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Abstract: Diffuse solar radiation (Rd) provides basic data for designing and optimizing solar energy
systems. Owing to the notable unavailability in many regions of the world, Rd is traditionally
estimated by models through other easily available meteorological factors. However, in the absence
of ground weather station data, such models often need to be supplemented according to satellite
remote sensing data. The performance of Himawari-7 satellite inversion of Rd was evaluated
in the study, and hybrid models were established (XGBoost_DE, XGBoost_FPA, XGBoost_GOA,
and XGBoost_GWO), so as to improve the satellite data and achieve a better utilization effect.
The meteorological data of 14 Rd stations in mainland China from 2011 to 2015 were used. Four input
combinations (L1–L4) and eight input combinations (S1–S8) of meteorological factors corresponding
to satellite remote sensing data were used for model simulation, while two optimal combinations
(S7 and S8) were selected for cross-station application. The results revealed that the accuracy of
Himawari-7 satellite Rd data was low, with RMSE, R2, MAE, and MBE values of 2.498 MJ·m−2·d−1,
0.617, 1.799 MJ·m−2·d−1, and 0.323 MJ·m−2·d−1, respectively. The performance of these coupled
models based on satellite data was significantly improved. The RMSE and MAE values increased by
15.5% and 9.4%, respectively, while the R2 value decreased by 10.9 %. Compared with others based on
satellite data, the XGBoost_GOA model exhibited optimal performance. The mean values of RMSE,
R2, and MAE were 1.63 MJ·m−2·d−1, 0.76 and 1.21 MJ·m−2·d−1, respectively. The XGBoost_GWO
model exhibited optimal performance in the cross-station application, and the average RMSE value
was reduced by 2.3–10.5% compared with the other models. The meteorological factors input by
the models exhibited different levels of significance in different scenarios. Rd_s was the main
meteorological parameter that affected the model based on satellite data, while RH exhibited a
significant improvement in the XGBoost_FPA and XGBoost_GWO models based on ground weather
stations data. Accordingly, the present authors believe that the XGBoost_GOA model has excellent
ability for simulating Rd, while the XGBoost_GWO model allows for cross-station simulation of Rd

from satellite data.

Keywords: diffuse solar radiation; extreme gradient boosting; heuristic algorithms; cross-station;
input combinations

1. Introduction

Amongst the background of the continuous consumption of non-renewable high-
carbon energy, there has been a significant increase in the demand for renewable pollution-
free energy. As a kind of pollution-free energy source, solar energy is highly preferred
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due to the abundant reserves, wide geographical distribution, long-term stability, and
low maintenance costs thereof [1]. In the evaluation of the solar energy resources of
any type of solar-concentrating thermal or photovoltaic technology, Rd is indispensable.
However, the measurement of Rd requires solar trackers and other additional equipment.
The difficulty and cost of measurement are considerably higher than the measurement of
other meteorological data, which has resulted in a scarcity of Rd data [2,3]. As such, the
separation model was commonly adopted for the prediction of Rd data. In China, most
solar radiation stations only record the global solar horizontal radiation, and the number
of stations is as many as 700, of which only 17 stations measure Rd. The significance of
measuring Rd lies in that after acquisition, the performance of some solar equipment on
various inclined surfaces can be evaluated [4].

Numerous researchers have developed different models for the prediction of Rd.
Among such developments, the empirical model has emerged as the most commonly
used prediction method because of the easy input and low computational cost thereof [5].
Clearness index is a meteorological factor highly correlated with Rd [3]; Liu and Jordan [6]
proposed the first empirical model in which the clearness index was linked with the Rd, so
as to enhance the effect of the model in different functional forms. Such research became a
foundation for new empirical models proposed by subsequent researchers. Notably, many
developing countries cannot afford the cost of measuring Rd. To establish an empirical
model based on sunshine duration, Ali [7] used the Rd data and mathematical formulas
of two cities in Iraq, Baghdad, and Mosul. Sabzpooshani et al. [8] established 16 new
empirical models based on clearness index to simulate the average Rd in Isfahan, central
Iran. For simulation of the daily Rd in northern Sudan, Mohammed et al. [9] used the
sunshine hours and solar radiation values recorded by two observation stations to establish
seven new empirical models. Despite such efforts, a large number of research results have
shown that empirical models have various limitations in respect to the prediction of Rd.
Thus, several researchers used machine learning models to overcome the aforementioned
issues. Jiang [10] input solar radiation data from nine observatories with different climatic
conditions in China into an ANN model and compared the results with other empirical
regression models. The results showed that the prediction results of ANN were close to the
measured values and the model was superior to other models. Based on the meteorological
data of Lhasa, Urumqi, Beijing, and Wuhan from 1981 to 2010, Liu et al. [11] established
three models: SVM-FFA, CNQR, and an empirical model. During the validation period,
the performance of the three models was as follows: SVM-FFA > CNQR > empirical model.
Therefore, owing to the high accuracy, a machine learning model is generally used to
predict Rd instead of an empirical model.

Commonly used machine learning models include SVM, RF, and others, which tra-
ditionally use a combination of ground weather station data for prediction. Based on the
observation database of one-minute irradiance and auxiliary data from 54 sites around
the world, Aler [5] used gradient lifting machine learning algorithms to improve the sep-
aration of solar radiation components. Husain [12] input the clearness index as the only
meteorological factor into 12 machine learning models, and the results revealed that the
KNN model had the optimal effect in the training period and test period. At present, direct
measurement at ground weather stations and measurement by satellites are the two com-
monly used methods for obtaining the predicted solar radiation information. There are still
many remote areas in the world with sufficient solar energy but a lack of ground weather
stations which are significantly needed for the development of solar energy resources.
Therefore, satellite remote sensing data need to be used to supplement the lack of ground
weather station data. As a rapidly developed method in recent years, measurement by
geosynchronous meteorological satellites has advantages in scanning large areas with high
spatial and temporal resolution [13]. Based on satellite remote sensing data, Rusen et al. [14]
compared and evaluated the effectiveness of solar radiation and scattered solar radiation
prediction methods at nine sites in Turkey. Ground measurement data was applied to exam-
ine the method, and the results revealed that the HELIOSAT method was the most reliable



Remote Sens. 2023, 15, 1885 3 of 23

alternative to ground measurement data. Several researchers chose to use an optimization
algorithm and a machine learning model for coupling prediction, so as to further improve
the model prediction ability. For simulation of the Rd in air-polluted areas, Fan et al. [15]
proposed three optimization algorithms (PSO, BAT, and WOA) combined with the SVM.
The results showed that compared with SVM, SVM-BAT promoted the convergence speed
of the Rd model, which indicated that the coupled model could significantly improve the
prediction performance of a single model.

Himawari-7 was a satellite developed by Japan for meteorological and environmental
observation missions on the geostationary orbit and was used to collect and distribute
second-generation multi-purpose transport satellites in the Asia-Pacific region. The payload
of Himawari-7 was used for meteorological observation and aviation control. As an orbiting
spare satellite, Himawari-7 replaced Himawari-6 in 2010. As a three-axis stabilized aircraft,
Himawari-7 was equipped with a solar panel that could rotate to track the sun, so that the
north-facing passive radiation cooler of the imager was facing towards space. The satellite’s
visual camera had a resolution of 1 km, while its infrared camera had a resolution of
4 km. The Rd is provided with a spatial resolution of 5 km. Rd has been investigated
using meteorological data measured by the Himawari series of satellites. For prediction
of solar diffuse radiation based on Himawari-8 satellite data, Ma et al. [16] developed a
hybrid method combined with deep neural network (DNN), and the results showed that
the hybrid method performed well.

