,
Liancheng site, alpine meadow and grassland site, subalpine shrub site, and temper-
ate steppe site, were collected from the dataset of Qinghai Lake integrated observatory
network in Qilian Mountains integrated observatory network and the cold and arid re-
search network of Lanzhou University (CARN, https://data.tpdc.ac.cn/home, accessed
on 1 February 2023). The land cover types of the above stations are mainly GRA and CSH
(Table 2) [42–49].

Table 2. Information of the sites in Qilian Mountains integrated observatory network.

NO. Site Name Longitude (W◦) Latitude (N◦) Land Cover Period

22 Xiyinghe 101.8550 37.5610 GRA 2019–2020
23 Liancheng 102.7370 36.6920 GRA 2019
24 Subalpine shrub 100.1010 37.5210 CSH 2019–2020
25 Alpine meadow and grassland 98.5949 37.7032 GRA 2018–2020
26 Temperate steppe 100.2358 37.2469 GRA 2019–2020

The FLUXNET 2015 dataset (https://fluxnet.org/data/fluxnet2015-dataset, accessed
on 5 February 2023) was also used to supplement the training set. A total of 37 sites were
extracted from the dataset based on the availability of variables and the similar land cover
types as the HRB sites, including 13 CRO sites, 23 GRA sites, and 1 CSH site (Table 3).

Table 3. Information of the sites in FLUXNET 2015 dataset.

NO. Site Name Latitude (N◦) Longitude (W◦) Land Cover Period

1 AU-DaP −14.0633 131.3181 GRA 2007–2013
2 AU-Emr −23.8587 148.4746 GRA 2011–2013
3 AU-Rig −36.6499 145.5759 GRA 2011–2014
4 AU-Stp −17.1507 133.3502 GRA 2008–2014
5 AU-TTE −22.2870 133.6400 GRA 2012–2014
6 AU-Ync −34.9893 146.2907 GRA 2012–2014
7 BE-Lon 50.5516 4.7462 CRO 2004–2014
8 CH-Cha 47.2102 8.4104 GRA 2006–2012
9 CH-Oe1 47.2858 7.7319 GRA 2003–2008

10 CN-Cng 44.5934 123.5092 GRA 2007–2010
11 CN-Du2 42.0467 116.2836 GRA 2007–2008
12 CN-Du3 42.0551 116.2809 GRA 2009–2010
13 CN-HaM 37.3700 101.1800 GRA 2002–2004
14 CZ-BK2 49.4944 18.5429 GRA 2006–2012
15 DE-Geb 51.0997 10.9146 CRO 2001–2011
16 DE-Kli 50.8931 13.5224 CRO 2004–2014
17 DE-Seh 50.8706 6.4497 CRO 2007–2010
18 DK-Fou 56.4842 9.5872 CRO 2005
19 FR-Gri 48.8442 1.9519 CRO 2005–2012
20 IT-BCi 40.5237 14.9574 CRO 2004–2014
21 IT-CA2 42.3772 12.0260 CRO 2011–2012

https://data.tpdc.ac.cn/home
https://fluxnet.org/data/fluxnet2015-dataset
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Table 3. Cont.

NO. Site Name Latitude (N◦) Longitude (W◦) Land Cover Period

22 IT-MBo 46.0147 11.0458 GRA 2004–2013
23 PA-SPs 9.3138 −79.6314 GRA 2007–2009
24 RU-Ha1 54.7252 90.0022 GRA 2002–2004
25 US-AR1 36.4267 −99.4200 GRA 2009
26 US-AR2 36.6358 −99.5975 GRA 2009
27 US-ARb 35.5497 −98.0402 GRA 2005–2006
28 US-ARc 35.5465 −98.0400 GRA 2005–2006
29 US-ARM 36.6058 −97.4888 CRO 2003–2012
30 US-CRT 41.6285 −83.3471 CRO 2011–2013
31 US-KS2 28.6086 −80.6715 CSH 2003–2006
32 US-Lin 36.3566 −119.0922 CRO 2009
33 US-SRG 31.7894 −110.8277 GRA 2008–2014
34 US-Tw2 38.0969 −121.6365 CRO 2012–2013
35 US-Tw3 38.1152 −121.6469 CRO 2013–2014
36 US-Var 38.4133 −120.9508 GRA 2000–2014
37 US-Wkg 31.7365 −109.9419 GRA 2004–2014

