
Citation: Zhang, Z.; Zhang, J.; Zhang,

Y.; Chen, Y.; Yan, J. Urban Flood

Resilience Evaluation Based on GIS

and Multi-Source Data: A Case Study

of Changchun City. Remote Sens. 2023,

15, 1872. https://doi.org/10.3390/

rs15071872

Academic Editors: Stefano Morelli,

Veronica Pazzi and Mirko Francioni

Received: 7 February 2023

Revised: 27 March 2023

Accepted: 29 March 2023

Published: 31 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Urban Flood Resilience Evaluation Based on GIS and
Multi-Source Data: A Case Study of Changchun City
Zhen Zhang 1, Jiquan Zhang 2, Yichen Zhang 1,*, Yanan Chen 1 and Jiahao Yan 1

1 School of Jilin Emergency Management, Changchun Institute of Technology, Changchun 130021, China
2 School of Environment, Northeast Normal University, Changchun 130024, China
* Correspondence: zhangyc@ccit.edu.cn; Tel.: +86-1384-402-8326

Abstract: With extreme rainfall events and rapid urbanization, urban flood disaster events are
increasing dramatically. As a key flood control city in China, Changchun City suffers casualties
and economic losses every year due to floods. The improvement of flood resilience has become
an important means for cities to resist flood risks. Therefore, this paper constructs an assessment
model of urban flood resilience from four aspects: infrastructure, environment, society and economy.
Then, it quantifies infrastructure and environmental vulnerability based on GIS, and uses TOPSIS to
quantify social and economic recoverability. Finally, based on k-means clustering of infrastructure
and environmental vulnerability and social and economic recoverability, the flood resilience of
Changchun City was evaluated. The results show that different factors have different effects on flood
resilience, and cities with low infrastructure and environmental vulnerability and high socioeconomic
recoverability are more resilient in the face of floods. In addition, cities in the same cluster have the
same flood resilience characteristics. The proposed framework can be extended to other regions of
China or different countries by simply modifying the indicator system according to different regions,
providing experience for regional flood mitigation and improving flood resilience.

Keywords: urban flood resilience; analytic hierarchy process; remote sensing and GIS; TOPSIS;
k-means; resilience evaluation

1. Introduction

Over the past few decades, urbanization has accelerated in countries around the world.
At the same time, climate change, mainly characterized by global warming, has exacerbated
the occurrence of extreme weather events [1]. In the past 30 years, the global economic
loss caused by natural disasters was about USD 4 trillion, 75% of which were related to
major hydrometeorological extreme weather events, and urban flood disasters accounted
for 43.4% of hydrometeorological disasters [2,3]. China is one of the countries with a high
incidence of waterlogging [4,5]. In the first half of 2020 alone, floods affected 11.22 million
people and caused economic losses of USD 3.6 billion [6]. Considering the changes in
precipitation patterns and the damage they have caused in recent years, traditional safety
concepts and disaster prevention measures are no longer sufficient for China’s current and
future urban development. Therefore, in order to reduce the damage caused by floods
and achieve sustainable urban development, it is important to strengthen the flood control
capacity of urban communities [7].

Urban flood resilience is defined as the ability of a city and its constituent systems
(society, economy, environment, infrastructure, etc.) to resist, cope with, recover from
and adapt to urban flood disasters caused by rainstorms or heavy precipitation [8,9]. At
present, scholars’ research on flood disasters mainly focuses on the evaluation of flood
resilience [10,11], the evaluation of flood vulnerability [12,13] and the evaluation of flood
risk [14,15]. With the further development of flood disaster research, the study of flood
resilience becomes increasingly important [16]. Flood resilience is mainly based on the
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establishment of an index system based on the theoretical framework for evaluation [17].
For example, Siebeneck et al. assessed flood resilience in 76 Thai provinces and territories
using 25 metrics [18]. Qasim et al. identified community flood disaster resilience indicators
at four levels, i.e., social, economic, institutional, and physical, and calculated community
resilience indices for three districts in Khyber Pakhtunkhwa province using expert scor-
ing [19]. Bertilsson et al. proposed the urban spatial Flood Resistance Index (S-FRESI) to
measure the changes in flood resistance obtained by different flood control measures [20].
Huiming Zhang et al. used the entropy weight method and the TOPSIS model to evaluate
the flood resilience of flood control cities in major river basins in China [21]. Liu Gang et al.
used the analytic hierarchy process to evaluate the urban flood resilience of Suzhou, Wuxi
and Changzhou from the aspects of stimulation, sensitivity and adaptability, and concluded
that Suzhou had the strongest resilience and Changzhou had the weakest resilience [22].
Orencio P et al. constructed a system of resilience indicators for coastal communities to cope
with floods from seven aspects that affect their disaster resilience, and used the AHP to
calculate an urban resilience index [23]. Lyu, H et al. compared the flood risk in the subway
system based on AHP and evaluated the subway system in Guangzhou. In addition, they
used GIS software to verify the flood injection risk in different areas of the subway based
on the actual occurrence of a flood [24].