In the present study, meteorological data were obtained from 14 solar diffuse radiation
measurement stations in China, as well as Himawari-7 data. They were established into
12 combinations and input into the model coupled with the XGBoost model by four heuristic
algorithms. Additionally, four relatively close groups of stations were selected for cross-
station application. Notably, there is a scarcity of research in which the ability of coupling
models is evaluated based on different databases for the simulation of Rd. There is also
a limited number of studies on the comprehensive comparison of models based on cross-
station application using various coupling models, especially in solar diffuse radiation,
for which no researchers have applied such method. Therefore, for the development of
solar energy resources in remote areas where solar energy is urgently needed, selection of
the appropriate model and parameter combination to estimate the Rd and cross-station
application at the appropriate station is of considerable significance.

2. Materials and Methods
2.1. Study Area and Meteorological Data
2.1.1. Himawari-7 Data

The data of Himawari-7 from 2011 to 2015 at 14 stations with Rd measurement capa-
bilities in mainland China were downloaded from the NSRDB (Figure 1) [17,18]. The mete-
orological data obtained included maximum/minimum temperature (Tmax_s/Tmin_s),
relative humidity (RH_s), precipitation (P_s), solar horizontal total radiation (Rs_s), and
solar diffuse radiation (Rd_s). The detailed geographic locations and satellite weather
information for the 14 stations are shown in Table 1.

2.1.2. Ground Weather Stations Data

Some meteorological factors from 14 ground weather stations in mainland China were
collected, including maximum/minimum temperature (Tmax/Tmin), relative humidity
(RH), solar radiation (Rs), precipitation (P), and diffuse solar radiation (Rd). Daily extrater-
restrial radiation (Ra) was calculated at latitude and each day of the year [19]. Table 1
showed the detailed geographical location and data of the selected stations, including
the average values of meteorological factors obtained from 14 ground weather stations in
2011–2015. Each station has an average of more than 400 rows of data missing. Incomplete
meteorological data were deleted during data processing.
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Shengyang 41.44 123.31 45.20 10.05 −0.53 68.41 12.39 33.21 6.09 10.28 −0.86 66.84 10.81 17.61 24.15 5.75
Beijing 39.48 116.28 54.70 15.73 4.42 58.37 12.86 39.56 6.82 15.35 6.18 54.73 10.69 17.77 25.45 6.07
Lhasa 29.4 91.08 3650.10 5.27 −7.86 45.09 18.27 9.73 6.02 13.39 −0.50 32.01 16.00 9.02 27.09 5.74
Kunming 25 102.39 1896.80 21.85 10.25 73.90 14.19 53.27 8.01 21.05 11.10 72.95 13.52 29.70 31.66 6.96
Zhengzhou 34.43 113.39 111.30 18.79 7.98 63.07 12.67 51.63 7.80 18.35 9.47 58.61 10.42 18.81 27.98 7.43
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2.2. Extreme Gradient Boosting

XGBoost was proposed by Chen et al. [20]. Through additional training to avoid
overfitting, XGBoost integrates many weak learners and develops a strong learner, which
is essentially a kind of boosting algorithm for ensemble learning in supervised learning.
The objective function of XGBoost is expressed as the sum of the loss function and the
regularization term. A smaller loss function indicates better model fitting effect, while a
smaller regularization term indicates a lower model complexity. Similar to the traditional
model, XGBoost uses residuals. Its algorithm utilizes split data in the data set to model
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separately [21], and unlike traditional, this is also a parameter-based algorithm. When the
model is dealing with classification or regression problems, the model does not need to
change the determined parameters. XGBoost has higher accuracy and greater flexibility.
It adds regular terms to the objective function to prevent overfitting, which is one of
the characteristics of XGBoost that is superior to traditional GBDT. However, it needs to
traverse the data set in the process of node splitting. The pre-sorting process has high space
complexity and consumes a lot of memory. The expressions are as follows:

f (t)i =
t

∑
k=1

fk(xi) = f (t−1)
i + ft(xi) (1)

where fi(t) is the simulation result of sample i after the t-th iteration, and fi(t−1) is the
simulation result of step t − 1.

The accuracy of the model depends on the variance and deviation of the model, where
the deviation is related to the loss function. In order to reduce the variance of the model
and prevent overfitting, the regularization term needs to be added to the objective function.
Therefore, the objective function consists of a loss function and a regularization term, which
is defined as follows:

L =
n

∑
i=1

l(yi, yi) (2)

Obj =
n

∑
i=1

l(yi, yi) +
t

∑
i=1

Ω( fi) (3)

where L is the loss function, n is the number of samples, Obj is the objective function, and
Ω is the sum of the complexity of all trees. Further computational programs and more
information about XGBoost can be found in Chen’s research [22].

2.3. Heuristic Algorithms
2.3.1. Differential Evolution (DE) Algorithm

First proposed by Storn and Price [23], the DE algorithm is a kind of evolutionary
algorithm that is extensively used in data mining, pattern recognition, electromagnetics,
and other fields, owing to the simple structure and strong robustness thereof [24]. The op-
timization of DE algorithm firstly is to use floating point vector encoding to generate
individuals, and select two individuals to generate a difference vector. Secondly, sum the
difference vector generated in the previous step with another individual to generate an
experimental individual; then, operate the individual generated by the previous generation
and the experimental individual to generate a new generation of individuals; finally, choose
the most suitable individual between the two generations to enter the next generation.
The core idea of the DE algorithm is to use mutation and crossover operation to generate a
test population and evaluate the fitness, and then compare the original population and test
population one by one through the selection mechanism of greedy thought, and select the
next generation. The DE algorithm has the advantages of simple operation, less controllable
parameters, fast convergence speed, and strong global search ability, but it inevitably has
the problem of stagnation when optimizing complex problems such as high dimension,
multi-peak and multi-objective problems. The specific steps and expressions are as follows:

(1) Initialization population
xi,j(0) = xL

i,j + rand(0, 1)(xU
i,j − xL

i,j) (4)

where xi,j
L and xi,j

U denote the upper and lower bounds of dimension j, respectively, and
rand(0,1) denotes the random number on the interval [0, 1].
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(2) Variation

The DE algorithm realizes individual mutation through differentiation strategy. The com-
mon differential strategy is to randomly select two different individuals in the population,
and synthesize the vector with the individual to be mutated after the vector difference
is scaled.

Vi(g + 1) = Xr1(g) + F(Xr2(g)− Xr3(g)) (5)

where r1, r2 and r3 are three random numbers in the interval [1, NP], F is the scaling factor,
and g is the g-th generation.

(3) Crossover

The purpose of crossover operation is to randomly select individuals.

Ui,j(g + 1) =
{

Vi,j(g + 1) i f rand(0, 1) ≤ CR
xi,j(g) otherwise

(6)

where CR is the crossover probability, which generates new individuals according to
different probabilities.

(4) Selection

DE algorithm selects the better individual as the new individual.

Xi(g + 1) =
{

Ui(g + 1) i f f (Ui(g + 1)) ≤ f (Xi(g))
Xi(g)

(7)

Further details about the differential evolution algorithm can be found in Storn and
Price’s research [23].