2.4. Meteorological and Remote Sensing Forcing Data

In conjunction with site-scale observations, corresponding meteorological and remote
sensing data were collected to enrich the features of upscaling model, and the detailed
information can be found in Table 4. The meteorological data used in this study is a
kind of atmospheric forcing data in the HRB (2000–2021), which is produced based on
the weather research and forecasting (WRF) model. Based on this dataset, this study
acquired 5 variables (Ta, Pa, P, RH, and WS) with the temporal/spatial resolution of
1 h/0.05◦ [50–52]. Additionally, SM dataset was produced by the daily 0.05◦ × 0.05◦ land
surface soil moisture dataset of the Qilian Mountain area (2018, SMHiRes, V1) [53,54]
and Rn dataset was obtained from the simulated forcing dataset of 3 km/6 h in HRB
(1980–2080) [55].

Table 4. Input datasets used to drive the machine learning model.

Variable Dataset Spatial Resolution Temporal Resolution

Ta/Pa/P/RH/WS The atmospheric forcing data (2000–2021) 0.05◦ × 0.05◦ Hourly
SM 2018, SMHiRes, V1 0.05◦ × 0.05◦ Daily
Rn Simulated forcing dataset (1980–2080) 3 km × 3 km 6 h

LAI MCD15A2H 500 m × 500 m 8 days
NDVI MOD13A2 1 km × 1 km 16 days

LC MCD12Q1 500 m × 500 m Yearly

DEM SRTMDEM 90 m × 90 m -
SLOPE SRTMSLOPE 90 m × 90 m -

ASPECT SRTMASPECT 90 m × 90 m -

The remote sensing datasets used as input in this study include leaf area index (LAI),
normalized difference vegetation index (NDVI), and land cover (LC) (https://modis.gsfc.
nasa.gov, accessed on 7 February 2023). LAI and NDVI data, with a time resolution of
8 days and 16 days, respectively, were linearly interpolated to daily scale and were also
extracted the values at sites as a complement to the driving variables for the transfer
learning model. The MCD12Q1 product was used in this study to delineate the land cover
type of HRB. Since the selected model cannot directly recognize textual variables, One-Hot
Encoding is introduced to process land cover type data.

https://modis.gsfc.nasa.gov
https://modis.gsfc.nasa.gov
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The Food and Agriculture Organization (FAO) 56 Penman–Monteith (P-M) equation
(see Equation (1)) was also used to calculate reference crop evapotranspiration (ET0) at the
site and within the watershed as one of the driving variables for the machine learning model.

ET0 =
0.408∆(Rn − G) + γ 900

T+273 u2(ea − e0)

∆ + γ(1 + 0.34u2)
(1)

where it is assumed that the height of the reference crop is 0.12 m, the surface impedance is
70 s/m, and the albedo is 0.23 [56]. The ET0 represents reference crop evapotranspiration
(mm·day−1), ∆ represents the slope of saturated vapor pressure (kPa·◦C−1), Rn represents
the net radiation (MJ·m−2·d−1), G represents the soil heat flux (MJ·m−2·d−1), ea is the satu-
rated vapor pressure (kPa), e0 is the actual water vapor pressure (kPa), γ is the hygrometer
constant (kPa·◦C−1), T is the air temperature at 2 m (◦C), and u2 is the wind speed at
2 m (m·s−1).

As digital elevation model (DEM), slope and aspect vary little over time, the data are
all based on one image from the same time period (https://www.gscloud.cn, accessed on
7 February 2023). Finally, the temporal and spatial resolution of all products used in this
study were standardized to 1-day/1 km before using the constructed model to predict the
regional LE.