In addition to the above methods, recent studies have begun to consider the combina-
tion of vulnerability and resilience to consider flood resilience, which can better consider
the interaction and connection between various factors, such as Ruirui Sun based on the
quantitative model of the correlation between vulnerability and resilience, an urban flood
resilience evaluation model from pre-disaster exposure, disaster sensitivity and adaptability,
and post-disaster recovery ability to evaluate the resilience of flood disasters in Beijing [25].
However, the flood resilience evaluation index system established considering vulnerability
and resilience is limited by the influence of the database, and only limited indicators can
be considered. The data source is also single statistical data, and the accuracy of the data
also determines the usefulness of the analysis results. Most studies only ranked the flood
resilience of cities in the study area separately, unable to identify clusters of cities with
similar characteristics, and cities with similar characteristics often have the same problems.
Therefore, further research is required.

To sum up, this paper uses hierarchical analysis to determine indicator weights from
the perspective of infrastructure and environmental vulnerability and socioeconomic re-
coverability. All indicator data of infrastructure and environment are based on remote
sensing and GIS data, and GIS is used to determine the vulnerability of infrastructure
and environment. The socioeconomic indicators are all based on statistical data, and the
determination of socioeconomic recoverability is based on the TOPSIS method. Finally,
based on the k-means method, a cluster analysis of cities with similar flood resilience
in Changchun was conducted based on infrastructure and environmental vulnerability
and socioeconomic recoverability to provide a theoretical basis for improving urban flood
resilience in Changchun.

2. Materials and Methods
2.1. Data and Methodology
2.1.1. The Study Area

Changchun is located at 43◦05′–45◦15′N and 124◦18′–127◦05′E. The relief is relatively
gentle, and the height is mainly distributed around 300 m. The average annual temperature
in the study area is 4.6 ◦C. Precipitation mainly occurs from June to September, with
an uneven distribution and an increasing trend from west to east. The average annual
precipitation is between 600 and 700 mm. The river systems in the study area include the
Lalin River and the Songhua River. The main rivers are the Yitong River, the Wukai River
and the Xinkai River. Due to the lack of data for Gongzhuling City, we excluded this city
from the study area, as shown in Figure 1.
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2.1.2. Selection of Evaluation Index

Selecting and establishing a scientific index system and evaluation criteria is the key
to evaluating urban flood resilience. The acquisition of indicators requires the further
comprehensive extraction of a large amount of information, which is targeted to problems
and risk-oriented. On the basis of referring to existing models, frameworks and index
systems that are influential, such as the DROP model [26], the PEOPLE framework [27] and
the urban resilience index framework [28], and following the principles of comprehensive-
ness, typicality, applicability, scientificity and feasibility, we divide urban flood resistance
capacity into four dimensions: social dimension, economic dimension, infrastructure di-
mension and environmental dimension. On the basis of these four dimensions, following
the principles of reliability, accessibility and operability, indicators that can accurately
reflect the relationship between the social dimension, economic dimension, infrastructure
dimension, environmental dimension and flood disaster are selected. Table 1 shows the
specific index system and the basis of index selection.

Table 1. Urban flood resilience evaluation index system and selection basis.

Criterion Layer Indicator Layer Index Selection Basis

Environment

Altitude Altitude will affect the pressure of urban storm flood system, and
low-lying areas are more prone to rain and flood damage [29,30].