2.3.2. Flower Pollination Algorithm (FPA)

The flower pollination algorithm (FPA) is a new meta-heuristic swarm intelligence
optimization algorithm proposed by Yang [25]. The basic concept of the FPA was derived
from the simulation of self-pollination and cross-pollination of flowers in nature. The algo-
rithm is more effective than the genetic algorithm, and the convergence speed of the FPA is
almost exponential. The algorithm follows the following four standardization principles:
(1) during cross-pollination, the pollinator performs Lévy flight (long-distance movement),
which is mapped to a global search process; (2) self-pollination is considered to be a local
search process; (3) the stability of flowers can be regarded as the ratio of reproduction
probability and similarity of two flowers during pollination; (4) the change of pollination
method is controlled by switching probability p(p ∈ [0, 1]), that is, when random number
“rand” < p, self-pollination is executed; otherwise, cross-pollination is executed. The al-
gorithm imitates two mechanisms of natural flower pollination. Owing to the reliance
on pollinators to spread pollen remotely, cross-pollination corresponds to a global search
process, while self-pollination corresponds to the local search process due to the close
distance in the physical position of pollination. A switching probability p(p ∈ [0, 1]) is
introduced to weigh the ratio between the two search processes. The FPA is simple in theory
and easy to implement, but there are still problems such as low convergence accuracy and
sensitivity to dimensions. The expressions are as follows:

(1) Cross-pollination formula:

Xt+1
i = Xt

i + L(Xt
i − gt

∗) (8)

where Xi
t denotes the i-th solution of the t-th generation respectively; g∗t is the t-th genera-

tion optimal solution; L is the step length.
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(2) Self-pollination formula:

The design idea of self-pollination algorithm is to simulate the close pollination
between flowers of the same species in nature. The mathematical description is as follows:

Xt+1
i = Xt

i + ε(Xt
j − Xt

k) (9)

where ε ∈ [0, 1] denotes the random number, Xj
t and Xk

t denote the j-th and k-th solutions
in the t-th population, respectively. Further details about the flower pollination algorithm
can be found in Yang’s research [25].

2.3.3. Grasshopper Optimization Algorithm (GOA)

The grasshopper optimization algorithm (GOA) is a swarm intelligence optimization
algorithm proposed by Saremi et al. [26]. Similar to most other intelligence optimiza-
tion algorithms, the GOA ensures that the algorithm can effectively search globally and
avoid stopping at local optimum in both exploration and development. The life cycle of
grasshoppers is primarily divided into two stages: larvae and adults. The main feature
of the larvae stage is that grasshoppers move slowly in a small range, while in the adult
stage, grasshoppers have strong hind legs and are good at jumping, being able to move
long distances quickly. The exploration process of the GOA is equivalent to the adult stage,
and the development process is equivalent to the larval stage. Looking for food sources is
another main feature of the grasshopper population, with a food source being equivalent
to the optimal solution, and the search for food being the process of finding the optimal
solution. The GOA is stable and has good local search ability. However, its convergence
speed is not fast. Since each individual accumulates other individuals except itself, the new
position difference between individuals is small, and the locusts are easy to fall into local
optimum in group aggregation. The expressions are as follows:

Xd
i = c


N

∑
j = 1
j 6= i

c
ubd − lbd

2
s
(∣∣∣xd

j − xd
i

∣∣∣ ) xj − xi

dij

+ Td (10)

where Xi
d is the position of the i-th locust in the d-th dimension; ubd and lbd are the upper

and lower bounds of the variable of the i-th locust in the d-th dimension; t is the target
position of locust swarm.

c = cmax − t
cmax − cmin

Tmax
(11)

where t represents the current number of iterations, Tmax is the maximum number of
iterations, cmax and cmin are the maximum and minimum values of parameter c, respectively.
Further details about the GOA can be found in Saremi’s research [26].

2.3.4. Gray Wolf Optimizer (GWO) Algorithm

Inspired by the predation activities of gray wolves, the gray wolf optimization (GWO)
algorithm is a swarm intelligence optimization algorithm proposed by Mirjalili et al. [27].
The algorithm has the characteristics of strong convergence performance and easy imple-
mentation. Gray wolves strictly abide by a social dominance hierarchy. When designing a
GWO algorithm, the gray wolf social hierarchy model needs to be firstly constructed, the
fitness of each individual needs to be calculated, and the three gray wolves with the best
fitness need to be placed on the higher level in turn. Gray wolves approach prey when
searching, but gray wolves cannot determine the exact location of prey. The higher-level
gray wolves are assumed to have stronger ability to obtain location information about their
prey than lower-level ones for simulating the hunting behavior of gray wolves. Therefore,
in each iteration process, several optimal gray wolves are kept, and the locations of other
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gray wolves are updated according to their location information. Compared with other
algorithms, the optimization process of the GWO algorithm is faster. However, the GWO
algorithm is a heuristic optimization algorithm, and the optimal solution is only close to
the original optimal solution, not the real optimal solution of the problem. The expressions
are as follows:

D =
∣∣C · Xp(t)− X(t)| (12)

X(t + 1) = Xp(t)− A · D (13)

Equation (11) represents the distance between the individual and the prey, and Equation (12)
is the position update formula of the gray wolf. Where t is the current number of iterations,
Xp and X are the position vectors of prey and gray wolf, respectively, and A and C are the
coefficient vectors. The calculation formulas are as follows:

A = 2a · r1 − a (14)

C = 2 · r2 (15)

where a is the convergence factor. As the number of iterations decreases linearly from 2 to
0, r1 and r2 are random numbers in the interval [0, 1].

After the gray wolf recognizes the location of the prey, β and δ, led by α, guide the
wolves to surround the prey. The expression is as follows:

Dα = |C1 · Xα − X|
Dβ =

∣∣C2 · Xβ − X|
Dδ = |C3 · Xδ − X|

(16)

where Dα, Dβ and Dδ represent the distance between α, β and δ and other individuals,
respectively; Xα , Xβ and Xδ denote the current positions α, β and δ, respectively. C1, C2 and
C3 are random vectors, and X is the current position of the gray wolf.

X1 = Xα − A1 · (Dα)
X2 = Xβ − A2 ·

(
Dβ

)
X3 = Xδ − A3 · (Dδ)

(17)

X(t + 1) =
X1 + X2 + X3

3
(18)

Equation (15) defines the step length and direction of ω individuals in the wolf pack
towards α, β and δ, respectively. Equation (16) defines the final position ω. More details
about the GWO algorithm can be found in Mirjalili’s research [27].

2.4. Input Combinations Based on Satellite and Ground Weather Station Data

Twelve meteorological environment variable input combinations of four coupling
models were used to evaluate the effects of various input factors on Rd prediction: (1)
eight combinations of input parameters were set based on satellite data (see Table 2); and
(2) four combinations of input parameters were set based on ground weather station data
(see Table 3). The K-fold cross-validation method was used for all the data obtained in the
modeling process. The first three fifths (2011–2013) of these data were used to train these
models, and the last two fifths (2014 and 2015) were used to test and verify these models.
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Table 2. The input combinations based on satellite data for four coupling models.