3. Method
3.1. Transfer Learning Models

In this study, five machine learning algorithms, including ANN, RF, SVM, XGBoost,
and LightGBM, were used to build transfer learning models. In the machine learning
methods, RF builds multiple independent regression trees and merges them together to
obtain more accurate and stable predictions. SVM achieves linear regression by projecting
the original finite dimensional dataset into a higher dimensional space using a kernel
function, which can achieve relatively high accuracy and generalization ability when the
sample size is not large enough or the dimensionality of the features is greater than the
number of samples. ANN continuously adjusts the connection weights of nodes in the
hidden layers to obtain the best model through a large amount of data, and has strong
fault tolerance and learning ability. The type of neural network used in this study is
back propagation (BP) [57] with one input layer, three hidden layers and one output
layer. XGBoost is a decision tree algorithm based on the gradient boosting framework
and possesses the capability to prevent overfitting issues. Similarly, LightGBM is another
framework for implementing the gradient boosting decision tree (GBDT) algorithm, but it
employs a histogram-based decision tree algorithm instead.

To maximize the extraction of similar data, five driving variables under four different
land cover types were selected, which have the highest Pearson product-moment correlation
coefficient (PPMCC) with LE (see details in Table 5). Regarding instance-transfer, it is
important that there is some similarity between the transferred data and the source data
to avoid interfering with the input dataset and leading to a reduction in model accuracy.
Therefore, the five driving variables and LE in each record of the observed data were
converted into vector and the mean of the vectors was calculated for the different land
cover types in HRB. Then the difference between the vector and the mean vector was
obtained for each external data to determine the similarity of each external data to the
source data. In this study, we extracted similar external data under each land cover class in
increasing order of the normalized Euclidean distance (NED) to form a new dataset, which
is consistent with the size of the HRB dataset.

https://www.gscloud.cn


Remote Sens. 2023, 15, 1901 8 of 18

Table 5. PPMCC between driving variables and latent heat flux for primary land cover types.

Variable BSV CRO CSH GRA

Ta 0.3574 0.7303 0.7489 0.6702
RH 0.2683 −0.0434 −0.1845 0.1553
P 0.2690 0.4170 0.0651 0.2341

Rn 0.4511 0.8280 0.6907 0.7270
SM 0.5056 0.4879 0.1659 0.4206
WS −0.0642 −0.0359 −0.0153 −0.0862

VPD 0.1525 0.5953 0.7589 0.4242
Pa −0.2647 −0.2358 −0.2081 0.0460

ET0 0.4073 0.8280 0.5333 0.7550
ASPECT −0.2362 0.1563 0.0300 0.0320

DEM 0.1491 0.2238 0.0300 −0.0223
SLOPE 0.1723 0.2288 0.0300 −0.0474
NDVI 0.4204 0.7486 0.7846 0.6044
LAI 0.4555 0.6448 0.8075 0.4996

DOY 0.1275 0.0507 0.0614 0.0160
month 0.1277 0.0511 0.0632 0.0181

The five driving variables with the highest PPMCC are marked in bold for each land cover type.

In this study, two different data selection scenarios were developed to extract similar
external datasets of HRB. In the first scenario, data were randomly selected from similar
external data by increasing 10% each time from 0% to 100% to form the training set of the
model with the current dataset; in the second scenario, data were also selected at a scale of
0–100% but at NED increment. Subsequently, 11 experiments were conducted on the ANN
model using two distinct methods. The root mean squared errors (RMSE) and coefficient
of determination (R2) were selected to determine the ratio of Heihe River data to similar
external data.

3.2. BTCH Method

The main principle of the BTCH method is to calculate the relative uncertainty of
each group of LE by the three-cornered hat (TCH) method and derives the corresponding
weights, and finally to obtain the fused LE based on the weights [58]. The probability
density for the scale-expansion results of the transfer learning model is calculated as,

p(LEi|LEt) =
1

σi
√

2π
exp

[
−

ε2
i

2σ2
i

]
= L(LEt|LEi)(εi = LEi − LEt) (2)

where i is the ith model, LEt is the true value of LE at day t, εi and σi are the zero-mean
white noise and error variance of the ith LE, respectively, and L(·) is the likelihood function.