LULC

In the event of flood, different land use types have different degrees
of flood damage and different vulnerability. Compared with green

space, impervious ground is less able to absorb water and more
prone to flooding [31,32].

Rainfall Precipitation is an important cause of flood disaster, so precipitation
as an evaluation index is important [33].
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Table 1. Cont.

Criterion Layer Indicator Layer Index Selection Basis

NDVI NDVI is an important index of vegetation coverage, and vegetation
has certain resistance to flood disaster [34].

Slope Slope determines the current flood velocity, so slope selection is also
an important evaluation index [35].

Distance to water bodies The closer an area is to rivers and lakes, the more likely it is to
flood [34].

Infrastructure

Road density Road density also affects the evacuation of people during flood
disasters, which helps improve resilience [36].

Building density The more built up an area is, the more vulnerable it is to flooding [37].

Drainage density
Drainage pipe network can remove the flood as soon as possible

when the flood disaster occurs, which is an important means of urban
drainage [36].

Economy

GDP per capita In general, economically less developed areas are more vulnerable to
flooding [36].

Flood defense investment as a
proportion of public expenditure

The higher the proportion of flood control investment, the lower the
probability of flood disaster and the loss caused by flood disaster [37].

Proportion of health expenditure Medical and health finance can provide important guarantees for
people’s safety after disaster [38].

Fiscal revenue
Fiscal revenue represents the economic strength of local governments.

The higher the fiscal revenue, the stronger the resilience to flood
disasters [38].

The number of industrial
enterprises above designated size Large companies are more resilient to flooding [38].

Society

Population density The greater the population density, the greater the damage caused by
flood disaster [39].

Proportion of talents in
higher education

Education can improve people’s awareness and knowledge of
disasters. People with higher education levels have stronger coping

abilities when flood disasters happen [40].

Proportion of water
conservancy employees

The higher the proportion of water conservancy employees, the
lower the loss caused by a flood disaster [38].

Number of beds in health
institutions per 10,000 people

Provide relief facilities during and after flood disasters. The more
beds available, the better the first aid and recovery capacity [41].

Health professionals per
10,000 population Health workers can provide relief during and after floods [41].

Unemployment rate
Unemployment rate is an important factor for social stability. The
higher the unemployment rate, the greater the loss caused by the

flood disaster [41].

Coverage of basic
medical insurance

As an important means of social security, basic medical insurance
provides important medical security for the disaster-stricken people

after the flood disaster [39].

2.1.3. Data Collection

This paper establishes an index system of flood resilience in Changchun from four
aspects: infrastructure, environment, society and economy. The data for the infrastructure
index and environment index come from remote sensing and GIS data, while the data for
the socioeconomic index come from statistical data. The data types and sources are shown
in Table 2, and the technical route is shown in Figure 2.
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Table 2. Data types and sources of urban flood resilience evaluation index.

Evaluation Index Data Type Date Details Data Source

Altitude ASTER GDEM 30 m Geospatial data cloud

LULC Raster data 30 m Data grain

Rainfall Raster data 2017–2021
National Data Center

for Meteorological
Sciences

NDVI Landsat 8 OLI/TIRS 30 m Data grain

Slope ASTER GDEM 30 m Geospatial data cloud

Distance to
water bodies Vector data 2021 Geospatial data cloud

Road density Road network shape
file 2021 Geospatial data cloud

Building density POI 2021 Planning cloud

Drainage density Vector data 2021 Planning cloud

GDP per capita Attribute data 2021 Changchun Statistical
Yearbook

Flood defense
investment as a

proportion of public
expenditure

Attribute data 2021 Changchun Statistical
Yearbook

Proportion of
health expenditure Attribute data 2021 Changchun Statistical

Yearbook

Fiscal revenue Attribute data 2021 Changchun Statistical
Yearbook

The number of
industrial enterprises
above designated size

Attribute data 2021 Changchun Statistical
Yearbook

Population density Attribute data 2021 Changchun Statistical
Yearbook

Proportion of talents
in higher education Attribute data 2021 Changchun Statistical