No.
Models

Input Combinations
XGBoost_DE XGBoost_FPA XGBoost_GOA XGBoost_GWO

S1 XGBoost_DE1 XGBoost_FPA1 XGBoost_GOA1 XGBoost_GWO1 Tmax_s, Tmin_s, Rs_s, Ra
S2 XGBoost_DE2 XGBoost_FPA2 XGBoost_GOA2 XGBoost_GWO2 Tmax_s, Tmin_s, Rs_s, Ra, RH_s
S3 XGBoost_DE3 XGBoost_FPA3 XGBoost_GOA3 XGBoost_GWO3 Tmax_s, Tmin_s, Rs_s, Ra, P_s
S4 XGBoost_DE4 XGBoost_FPA4 XGBoost_GOA4 XGBoost_GWO4 Tmax_s, Tmin_s, Rs_s, Ra, RH_s, P_s
S5 XGBoost_DE5 XGBoost_FPA5 XGBoost_GOA5 XGBoost_GWO5 Rd_s, Tmax_s, Tmin_s, Rs_s, Ra
S6 XGBoost_DE6 XGBoost_FPA6 XGBoost_GOA6 XGBoost_GWO6 Rd_s, Tmax_s, Tmin_s, Rs_s, Ra, RH_s
S7 XGBoost_DE7 XGBoost_FPA7 XGBoost_GOA7 XGBoost_GWO7 Rd_s, Tmax_s, Tmin_s, Rs_s, Ra, P_s
S8 XGBoost_DE8 XGBoost_FPA8 XGBoost_GOA8 XGBoost_GWO8 Rd_s, Tmax_s, Tmin_s, Rs_s, Ra, RH_s, P_s

Table 3. The input combinations based on ground weather station for four coupling models.

No.
Models

Input Combinations
XGBoost_DE XGBoost_FPA XGBoost_GOA XGBoost_GWO

L1 XGBoost_DE9 XGBoost_FPA9 XGBoost_GOA9 XGBoost_GWO9 Tmax, Tmin, Rs, Ra
L2 XGBoost_DE10 XGBoost_FPA10 XGBoost_GOA10 XGBoost_GWO10 Tmax, Tmin, Rs, Ra, RH
L3 XGBoost_DE11 XGBoost_FPA11 XGBoost_GOA11 XGBoost_GWO11 Tmax, Tmin, Rs, Ra, P
L4 XGBoost_DE12 XGBoost_FPA12 XGBoost_GOA12 XGBoost_GWO12 Tmax, Tmin, Rs, Ra, RH, P

XGBoost_DE1-8 represents the coupling model with combined S1-S8 inputs based on
satellite data (see Table 2). XGBoost_DE9-12 represents the coupling model with combined
L1-L4 input based on ground weather station data (see Table 3), and the symbolic meaning
of others are the same as above.

2.5. Input Combinations Based on Cross-Station Application

According to the location of 14 stations, the relatively close stations were divided into
pairs to test and verify the model of the adjacent stations based on satellite data of the
target station. On the basis of satellite data, two sets of optimal-simulated combinations
(see Table 4) were selected for cross-station application and four sets of stations with the
highest data accuracy and optimal model performance were presented.

Table 4. The input combination of Himawari-7 satellite data based on four target stations and four
neighboring stations in different periods.

No. Models Train Test Pred Input Combinations

1 XGBoost_
DE

XGBoost_
FPA

XGBoost_
GOA

XGBoost_
GWO Mohe Harbin Harbin

Rd_s, Tmax_s, Tmin_s,
Rs_s, Ra, P_s

Rd_s, Tmax_s, Tmin_s,
Rs_s, Ra, RH_s, P_s

2 XGBoost_
DE

XGBoost_
FPA

XGBoost_
GOA

XGBoost_
GWO Urumqi Ejinaqi Ejinaqi

3 XGBoost_
DE

XGBoost_
FPA

XGBoost_
GOA

XGBoost_
GWO Shengyang Beijing Beijing

4 XGBoost_
DE

XGBoost_
FPA

XGBoost_
GOA

XGBoost_
GWO Zhengzhou Wuhan Wuhan

2.6. Statistical Indicators

The performance evaluation of four coupled models for simulation of the level of daily
Rd was based on four widely adopted statistical indicators, including MAE, MBE, RMSE,
and R2. RMSE reflects the overall estimation accuracy of the model, and R2 represents
the percentage of data that the model can describe. MAE is used to describe the average
deviation degree of each point, and MBE reflects the positive and negative deviation of the
model. The formula of the statistical indicators could be denoted below:
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MAE =
1
t

t

∑
i=1
|Xi,m − Xi,e| (19)

MBE =
1
t

t

∑
i=1

(Xi,m − Xi,e) (20)

RMSE =

√√√√1
t

t

∑
i=1

(Xi,m − Xi,e)
2 (21)

R2 =
[∑t

i=1 (Xi,e − Xi,e)(Xi,m − Xi,m)]
2

∑t
i=1 (Xi,e − Xi,e)

2
∑t

i=1 (Xi,m − Xi,m)
2 (22)

where Xi,m, Xi,e, Xi,m, Xi,e and t are the measured value of Rd, the simulated value of Rd, the
average measured value of Rd, the average simulated value of Rd, and the data sample size,
respectively. Higher R2 (close to 1) and lower MAE, MBE, and RMSE (close to 0) indicate
better model fit and higher model performance.

3. Results
3.1. Accuracy Assessment of Diffuse Solar Radiation Data from Satellites

The Rd_s values of 14 stations in mainland China were obtained from Himawari-7
data, and the satellite measurements were statistically analyzed with the ground weather
station measurements of the corresponding stations (see Table 5). During the validation
period, an observation can be made from Table 5 that the RMSE and MAE of Harbin station
were the lowest, being 1.741 MJ·m−2·d−1 and 1.196 MJ·m−2·d−1, respectively. The R2 of
Lhasa station was the highest, being 0.81, and the MBE of Beijing station was the lowest,
being 0.201 MJ·m−2·d−1. Compared with the other 12 stations, the satellite Rd data of
Harbin and Beijing stations were more accurate. The average RMSE, MAE, and MBE values
were 41.1%, 50.4%, and 57.8% lower, respectively, than the other stations, and the average
R2 was 32.4% higher. In general, only a small number of stations could obtain a higher
data accuracy by using Rd_s obtained by Himawari-7 data. The accuracy of Himawari-7
data at most stations was low and the error was large. Among them, the accuracy of
satellite measurements of Rd_s in Urumqi, Guangzhou, and Sanya stations is significantly
different from that of other stations. This may be due to the thickness of clouds at these
stations and the changes of aerosols and water vapor on sunny days. There are difficulties
in obtaining the ideal effect in practical application, and improvements are needed. This
section analyzed and evaluated the accuracy of the Rd and measured values of 14 stations
measured by Himawari-7, and these data were used for comparison with the simulation
results of the tree-based coupling model in the following sections.

Table 5. Statistical results of Rd_s obtained by Himawari-7 satellite and Rd obtained by ground
weather stations.