Similarly, the probability density function for the results of the j th LE simulation is as,

p
(

LEj
∣∣LEt

)
=

1
σj
√

2π
exp

[
−

ε2
j

2σ2
j

]
= L

(
LEt
∣∣LEj

)(
ε j = LEj − LEt

)
(3)

where εj and σj are the zero-mean white noise and error variance of the j th LE.
The maximum likelihood of the true value of LE (LEt) is the maximum of its joint

probability distribution,

maxL
(

LEt
∣∣LEi, LEj

)
= p(LEi|LEt)p

(
LEj
∣∣LEt

)
=

1
2πσiσj

exp

[
−

ε2
i

2σ2
i
−

ε2
j

2σ2
j

]
(4)
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LEt can be obtained by defining the cost function and setting the first variable to zero:

LEt =
σ2

i
σ2

i + σ2
j

LEi +
σ2

j

σ2
i + σ2

j
LEj (5)

We define LEt such that LEt = wiLEi + wjLEj where wi and wj are defined as follows:

wi =
σ2

i
σ2

i + σ2
j

, wj =
σ2

j

σ2
i + σ2

j
(6)

The weight of each group of LE simulation results (e.g., wi) can be obtained by mini-
mizing the similarity cost function:

wk =
∏N

i=1,i 6=k σ2
i

∑N
k=1

(
∏N

i=1,i 6=k σ2
i

)′ (7)

where the error covariance (σi) of LE can be obtained using the TCH method [59,60].

3.3. Evaluation Metrics

We used four metrics to evaluate the data selection and the model performance,
including PPMCC, NED, R2, and RMSE. The four formulas are expressed as follows:

PPMCC =
∑N

i=1 (Xi −
−
X)(Yi −

−
Y)√

∑N
i=1 (Xi −

−
X)

2
√

∑N
i=1 (Yi −

−
Y)

2
(8)

NED =

√
∑N

i=1

(
Xi −Yi

Si

)2
(9)

R2 =
∑N

i=1 (
ˆ

yi −
−
y)

2

∑N
i=1 (yi −

−
y)

2 (10)

RMSE =

√√√√√∑N
i=1

(
yi −

ˆ
yi

)2

N
(11)

where Xi and Yi represent the two sets of data to be compared, and Si is the variance

between them;
−
X and

−
Y represent the mean value of the two sets of data, respectively; yi is

the observed value,
ˆ

yi is the predicted value, and
−
y is the mean value of observations; N is

the number of total samples.

3.4. The Upscaling Model Framework

The procedure of the upscaling model can be illustrated in Figure 2. The model uses
site data in HRB and similar external data as inputs. In order to achieve greater accuracy in
obtaining the transfer learning models, the screening of variables and the determination of
transfer ratio were carried out separately. Afterwards, based on the new dataset (as shown
in Figure 2a), five upscaling models were implemented. In addition, Figure 2b illustrates the
process of acquiring regional-scale LE in HRB. For further information about the transfer
learning model setup and BTCH algorithm, see Sections 3.1 and 3.2, respectively.
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4. Results and Discussion
4.1. Effectiveness of External Data for Upscaling Model

Considering that LE is influenced by a variety of factors, in order to obtain the best
performance of transfer learning model, PPMCC was used to evaluate the similarity of
the driving variables under four different land cover types, which are BSV, CRO, CSH,
and GRA, respectively. Table 5 shows a strong correlation between Rn, ET0, and LE under
all four land cover types, which is consistent with the physical mechanism in the P-M
equation. The correlations between LE and vegetation factors, as well as Ta, were found to
be stronger at sites with high vegetation cover compared to those at BSV sites. In contrast,
the correlation with SM was more significant at the BSV sites than CRO sites, due to the
fact that vegetation transpiration can utilize deeper soil moisture. Finally, for each land
cover type, the five driving variables (bolded) with the highest correlation coefficients
were selected.

On the basis of the five variables, data were introduced from similar external data
using the two scenarios already mentioned. The difference between the two scenarios
is that the second ensures that the data extracted every time is the most similar to the
HRB dataset. Figure 3 shows that the second scenario performs better overall than the
former. For the first one, the inclusion of data resulted in a flatter change in ANN model
performance. When the incorporation ratio (the data samples ratio between HRB and
external dataset) is 5:3 (transfer ratio is 0.6), the model achieves the best RMSE and R2 in
both cases, but the second has a lower RMSE and a higher R2. Therefore, the model was
constructed by introducing external data according to the law of increasing NED.
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When calculating the proportion of external data introduced, the ANN model performs
best when data sample transfer ratio is 0.6 (RMSE = 22.00 W/m2, R2 = 0.85), comparing
with the original ANN results without external data (RMSE = 25.71 W/m2, R2 = 0.80). From
this point, the performance on the test set decreases slightly before settling into a range
that is still better than when no similar external data is added. It also suggests that the
training set plays a role in the final performance of the machine learning model, with the
more comprehensive the data in the training set, the better the generalization ability of
the model. When the ratio exceeded 0.6, the model did not work well instead, probably
because the ratio of similar external data was too large and the model did not capture
enough key features of the data in HRB, which eventually led to some errors in the test set.