Yearbook

Proportion of water
conservancy
employees

Attribute data 2021 Changchun Statistical
Yearbook

Number of beds in
health institutions per

10,000 people
Attribute data 2021 Changchun Statistical

Yearbook

Health professionals
per 10,000 population Attribute data 2021 Changchun Statistical

Yearbook

Unemployment rate Attribute data 2021 Changchun Statistical
Yearbook

Coverage of basic
medical insurance Attribute data 2021 Changchun Statistical

Yearbook
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2.1.4. Analytic Hierarchy Process (AHP)

The analytic hierarchy process (AHP) [42] is a subjective method to determine weight,
proposed by T.L. Satty in the late 1970s. As one of the most widely used knowledge-
driven methods, AHP is widely used to calculate the weight of the urban flood resilience
evaluation index [20]. The specific steps are as follows:

(1) Establish a hierarchical structure.

We take flood resilience as the overall target layer; infrastructure, environment, society
and economy as the first-level target layer; and specific indicators as the final target layer.

(2) Construct a pairwise comparison judgment matrix.

We gathered the opinions of five experts in disaster risk and civil engineering and
evaluated the importance of the indicators of the same level compared with the indicators
of the next level through the method of pairwise comparison. The comparison results
between the indicators are represented by numerical scales from 1 to 9 [43] (Table 3).

Table 3. KScale and significance of judgment matrix.

Scale Meaning

1 Equally important
3 Moderately more important
5 Strongly more important
7 Very strongly more important
9 Extremely more important

2, 4, 6, 8 Intermediate values
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(3) Consistency check.

In order to test whether the weight distribution is reasonable, the following formula
should be used to test the consistency of the matrix:

CI = (λmax − n)/(n− 1) (1)

CR =
CI
RI

(2)

where λmax is the largest characteristic root, n is the number of indicators and CI is the
consistency index. RI is the average randomness index, and its value is shown in Table 4.
CR is the test coefficient root. If CR < 0.1, the matrix passes the consistency test. Table 5
shows the calculation results of index weights.

Table 4. Average randomness index.

Order 1 2 3 4 5 6 7 8 9

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45

Table 5. Weight of flood resilience index.

Target Layer Criterion Layer Criterion Layer
Weight Index Layer Index Layer

Weight

Flood resilience

Infrastructure 0.205

Road density 0.051

Building density 0.051

Drainage density 0.102

Environment 0.169

Altitude 0.020

Slope 0.013

Rainfall 0.026

LULC 0.046

NDVI 0.038

Distance to water bodies 0.026

Economy 0.339

GDP per capita 0.089

Flood defense investment as a proportion of public
expenditure 0.109

Proportion of health expenditure 0.038

Fiscal revenue 0.055

The number of industrial enterprises above
designated size 0.048

Society 0.288

Population density 0.066

Proportion of talents in higher education 0.031

Proportion of water conservancy employees 0.053

Number of beds in health institutions per 10,000 people 0.030

Health professionals per 10,000 population 0.036

Unemployment rate 0.044

Coverage of basic medical insurance 0.028

2.2. Quantifying Flood Resilience
2.2.1. GIS Weighted Combination Quantitative Infrastructure and Environmental Vulnerability

On the basis of collecting the data for infrastructure and environmental indicators, this
paper uses ArcGIS 10.8 to process the evaluation indicators, makes each indicator a layer
(Figure 3), and then uses the following 9 indicator layers to estimate infrastructure and
environmental vulnerability areas: altitude, slope, rainfall, NDVI, distance from a water
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body, road density, building density and drainage density. Nine maps are combined by
weighted linear combination, in which the weighted average of the continuous standard is
standardized into a common numerical range and combined [44], as shown in Equation (3).
Finally, the results of infrastructure and environmental vulnerability are counted by region
through the ArcGIS regional mean statistical tool. The weight of the index comes from the
weight determined by the analytic hierarchy process.