Stations/Statistical Indicators RMSE R2 MAE MBE

Mohe 2.151 0.678 1.424 0.377
Harbin 1.741 0.765 1.196 0.230
Urumqi 3.671 0.328 2.466 0.414
Ejinaqi 2.379 0.596 1.750 0.348

Golmud 2.068 0.687 1.503 0.317
Shengyang 2.135 0.677 1.479 0.284

Beijing 1.953 0.796 1.317 0.201
Lhasa 2.171 0.810 1.491 0.331

Kunming 3.462 0.510 2.539 0.408
Zhengzhou 2.158 0.725 1.549 0.239

Wuhan 2.582 0.656 1.927 0.300
Baoshan 2.029 0.691 1.506 0.248

Guangzhou 2.907 0.387 2.196 0.307
Sanya 3.561 0.327 2.850 0.509
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3.2. Model Performance Based on Himawari-7 Data

Four optimization algorithms (DE, FPA, GOA, and GWO) were used for coupling
with the XGBoost model, so as to make better use of satellite data and improve the accuracy.
Seven different parameters were selected: Tmax_s, Tmin_s, Rs_s, Rd_s, P_s, RH_s, and
Ra. The parameters were divided into eight different input combinations to drive the four
aforementioned coupling models (see Table 2). Based on satellite data of 14 stations, the Rd
was predicted. The statistical summary of the verification period is shown in Table 6.

Table 6. Statistical results of the XGBoost_DE, XGBoost_FPA, XGBoost_GOA, and XGBoost_GWO
models for Rd prediction with eight combinations based on satellite data.

Models Combinations/Statistical Indicators RMSE R2 MAE MBE

XGBoost_DE1-8

S1 2.084 0.652 1.577 0.164
S2 2.094 0.688 1.600 0.011
S3 2.019 0.652 1.553 0.215
S4 2.110 0.673 1.618 −0.033
S5 2.058 0.654 1.563 −0.383
S6 1.970 0.692 1.499 −0.198
S7 2.033 0.670 1.554 −0.186
S8 1.948 0.686 1.484 −0.120

XGBoost_FPA1-8

S1 2.112 0.642 1.607 0.205
S2 2.032 0.673 1.548 0.195
S3 2.040 0.660 1.560 0.182
S4 1.970 0.673 1.493 0.047
S5 2.081 0.669 1.586 −0.261
S6 2.078 0.682 1.564 −0.271
S7 2.016 0.678 1.531 −0.142
S8 2.022 0.680 1.536 −0.166

XGBoost_GOA1-8

S1 1.905 0.678 1.451 0.038
S2 1.858 0.699 1.416 −0.042
S3 1.878 0.686 1.433 0.025
S4 1.863 0.696 1.418 0.022
S5 1.889 0.695 1.425 −0.263
S6 1.872 0.706 1.41 −0.236
S7 1.871 0.703 1.413 −0.193
S8 1.856 0.709 1.409 −0.24

XGBoost_GWO1-8

S1 1.905 0.68 1.457 0.035
S2 1.848 0.701 1.416 0.015
S3 1.889 0.685 1.447 0.069
S4 1.853 0.696 1.421 0.029
S5 1.902 0.696 1.434 −0.225
S6 1.858 0.713 1.409 −0.239
S7 1.888 0.701 1.426 −0.193
S8 1.851 0.713 1.402 −0.237

An observation can be made from the table that the four coupling models exhibited dif-
ferent accuracies under the input of different parameter combinations. Most models had MBE
values less than 0 at most stations, so the simulation of Rd was generally underestimated.
The RMSE, R2, and MAE values of the XGBoost_DE model were 1.948–2.11 MJ·m−2·d−1,
0.652–0.692, and 1.484–1.618 MJ·m−2·d−1, respectively. The RMSE, R2, and MAE values of the
XGBoost_FPA model were 1.97–2.112 MJ·m−2·d−1, 0.642–0.682, and 1.493–1.607 MJ·m−2·d−1,
respectively. The accuracy fluctuation of the XGBoost_DE model was the largest, fol-
lowed by XGBoost_FPA model, while the accuracy fluctuations of the XGBoost_GOA and
XGBoost_GWO model were small and considerably close.

The XGBoost_GOA model performed most optimally in simulating Rd based on
satellite data, with RMSE and MAE values of 1.874 MJ·m−2·d−1 and 1.422 MJ·m−2·d−1,
respectively. The XGBoost_DE model exhibited worse performance than the other three
models, with RMSE and MAE values of 2.039 MJ·m−2·d−1 and 1.556 MJ·m−2·d−1, re-
spectively. The analytical results reveal that the XGBoost_GOA model exhibited better
performance. Scatter plots were used to present the simulated and measured values of
the models for the Beijing station (Figure 2), so as to better compare the simulation perfor-
mance of the XGBoost_DE, XGBoost_FPA, XGBoost_GOA, and XGBoost_GWO coupling
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models for Rd. As Figure 2 illustrates, the four coupling models showed high accuracy
in simulating Rd. Among the four, the XGBoost_GOA model showed the most reliable
estimation trend, and the dispersion level of the scatter was markedly lower than that of
the XGBoost_DE and XGBoost_FPA model, and slightly lower than XGBoost_GWO model.
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In order to explore whether relative humidity, precipitation, and satellite-measured
Rd were dominant factors in simulating Rd, eight combinations were set up to respectively
drive the model. Table 6 shows that the addition of P_s and RH_s could improve the
simulation accuracy of Rd. Taking XGBoost_GOA model as an example, MBE, S1, S3,
and S4 were used as input to obtain a smaller positive value, while the four groups
of S5–S8 were significantly underestimated, and MBE was less than −0.15 MJ·m−2·d−1.
In terms of RMSE and MAE, the model performed best when S8 was used as input, and
the values were 1.856 MJ·m−2·d−1 and 1.409 MJ·m−2·d−1, respectively. When S1 was used
as input, the model performed worst, with RMSE and MAE values of 1.905 MJ·m−2·d−1

and 1.451 MJ·m−2·d−1, respectively. As such, based on temperature, solar radiation,
Rd, relative humidity, and precipitation, the XGBoost_GOA model was more accurate
than the XGBoost_GOA model in terms of temperature and solar radiation. For the
XGBoost_FPA model, when S7 was used as input, the RMSE, MAE, and MBE values of the
model were better than those of the model when S8 was input, with differences of 0.27%,
0.35%, and 14.2%, respectively. For the XGBoost_DE model, in terms of R2, when S6 was
used as input, R2 was the highest, being 0.692, but performed poorly in terms of MBE,
being −0.198 MJ·m−2·d−1, second only to S7, which showed a serious underestimation
of the model. With S2 as the input, the MBE was optimal at 0.011 MJ·m−2·d−1. For the
XGBoost_GWO model, when S2 was used as input, the model performed optimally in terms
of RMSE and MBE, which were 1.848 MJ·m−2·d−1 and 0.015 MJ·m−2·d−1, respectively, and
there was no obvious overestimation. In terms of R2, the model performance was second
only to S6 and S8, thereby demonstrating that the accuracy of the XGBoost_GWO model
simulation and the Rd value measured by the satellite were less significant than the other
three models under the input of the model. The aforementioned analysis results show
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that precipitation was more significant than relative humidity in simulating Rd using the
XGBoost_FPA model. For the XGBoost_FPA and XGBoost_GOA models, the Rd values
measured by satellites were more significant than those of the other two models. Figure 2
clearly illustrates the different effects of different factors’ inputs on the accuracy of these
four models for simulating Rd. For XGBoost_DE and XGBoost_GOA model, the first seven
combinations had higher errors, and the model input S8 (Rd_s, Tmax_s, Tmin_s, Rs_s, Ra,
and RH_s, P_s) could produce higher simulation accuracy.