4.2. Comparison of the Results from Five Transfer Learning Models

In this study, the performances of the five transfer learning models were evaluated
and analyzed using the hold-out method, where the ratio of the training set to the test set
is 8:2. The scatterplots of predicted LE versus observed LE for the five models over the
test set were plotted in Figure 4. As shown, ANN and RF algorithms outperformed the
other models significantly. The ANN model has the largest R2 of 0.85 and the RF model
has the lowest RMSE of 20.97 W/m2. Compared to the RF model, the slope of the fitted
line for the ANN model is closer to 1, but when some of the data in the training set is small
(LE < 200 W/m2), the ANN model has a simulated value of 400–600 W/m2, which results
in a larger RMSE for the ANN model than the RF model. As the SVM model is essentially
a linear simulation with the least effective, the scatter points of models other than itself
are generally distributed around the 1:1 line. A common problem with the XGBoost and
LightGBM models, however, is that for models trained on a training set with no negative
values, negative values exist in the predictions. Non-negative site observations of LE values
can be predicted to a maximum of around −20 W/m2, especially in the LightGBM model.
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Based on the results of the five models, it can be found that the models cannot perform
well when the LE observations are at higher or lower values. The main reason for this
phenomenon may be that evaporation and transpiration require a certain time process,
and there may be a certain lag in the relationship between LE and precipitation and
soil moisture.
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4.3. Accuracy Validation and Time Series Analysis

The best three models, ANN, RF, and XGBoost, were used to produce 1 km×1 km
daily LE over HRB throughout 2018, using meteorological and remote sensing forcing data
as input. The results of the three models were then fused using the BTCH method to obtain
a new set of daily maps of LE. The spatial distribution of the fusion result can be found in
Figure 5.
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The daily LE obtained from the three single transfer learning models and their fusion
were compared with LAS observations in HRB. Results (Table 6) show that the calculation
accuracies of the Arou (RMSE = 19.80 W/m2, R2 = 0.80), Daman (RMSE = 21.48 W/m2,
R2 = 0.77), and Sidaoqiao (RMSE = 22.69 W/m2, R2 = 0.76) sites are consistent with the
heterogeneity of the underlying surface at the upper, middle and lower reaches of HRB
sites. The underlying surface of the Arou station is relatively homogeneous and the main
land cover type is grassland. For Daman station, there are roads, villages, and orchards in
addition to maize farmland. The underlying surface of the Sidaoqiao station is the most
complex and fragmented, with high spatial heterogeneity, and the land cover types include
tamarisk, Populus euphratica, crop land, desert, etc. For model algorithms, RF and ANN
are significantly better than XGBoost, while the XGBoost model has the worst performance.
The BTCH model has the best simulation result, with R2 and RMSE better than others. The
fusion approach retains the advantages of three transfer learning models and also provides
some improvement to the phenomenon of overestimation of low values at Daman station.

Table 6. Accuracy validation of latent heat flux simulated at upstream, midstream, and downstream
LAS sites.