S =
n

∑
i=1

WiXi (3)

where S is infrastructure and environmental vulnerability, n is the number of infrastructure
and environmental indicators, Wi is the weight of each individual factor i at the infras-
tructure and environmental level and Xi is the value of each individual indicator i at the
infrastructure and environmental level.
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2.2.2. TOPSIS Quantified Socioeconomic Recoverability

The TOPSIS method is an evaluation method proposed by C.L. Wang and K. Yoon
in 1980s [45]. In this method, the target value of the evaluation object is taken as the
evaluation basis. By comparing the close degree of the actual influence degree of the
evaluation object in the criterion layer with the target impact degree, the evaluation object
is ranked. The target value here is the influence degree produced by the object with the
highest weight through the criterion layer under ideal circumstances, i.e., the best result, so
this method is also known as the good and bad distance solution method. Among them,
the evaluation is mainly based on the distance between the indicators under the criterion
layer and the “positive and negative ideal solution”. The closer the distance to the “positive
ideal solution”, the greater the importance of the evaluation index; similarly, the closer
the distance to the “negative ideal solution”, the smaller the importance of the evaluation
index. The specific calculation steps are as follows:

(1) Construct a decision matrix.

Constructing an original matrix with m objects and n indexes.

X =
[
xij
]

m×n (4)

(2) Calculate the weighted normalized matrix.

Because of the difference in the nature of different indicators, there are usually different
dimensions. In this paper, the range method is used to standardize the index value so that
it is between [0−1].

For the positive index:

x′ij =
xij −min

(
xij
)

max
(
xij
)
−min

(
xij
) (5)

For the negative index:

x′ij =
max

(
xij
)
− xij

max
(
xij
)
−min

(
xij
) (6)

In Equations (1) and (2), xij is the value of the jth index in the ith dimension of the
original data, and xij

′ is the data after standardization.
A weighted normalized matrix is constructed by multiplying each element in each

column of the normalized matrix by the weight obtained by the analytic hierarchy process.

Z = zij = wjx′ij f or(i = 1, . . . m)(j = 1, . . . n) (7)

where wj is the weight coefficient of the jth factor in social and economic aspects.

(3) Determine positive and negative ideal solutions.

A+ =
{

z+1 , z+2 . . . , z+n
}

, where : Z+
j =

{(
maxi

(
zij
)
i f j ∈ J

)
,
(
miniziji f j ∈ J′

)}
(8)

A− =
{

z−1 , z−2 . . . , z−n
}

, where : Z−j =
{(

mini
(
zij
)
i f j ∈ J

)
,
(
maxiziji f j ∈ J′

)}
(9)

where J is related to the positive index, and J′ is related to negative indices.

(4) Calculate the geometric distance from positive and negative ideal solutions.
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S+
i =

√√√√ n

∑
j=1

(
Z+

j − Zij

)2
(i = 1, 2, . . . m) (10)

S−i =

√
∑n

j=1

(
Z−j − Zij

)2
(i = 1, 2, . . . m) (11)

(5) Calculate the close degree between the evaluation object and the ideal solution.

Ci =
S−i

S−i + S+
i

0 ≤ Ci ≤ 1 (12)

The greater the Ci value, the smaller the distance between the index value of the ith
city and the positive ideal solution; that is, the better the flood toughness of the ith city.

2.2.3. K-Means Algorithm Clusters Flood Resilience

K-means belongs to unsupervised learning. Compared with clustering algorithms
such as Mean-Shift, K-Medians and DBSCAN, it has two advantages. First, the principle
of k-means is simpler than other clustering algorithms, and convergence is faster. Second,
k-means tuning parameters only need to adjust one parameter. Therefore, k-means is
currently a widely used clustering algorithm [46]. The principle of this algorithm is to take
the mean value of all data samples in each subcluster as the central point and cluster the
dataset by calculating the distance between each point in the class and the central point.
The logarithmic data points were classified through the iterative process, and finally the
evaluation function was optimized. This is because each subclass is independent of one
another, and the characteristics of sample points in the class are more similar.