Boxplots were used to demonstrate the differences between the four coupled mod-
els for simulating Rd based on the Himawari-7 data at 14 stations in mainland China
(Figure 3). Figure 3 shows that the abnormal values detected by the four combinations of
S5–S8 were less than those of S1–S4. In terms of RMSE, the levels of the XGBoost_GOA
and XGBoost_GWO model outperformed others. In terms of R2, the XGBoost_GOA model
had better effect than the XGBoost_GWO model. In the case of input S1–S4, the disper-
sion degrees of the XGBoost_DE and XGBoost_FPA model simulation values were higher,
while the dispersion degree of the XGBoost_GOA model simulation value was the lowest.
As Figure 3 clearly shows, the simulation values of the XGBoost_GOA model were con-
centrated and showed high simulation levels in S3–S8. Although XGBoost_DE performed
well in terms of the MBE values in S7–S8, the average simulation level was markedly lower
than others.

In general, the XGBoost_GOA model performed optimally in the verification period,
and Rd_s had the most remarkable effect on the performance of these models. Due to the
limited number of research stations and the large span of the climate zone, the accuracy of
the model based on satellite data to simulate the level of Rd was not high. Thus, attempts
were made to investigate the performance of four coupling models to simulate Rd based
on ground weather station data of the same 14 stations, and to compare the accuracy
differences with the satellite data model.

3.3. Model Performance Based on Ground Weather Station Data

The factors obtained from the ground weather station, namely Tmax, Tmin, Rs, RH,
and P, were applied to simulate the Rd. The five parameters were divided into four
groups (see Table 3) and input into four coupling models. The statistical indicators of
the simulated Rd were contrasted with the statistical indicators based on Himawari-7
data simulation. Based on the observation stations and satellite data, the significance
of parameters from observation station to the performance of these models’ simulation
and the differences in the performance of the simulated Rd were evaluated (see Table 7).
An observation can be made from the table that in the case of inputting the same meteo-
rological factors, the XGBoost_GOA model (mean RMSE = 1.381 MJ·m−2·d−1, R2 = 0.832,
MAE = 0.993 MJ·m−2·d−1, MBE = 0.162 MJ·m−2·d−1) was significantly better than others
(mean RMSE = 1.387–1.589 MJ·m−2·d−1, R2 = 0.799–0.831, MAE = 0.996–1.167 MJ·m−2·d−1,
MBE = 0.1–0.235 MJ·m−2·d−1). Scatter plots of the four coupling models were drawn based
on the data observed in Beijing station (Figure 4). Figure 4 showed that the capability of
the XGBoost_GOA model and the XGBoost_GWO model exhibited a similar simulation
trend, being closer to the fitting line and more evenly distributed than the other two models.
The dispersion degree of each model in the case of inputting the L4 combination was lower
than the dispersion degrees of the other three combinations.
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Table 7 shows that the accuracy of each model was different when different parameter
combinations were input. For the XGBoost_DE model, the model showed the optimal
simulation level in the case of inputting the L1 combination. Compared with the L2–L4
combinations, the RMSE and MAE values were reduced by 0.2–11.1%, 1–13.4%, and R2

increased by 0.8–1.6%. For the XGBoost_FPA model, when the L2 combination was input,
the RMSE and MAE values of the model were the lowest, being 1.495 MJ·m−2·d−1 and
1.097 MJ·m−2·d−1, respectively. For the XGBoost_GOA model, the four input effects of the
model were significantly better than the XGBoost_DE and XGBoost_FPA models. The accu-
racy performance was as follows: L3 > L4 > L1 > L2. The L3 input combination performed
most optimally among all models and combinations, with RMSE, R2, MAE, and MBE values
of 1.362 MJ·m−2·d−1, 0.834, 0.979 MJ·m−2·d−1, and 0.129 MJ·m−2·d−1, respectively. For the
XGBoost_GWO model, the relatively complex parameter combination of L4 had the optimal
model simulation effect (RMSE = 1.374 MJ·m−2·d−1, MAE = 0.988 MJ·m−2·d−1), which was
slightly better than the L3 combination (RMSE = 1.375 MJ·m−2·d−1, MAE = 0.99 MJ·m−2·d−1).
From the aforementioned analysis, an observation can be made that relative humidity and
precipitation had an adverse effect on the XGBoost_DE model. Relative humidity can
refine the ability of the XGBoost_FPA model. Precipitation has a positive effect on the
XGBoost_GOA model, and the co-input of such meteorological factors significantly refined
the performance of the XGBoost_GWO model.

The statistical indicators of the model simulation values based on ground weather
station data are shown in Figure 5. An observation can be made from the boxplots that the
data of the XGBoost_DE model fluctuated greatly with the input combinations of L2 and L4,
and the data of the XGBoost_FPA model fluctuated greatly with the input combinations of
L1 and L3. Overall, the RMSE values of the XGBoost_GOA and XGBoost_GWO model were
markedly lower than those of others. As the complexity of the input meteorological factors
increased, the data for the XGBoost_GWO model became more concentrated. As such, the
XGBoost_GOA model and the XGBoost_GWO model were superior to others in simulating
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Rd, thereby revealing the significance of the input of two meteorological factors, relative
humidity and precipitation, to the XGBoost_GWO model simulation.

Table 7. Statistical results of the XGBoost_DE, XGBoost_FPA, XGBoost_GOA, and XGBoost_GWO
models for Rd prediction with four combinations based on ground weather stations data.

Models Combination/Statistical Indicators RMSE R2 MAE MBE

XGBoost_DE9-12

L1 1.478 0.821 1.070 0.057
L2 1.605 0.819 1.167 0.056
L3 1.480 0.814 1.082 0.148
L4 1.662 0.808 1.235 0.140

XGBoost_FPA9-12

L1 1.643 0.777 1.215 0.321
L2 1.495 0.800 1.097 0.224
L3 1.695 0.812 1.251 0.086
L4 1.523 0.808 1.104 0.310

XGBoost_GOA9-12

L1 1.390 0.832 1.005 0.186
L2 1.392 0.831 1.000 0.162
L3 1.362 0.834 0.979 0.129
L4 1.378 0.831 0.989 0.170

XGBoost_GWO9-12

L1 1.408 0.828 1.010 0.178
L2 1.393 0.830 0.997 0.173
L3 1.375 0.834 0.990 0.158
L4 1.374 0.833 0.988 0.159
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3.4. Model Performance Based on Cross-Station Application

When areas lacking basic data for simulating Rd were identified, such areas were
replaced by data from adjacent regions that have the required data, which was described
as “cross-station application”. In China and many developing countries, where local
meteorological data are missing or insufficient, satellite data are often used to establish
models for the simulation of Rd. However, in certain remote areas of China, ground
meteorological data are often missing and there is a lack of full coverage of satellite remote
sensing. In the traditional simulation of Rd values of a station, the ground weather station
data of adjacent stations are often used. In the present study, the satellite data of adjacent
stations were replaced to explore the universality of satellite remote sensing data in remote
areas around the world. An assumption was made that there were four stations (Harbin,
Ejinaqi, Beijing, and Wuhan stations) missing several significant data used to simulate Rd.
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Therefore, the meteorological data of one station were replaced with the Himawari-7 data
obtained from the station closest to the four stations, and the four aforementioned coupling
models were used to simulate the Rd. The Rd value of the station was simulated based on
satellite data of the adjacent station (see Table 8).