Site Name
Arou Daman Sidaoqiao Mean

RMSE (W/m2) R2 RMSE (W/m2) R2 RMSE (W/m2) R2 RMSE (W/m2) R2

ANN 20.30 0.79 19.90 0.80 22.26 0.76 20.82 0.78
RF 18.37 0.83 21.13 0.78 23.32 0.75 20.94 0.79

XGBoost 23.32 0.73 26.41 0.67 24.36 0.72 24.70 0.71
BTCH 17.23 0.85 18.48 0.83 20.80 0.80 18.84 0.83

The discrepancies between transfer learning models and fusion model were mainly
caused by model algorithms, observation data uncertainty, limitations of the training
set, and land surface heterogeneity. Firstly, machine learning algorithms are essentially
learning about data and the underlying relationships among data through continuous
iterative learning of the training set. The differences in model principles lead to different
areas of expertise for each model, with the RF model performing the most consistently in
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this study and the ANN model being more accurate in some extreme cases. The BTCH
approach retains the strengths of three models through data fusion and the shortcomings of
the models are compensated for. Secondly, the observed and inverse accuracy of the HRB
data is not exactly the same as the true values, while differences in processing methods
and different spatial and temporal resolutions can also introduce some errors. Thirdly, the
training set is mainly derived from site observations, which are spread over a relatively
concentrated farmlands and oases, so the model learns a limited amount of knowledge,
probably causing some errors during the process of upscaling. Finally, LE is determined by
numbers of factors, and verification accuracy is usually high over homogeneous stations
(i.e., Arou) than heterogeneous stations (i.e., Sidaoqiao).

Moreover, this study also validated the temporal trends of LE simulated by the BTCH
method using LAS observations (Figure 6). The simulation results for the upper, middle,
and lower reaches are generally consistent with the LAS observations trends, especially
when there were significant precipitation processes at the Arou station from DOY 125 to
154, the Daman station from DOY 175 to 200, and the Sidaoqiao station from DOY 225
to 250. However, mainly influenced by the worst performance of the XGBoost model at
the Daman station (RMSE = 26.41 W/m2, R2 = 0.67), the time series fitting of the fusion
result overestimated at the Daman station, especially when the values of LAS observations
are low. Overall, the BTCH method combines the strengths of the three models and can
simulate well when precipitation events occur.
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4.4. Spatio-Temporal Characteristics of Fused Latent Heat Flux Upscaling Results

To investigate the value of the fused LE, we explored the spatial and temporal dis-
tribution of LE in HRB during the growing season (May to October) in 2018 (Figure 7).
In terms of time scale, LE over all land cover types is greatest in July or August, with a
decreasing trend in the upstream to downstream direction, which is also consistent with
site observations. The LE in the oasis zone of the basin rises continuously from May to
August and decreases from August to October mainly due to the influence of the temperate
continental monsoon climate, which is also verified by the precipitation histograms. At the
spatial scale, the maximum values of LE are found in the woodlands and grasslands of the
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upper reaches, the farmlands of the middle reaches, the oases of the lower reaches, and the
area around the HRB, while the minimum values are mainly in the desert and bare land
of the lower reaches. The main reason is the difference in vegetation cover and wetness
of the underlying surface in the basin, where transpiration and surface evaporation are
stronger in densely vegetated areas resulting in higher LE. The LE is significantly higher
in the farmlands (mostly maize) of the midstream than in other land cover types, mainly
owing to the higher transpiration capacity of the crops and artificial irrigation. Grassland,
woodland, and scrub have lower evapotranspiration than the above vegetation types,
which is related to the relatively weak transpiration capacity of grassland and the low cover
of woodland. In addition, evapotranspiration is also very high in the wetland due to the
abundant natural water supply. In addition, the LE in the desert bare ground is generally
lower in the downstream than in the midstream.
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In addition, Ta, Rn, NDVI, and LAI were selected to calculate the PPMCC with the
fusion result separately to analyze the reasonableness of the spatial and temporal trends.
Figure 8 shows that Ta and Rn have good positive correlations with LE throughout the
eastern part of HRB, especially in the oases of the upstream and the farmland of midstream,
where the PPMCC is close to 1. However, there is a clear boundary between the eastern and
western parts of the downstream in the two plots, with west of the boundary the PPMCC
between Ta/Rn and LE decreasing and then showing a strong negative correlation. The
main reason is that the majority of the sites selected for the study are located east of the
boundary, with a scarcity of sites in the west. In farmland, NDVI and LAI have a very
strong positive correlation with LE, due to the fact that there is an adequate supply of water
in irrigated farmland, making LE more controlled by vegetation growth and energy factors.
However, in the desert areas of the downstream, the spatial distributions of NDVI and LE
correlation are less regular with many zero values, probably due to some errors introduced
during interpolation of NDVI data. Furthermore, the PPMCC could not be calculated due
to the missing LAI data in these areas for a long time.