3. Results
3.1. Infrastructure and Environmental Vulnerability

The overall infrastructure and environmental vulnerability diagram is shown in
Figure 4. It can be seen from the diagram that there are obvious differences in infrastructure
and environmental vulnerability among different regions of Changchun. Chaoyang District
has the highest infrastructure and environmental vulnerability, mainly due to its high
rainfall, high road density, gentle topography and low vegetation coverage. Moreover, as
the main urban area of Changchun, Chaoyang District has high building density, many land
types and many impervious surfaces, which makes it difficult for excessive precipitation to
pass through. Earlier sewers were not designed to meet the new demands. Nongan County
has the lowest infrastructure and environmental vulnerability due to its high terrain, low
road density and high vegetation coverage. Shuangyang District, Jiutai District, Dehui
City and Yushu City have low infrastructure and environmental vulnerability. Although
the rainfall levels in Shuangyang District, Jiutai District, Dehui City and Yushu City are
high, the drainage pipe network density, vegetation coverage and topography of these four
areas are relatively high, so they have low infrastructure and environmental vulnerability.
Nanguan District, Erdao District and Lvyuan District have high infrastructure and envi-
ronmental vulnerability due to high building density, gentle terrain and high road density.
It is worth noting that although the road density and building density are higher in the
wide urban area, the region has higher terrain and a higher drainage network density, so its
infrastructure and environmental vulnerability are lower. In conclusion, the infrastructure
and environmental vulnerability in the southern city of Changchun is higher than that in
the northern city.
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Figure 4. Infrastructure and environmental vulnerability map: vulnerability value (a); spatial distri-
bution of vulnerability (b).

3.2. Socioeconomic Recoverability

The overall socioeconomic recoverability chart is shown in Figure 5. It can be seen from
the chart that there are obvious differences in socioeconomic recoverability among different
regions of Changchun. With the highest per capita GDP, flood control investment and fiscal
revenue, Chaoyang District ranks first among the ten districts under Changchun in terms
of socioeconomic recoverability. The socioeconomic recoverability of Nongan County is the
least, because the index values of the coverage of basic medical insurance, the proportion of
higher education talents, the proportion of flood control investment in public expenditure
and the proportion of water conservancy workers in Nongan County are the smallest among
the ten subordinate districts of Changchun City. Lvyuan District, Shuangyang District,
Nanguan District and Kuancheng District have basic medical insurance coverage and flood
control investment, and the social and economic recovery level is high. Jiutai District,
Yushu City and Dehui City, due to the low proportion of water conservancy workers and
low investment in flood control, have low socioeconomic recovery. It is worth noting
that although flood control investment in Erdao District accounts for a high proportion of
public expenditure, its socioeconomic resilience is low due to high population density, a
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low GDP per capita and low investment in health care. In conclusion, the socioeconomic
recoverability of the southern city of Changchun is higher than that of the northern city. 

2 
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3.3. Flood Resilience

For the number of clustering k, the value of k needs to be set before the clustering
starts. Using the elbow method to select k values can meet the requirements, while reducing
the running time and the number of iterations. We determined from the elbow points in the
elbow diagram that k = 4 is ideal. Therefore, we divided flood resilience into four groups,
as shown in Figure 6, with each point representing a city in Changchun.
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ters (b).

Cluster I includes the second district, which has high infrastructure and environ-
mental vulnerability and low socioeconomic recoverability. Cluster II includes Green
Park, Chaoyang District and Nanguan District, which have high infrastructure and en-
vironmental vulnerability, and also high social and economic recoverability. Cluster III
includes Dehui City, Yushu City, Nongan County and Jiutai District, which have low in-
frastructure and environmental vulnerability and socioeconomic recoverability. Cluster IV
includes Kuancheng District and Shuangyang District, which have lower infrastructure
and environmental vulnerability, and higher socioeconomic recoverability.

When floods occur, it is expected that the communities in Cluster I will need more
recovery time than the communities in Cluster IV because their infrastructure and environ-
mental vulnerability are higher and their socioeconomic recoverability is lower. Therefore,
the flood resilience of the communities in Cluster I is lower than that in cluster IV, so Cluster
I is identified as having low flood resilience. Cluster IV is considered to have high flood
resilience. Although Cluster II has high vulnerability and resilience, Cluster II is considered
to be more resilient to flood disasters because socioeconomic recoverability is more impor-
tant than infrastructure and environmental vulnerability. Cluster III has moderate flood
resilience. The figure shows that the flood resilience of northern areas of Changchun City is
generally lower than that of southern areas of Changchun City, except for Erdao District.
Different factors have different effects on flood resilience. Cities with low infrastructure
and environmental vulnerability and high socioeconomic recoverability have higher flood
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resilience, while on the contrary, cities with high infrastructure and environmental vulnera-
bility and low socioeconomic recoverability may suffer more severely in the face of floods.
In addition, cities in the same cluster have similar flood resilience characteristics.