As shown in Table 8, different station data adapted to different models. The XG-
Boost_GWO13 model performed optimally at Harbin and Beijing stations, and the RMSE
values were 1.2–13.1% and 0.4–27.4% lower than the other models, respectively. The XG-
Boost_DE model and the XGBoost_FPA model exhibited resembling simulation level, but were
obviously inferior to the XGBoost_GOA model and the XGBoost_GWO model. For Harbin
station, the MAE, MBE, and RMSE values of the former were 13.5%, 6.4%, and 8.8% lower than
the latter, respectively. The XGBoost_GOA model (average RMSE = 1.752 MJ·m−2·d−1) was
only slightly better than the XGBoost_GWO model (average RMSE = 1.787 MJ·m−2·d−1) at
the Wuhan station. Scatter plots were drawn of the Rd simulated using the four coupled
models in cross-station application at these four stations (Figure 6). Figure 6 clearly illus-
trated that the scatter distribution of the model established at each station had a certain
linear relationship. The scatter distribution at the Wuhan station was the most uniform,
and the model showed the most accurate simulation trend. The dispersion degrees of the
scatter plot at the Beijing and Harbin stations were slightly higher than that at the Wuhan
station, while the scatter distribution at the Ejinaqi station deviated greatly from the fitting
line. Further, the fitting degree of the XGBoost_GWO model was markedly higher than that
of the others. In general, each model exhibited ideal results in cross-station applications,
especially the XGBoost_GWO model. The simulation performance was the most optimal,
and thus, use of the adjacent station data to replace the local station data in the absence of
satellite data is feasible.

Different combinations used at different stations in the same model can also lead to
differences in model simulation capabilities. Table 8 shows that at Harbin, Beijing, and
Wuhan stations, the performance of these models’ input combination of S7 was better than
that of the combination of S8. Taking Harbin station as an instance, the average RMSE of the
former was 0.2 % lower than that of the latter, while at Ejinaqi station, the average RMSE
of the former was 2.8 % higher than that of the latter. The XGBoost_DE model reveled
the best simulation performance at Harbin, Ejinaqi, and Wuhan stations for the input
combination of S8 (mean RMSE = 1.67 MJ·m−2·d−1, R2 = 0.64, MAE = 1.33 MJ·m−2·d−1,
MBE = −0.29 MJ·m−2·d−1) compared with S7 (mean RMSE = 1.57 MJ·m−2·d−1, R2 = 0.68,
MAE = 1.26 MJ·m−2·d−1, MBE = −0.37 MJ·m−2·d−1). At the four stations, the
XGBoost_GOA model input combination of S7 was better than the input combination
of S8. As such, increasing the input of RH_s reduced the simulation performance of the
model, which could be attributed to the large difference in relative humidity caused by the
excessive number of influencing factors, thereby reducing the accuracy of the data. Figure 7
shows the boxplots of the statistical indicators of these coupling models using the satellite
data to detect the Rd values. In terms of RMSE, the accuracy levels of these models were
as follows: XGBoost_GWO > XGBoost_GOA > XGBoost_FPA > XGBoost_DE. In terms of
MBE, when the combination of S8 was input into the XGBoost_DE model, the model was
significantly underestimated, which indicates that the accuracy of RH_s was insufficient,
which made the model less stable.

In summary, the XGBoost_GWO13 model performed optimally in simulating Rd.
The model is most suitable for cross-station applications at Harbin and Beijing stations,
while the XGBoost_GOA13 model had better simulation performance at Wuhan station.
In addition, the relative humidity obtained by the Himawari-7 satellite is not suitable for
model simulations. In the present study, only a few groups of stations were adopted as
representatives to prove the applicability of cross-station applications for simulating Rd.
In the future, a more suitable model should be explored and established, higher-precision
satellite remote sensing data should be used, and more groups of stations should be selected
for cross-station applications, so as to estimate the level of each model to predict Rd values
using satellite remote sensing data at stations in different climate zones.
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Table 8. Statistical results of XGBoost_DE, XGBoost_FPA, XGBoost_GOA, and XGBoost_GWO
models for simulating Rd in Mohe, Urumqi, Shengyang, and Zhengzhou stations based on satellite
data at Harbin, Ejinaqi, Beijing, and Wuhan stations.

Stations Models Combinations/Statistical Indicators RMSE R2 MAE MBE

Harbin

XGBoost_DE13 S7 1.569 0.789 1.211 −0.651
XGBoost_DE14 S8 1.496 0.790 1.129 −0.526
XGBoost_FPA13 S7 1.457 0.805 1.055 −0.599
XGBoost_FPA14 S8 1.516 0.785 1.153 −0.392
XGBoost_GOA13 S7 1.401 0.810 1.009 −0.520
XGBoost_GOA14 S8 1.407 0.784 1.016 −0.200
XGBoost_GWO13 S7 1.363 0.807 0.982 −0.357
XGBoost_GWO14 S8 1.380 0.794 1.001 −0.246

Ejinaqi

XGBoost_DE13 S7 1.551 0.342 1.278 0.593
XGBoost_DE14 S8 1.419 0.410 1.196 0.508
XGBoost_FPA13 S7 1.452 0.393 1.238 0.568
XGBoost_FPA14 S8 1.427 0.389 1.162 0.446
XGBoost_GOA13 S7 1.499 0.372 1.298 0.622
XGBoost_GOA14 S8 1.510 0.342 1.263 0.548
XGBoost_GWO13 S7 1.452 0.413 1.266 0.593
XGBoost_GWO14 S8 1.436 0.418 1.185 0.535

Beijing

XGBoost_DE13 S7 1.839 0.763 1.365 0.589
XGBoost_DE14 S8 1.942 0.837 1.519 −1.144
XGBoost_FPA13 S7 1.831 0.770 1.376 0.600
XGBoost_FPA14 S8 1.725 0.784 1.316 0.247
XGBoost_GOA13 S7 1.424 0.831 1.150 −0.106
XGBoost_GOA14 S8 1.457 0.825 1.173 −0.226
XGBoost_GWO13 S7 1.409 0.833 1.153 0.061
XGBoost_GWO14 S8 1.415 0.834 1.161 −0.068

Wuhan

XGBoost_DE13 S7 1.886 0.799 1.506 −0.800
XGBoost_DE14 S8 1.804 0.852 1.457 −1.081
XGBoost_FPA13 S7 1.754 0.831 1.372 −0.844
XGBoost_FPA14 S8 1.815 0.848 1.447 −1.072
XGBoost_GOA13 S7 1.709 0.833 1.334 −0.756
XGBoost_GOA14 S8 1.795 0.849 1.433 −1.050
XGBoost_GWO13 S7 1.745 0.822 1.369 −0.744
XGBoost_GWO14 S8 1.829 0.843 1.450 −1.070
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4. Discussion