Remote Sens. 2023, 15, 1901 15 of 18Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 19 
 

 

 

Figure 8. Spatial distribution of the PPMCC between environmental variables and latent heat flux. 

5. Conclusions 

In order to upscale LE from site scale to regional scale with the spatial resolution of 1 

km in HRB, this study introduced five transfer learning models and the BTCH fusion 

method. Specifically, five machine learning algorithms were utilized to construct the 

upscaling framework, namely ANN, RF, SVM, XGBoost, and LightGBM. Then, the three 

best upscaled results were selected to fuse based on the BTCH method. Finally, the up-

scaled results before and after fusion were validated against the LAS observations, and 

the main conclusions are as follows. 

Introducing the idea of instance transfer to upscale LE has improved the accuracy of 

the machine learning models to some extent. By selecting proper variables from external 

datasets under different land cover types and establishing a transfer ratio of 0.6 between 

external and internal datasets, the upscaling model can grasp more effective information, 

resulting in an improvement or reduction of 6% and 17% in the R2 and RMSE values, 

respectively, for the ANN model. Among the five models, ANN, RF, and XGBoost mod-

els are the most suitable to upscale LE from site scale to regional scale in HRB, with the 

best fit of the simulated values to the site observations, the smallest errors, and less out-

liers. 

Generally speaking, different algorithms utilized to develop upscaling models may 

show some differences in temporal and spatial distribution. To integrate their strengths, 

this study applied the BTCH fusion approach to obtain the final upscaling LE product in 

HRB. The verification results with precipitation and observed LE indicate that the fusion 

dataset retains the advantages of the different results, with reasonable time trends and 

the highest accuracy (R2 = 0.83, RMSE = 18.84 W/m2). Moreover, the fusion results also 

show that the maximum values of LE on a temporal scale occur in July and August, with 

increasing from May to August and decreasing from August to October in the oases of 

upper and middle-lower reaches. From the perspective of spatial scale, the maximum 

values of LE are found in the upstream woodlands and grasslands, the midstream farm-

lands, the downstream oases, and the area around the HRB. However, the minimum 

Figure 8. Spatial distribution of the PPMCC between environmental variables and latent heat flux.

5. Conclusions

In order to upscale LE from site scale to regional scale with the spatial resolution of
1 km in HRB, this study introduced five transfer learning models and the BTCH fusion
method. Specifically, five machine learning algorithms were utilized to construct the up-
scaling framework, namely ANN, RF, SVM, XGBoost, and LightGBM. Then, the three best
upscaled results were selected to fuse based on the BTCH method. Finally, the upscaled
results before and after fusion were validated against the LAS observations, and the main
conclusions are as follows.

Introducing the idea of instance transfer to upscale LE has improved the accuracy of
the machine learning models to some extent. By selecting proper variables from external
datasets under different land cover types and establishing a transfer ratio of 0.6 between
external and internal datasets, the upscaling model can grasp more effective information,
resulting in an improvement or reduction of 6% and 17% in the R2 and RMSE values,
respectively, for the ANN model. Among the five models, ANN, RF, and XGBoost models
are the most suitable to upscale LE from site scale to regional scale in HRB, with the best fit
of the simulated values to the site observations, the smallest errors, and less outliers.

Generally speaking, different algorithms utilized to develop upscaling models may
show some differences in temporal and spatial distribution. To integrate their strengths, this
study applied the BTCH fusion approach to obtain the final upscaling LE product in HRB.
The verification results with precipitation and observed LE indicate that the fusion dataset
retains the advantages of the different results, with reasonable time trends and the highest
accuracy (R2 = 0.83, RMSE = 18.84 W/m2). Moreover, the fusion results also show that the
maximum values of LE on a temporal scale occur in July and August, with increasing from
May to August and decreasing from August to October in the oases of upper and middle-
lower reaches. From the perspective of spatial scale, the maximum values of LE are found in
the upstream woodlands and grasslands, the midstream farmlands, the downstream oases,
and the area around the HRB. However, the minimum values are mainly in the downstream
desert and bare ground, with a decreasing trend in the upstream to downstream direction.
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