Rd is a significant parameter in the design of various solar devices, and various
techniques have been developed due to the inconsistency of the frequencies at which Rd
is measured [28,29]. Owing to scarce ground weather stations and uneven distribution
of meteorological data in time and space, satellite remote sensing data are often used by
researchers to simulate Rd due to the wide coverage and continuous advantages in time
and space. As an example, for mapping with data from four ground weather stations in
Thailand, Charuchittipan et al. [30] used data from the multi-functional transport satellite
(Himawari-6) for 2006–2015 and the Himawari-8 satellite for 2016 to design a semi-empirical
model for Rd estimation. The results revealed that the estimated values of the developed
semi-empirical model agreed well with the measured values. To improve the empirical
model of monthly and daily Rd in northern China, Feng et al. [31] used the aerosol optical
depth measured by the MODIS satellite and the solar radiation measured by a ground
weather station. The improved model was found to have improved the estimation accuracy
of Rd compared with the existing model. Bakirci [32] compared the Rd value obtained from
the NASR-SSE database with the Rd value calculated by the model in two cities in Turkey to
examine the ability of these models. The statistical results revealed that the optimal model
could maintain good prediction accuracy using the Rd value obtained from the NASA-
SSE database. To evaluate the European Centre for Medium-Range Weather Prediction
fifth-Generation Reanalysis (ERA5) data and JiEA Satellite Retrieval Centre (JiEA) for Rd in
East Asia, Jiang et al. [33] used ground weather station measurements from 39 stations of
the World Radiation Data Centre (WRDC) and the China Meteorological Administration.
The results showed that JiEA was in good agreement with the measurements, while ERA5
significantly underestimated the Rd. Such research has indicated that satellite data had
certain accuracy in simulating Rd. In the present study, four heuristic algorithms were
proposed for optimizing the machine learning model and simulating Rd based on satellite
data, with the aim of evaluating the performance of these models. An observation can be
made from Figure 2 that the models based on Himawari-7 data revealed a good fitting
trend, which was consistent with the research results.

In the condition of simulating Rd based on satellite data, the input of different me-
teorological factors had different effects on the model. The input of P_s was found to
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have a more significant improvement than RH_s when using the XGBoost_FPA model.
Zhou et al. [34] revealed that the introduction of precipitation could efficiently improve
the underestimation of Rd. In humid areas, the correlation between precipitation and Rd
was stronger than that of relative humidity, and similar results were obtained in this study.
Yang et al. [35] selected data from 17 stations from 2000 to 2017 to build 18 Rd models and
found that models with a combination of relative humidity, air temperature, and two other
parameters (clearness index and relative sunshine hours) performed optimally among
all models, which is consistent with the discoveries of the present study that using the
XGBoost_DE and XGBoost_GWO models with a combination of relative humidity as an
input could improve model performance. There were few studies on the simulation of
diffuse solar radiation using the same machine learning model and heuristic optimization
algorithm as this study, but some researchers used similar techniques to simulate diffuse
solar radiation. For example, Fan et al. [15] proposed three new hybrid support vector
machines to simulate diffuse solar radiation. The results showed that the coupled models
(i.e., SVM-WOA, SVM-PSO, and SVM-BAT) further improved the prediction accuracy
compared with the SVM model, which indicated that the use of heuristic algorithms to
optimize the machine learning model could significantly improve the prediction results. It
confirmed the feasibility of the coupling model method in this study.

Since certain areas are outside the satellite radiation range, the corresponding meteoro-
logical data could not be obtained. However, use of the available satellite data of adjacent
stations as the training set of the model to simulate local Rd has become a widely used and
effective method [36–39]. In most prior studies, the method of cross-station application was
used to estimate ET0, rather than Rd. For instance, Shiri et al. [40] collected meteorological
data from the Basque Country (humid region) and Valencia Country (non-humid region) in
Spain to train a neuro-fuzzy model. The results revealed that the GNF model successfully
estimated the ET0 value in Iran. In this study, four coupling models were selected to con-
duct cross-station applications at four similar groups of stations, showing high simulation
accuracy. The Rd values at four stations were also successfully estimated, which indicated that
the cross-station application method was feasible in many fields including the direction of Rd.

In investigating Rd, most previous researchers used the data of ground weather
stations, and there was a lack of significant meteorological factors. Therefore, the selection
of satellite products with high accuracy of measurement data and the improvement of
satellite data with low accuracy were used to promote the performance of the model,
which is of considerable significance in the simulation of Rd. In this study, four coupling
models were selected to input different parameter combinations to simulate Rd based
on satellite data and meteorological data of 14 stations. At the same time, cross-station
applications were conducted on four groups of stations in terms of Rd, in accordance with
the experiences of previous researchers. The present study can provide certain reference
value for exploring the performance of the four coupling models in the assessment of
Rd and the regional applicability of cross-station applications in mainland China. In a
follow-up study, better heuristic algorithms and models based on the data of other satellite
products should be used to conduct cross-station applications in other countries with
different climates to overcome the low accuracy of the meteorological parameters input in
this study and the limited number of stations.

5. Conclusions

The performances of four coupled models (XGBoost_DE, XGBoost_FPA, XGBoost_GOA,
and XGBoost_GWO) in simulating Rd based on satellite data and ground weather station
data were evaluated, as well as the performances in terms of cross-station applications
based on satellite data at four stations (Harbin-Mohe, Ejina-Urumqi, Beijing-Shenyang, and
Wuhan-Zhengzhou).

The results show that: (1) the model based on Himawari-7 data was markedly pro-
moted compared with the satellite original Rd data; (2) among the models based on satellite
and ground weather station data, the XGBoost_GOA model performed optimally, slightly
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better than the XGBoost_GWO model, and the XGBoost_GWO model had the optimal simu-
lation performance in cross-station application; and (3) in the case of satellite data, the input
of P_s and Rd_s could improve the performance of the XGBoost_FPA and XGBoost_GWO
models. In the case of ground weather station data, the input of relative humidity was bene-
ficial for improving the performance of the XGBoost_FPA and XGBoost_GWO models, and
the input of precipitation was beneficial for improving the performance of XGBoost_GOA
model, both of which were not suitable for the input of the XGBoost_DE model.

The present study can contribute a scheme for the global prediction of Rd in the
absence of ground weather station and satellite data. In future research, more parameters
and different algorithms can be introduced to simulate Rd, and adjacent stations in the same
climate zone can be selected for cross-station application to avoid the impact of regional
differences on data integrity.
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Nomenclature

Variables
Ra Extra-terrestrial solar radiation (MJ·m−2·d−1)
Tmax maximum temperature from weather station (◦C)
Tmin minimum temperature from weather station (◦C)
Rs global solar radiation from weather station (MJ·m−2·d−1)
RH Daily average air relative humidity from weather station (%)
P precipitation from weather station (mm)
Tmax_s maximum temperature from satellite (◦C)
Tmin_s minimum temperature from satellite (◦C)
Rs_s global solar radiation from satellite (MJ·m−2·d−1)
Rd_s diffuse solar radiation from satellite (MJ·m−2·d−1)
RH_s Daily average air relative humidity from satellite (%)
P_s precipitation from satellite (mm)
Abbreviations
XGBoost Extreme gradient boosting
DE Differential Evolution Algorithm
FPA Flower Pollination Algorithm
GOA Grasshopper Optimization Algorithm
GWO Grey Wolf Optimizer Algorithm
RMSE root mean square error (MJ·m−2·d−1)
R2 coefficient of determination
MAE mean absolute error (MJ·m−2·d−1)
MBE mean bias error (MJ·m−2·d−1)
NSRDB National Solar radiation Database
ANN Artificial Neural Network
SVM Support Vector Machine
FFA firefly algorithm
CNQR copula-base nonlinear quantile regression
RF Random Forest
KNN K- Nearest Neighbor

https://nsrdb.nrel.gov/data-viewer
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PSO Particle Swarm Optimization
WOA Whale Optimization Algorithm
BAT Bat Algorithm
ET0 reference evapotranspiration
GNF Generalized Neuro-fuzzy
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