4. Discussion
4.1. Verification by Example Analysis

With the progress of urbanization in Changchun, the original natural underlying
surface has been gradually replaced by various impervious surfaces. In addition, the
drainage pipe network was constructed a long time ago and the diameter of most pipes
is small, and the drainage function of part of the pipe network has been lost due to aging
and serious disrepair. As a result, there are many waterlogged areas in the city after
heavy rainfall in the summer, which seriously affects the normal life of residents. The
higher the number of waterlogged spots in a city, the lower the level of flood resilience of
that city. In order to verify the reliability of the model results, 266 waterlogged points in
Changchun from 2017 to 2021 were collected in this paper. The data of waterlogged points
were obtained from field investigations and news information. The waterlogged points are
shown in Figure 7.
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According to the results shown in Figure 7, most of the waterlogged points were
concentrated in Erdao District, and Kuancheng District and Shuangyang District had the
lowest number of waterlogged points. The calculation results of the model also showed
that the urban flood toughness in Erdao District was the lowest, while Kuancheng District
and Shuangyang District had the highest flood toughness. Therefore, it was considered
that the evaluation results of the model on flood toughness were reasonable.

4.2. Comparison with Other Evaluation Methods

The existing evaluation methods for flood resilience are mainly divided into two
categories. The first type of evaluation method is based on resilience curves, but this method
requires considerable time to conduct surveys, and the resilience curves vary greatly from
region to region. The second type of evaluation method is based on the resilience index,
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which is also the most commonly used method for flood resilience evaluation, but the gap
between the selected indicators and the existing database makes the acquisition of indicator
data mostly from statistical data, which limits the number of indicators available for
model evaluation and affects the reliability of the results. Additionally, most of the studies
did not further analyze cities with similar flood resilience. Compared with the CORC
model [47], this study is characterized by the combination of GIS data, remote sensing data
and statistical data based on the flood resilience index, taking into account the important
environmental components of the urban system and considering the dynamic relationship
between the urban systems more comprehensively, and then using mathematical methods
to process the index data to obtain urban clusters with similar flood resilience.

4.3. Measures to Improve Flood Resilience

According to the above results, there are spatial differences in flood toughness in
Changchun, and the overall flood toughness needs to be further improved. Erdao District,
Nongan County, Yushu City, Dehui City and Jiutai District are the areas that policy makers
need to focus on to improve flood resistance. Depending on the situation in each region,
policy makers should adopt appropriate policies to help the region strengthen its flood
resistance capacity.

Erdao District needs to reduce the proportion of impervious ground, strengthen the
level of urban health care and improve the per capita income level to improve the urban
flood resistance ability. Nongan needs to increase the coverage of basic medical insurance,
the proportion of flood control investment to public expenditure and the proportion of
water conservancy workers. It should also enhance education to improve flood resilience.
Yushu City, Jiutai District and Dehui City should increase their capital investment in flood
control construction and strengthen the training of talents in the water conservancy industry
to improve their flood resistance ability.

5. Conclusions

Measuring the resilience of cities to floods can help formulate flood control policies.
Because of the inherent characteristics of Changchun City and the temporal and spatial vari-
ability of floods in this region, it is important to evaluate the flood resilience of Changchun
City. To this end, we designed a set of flood control capacity evaluation processes.

By referring to relevant literature, we first determined a set of evaluation index system
composed of 21 indicators to quantify the multifaceted concepts of urban flood resilience,
including four basic dimensions: infrastructure, environment, society and economy. Con-
sidering the collection of evaluation index data, we used remote sensing and GIS data
for infrastructure and environmental indicators, and statistical data for socioeconomic
indicators. Secondly, after collecting the opinions of local experts, the AHP method was
adopted to synthesize the experts’ judgment and determine the index weight. Based on
GIS weighted quantification of infrastructure and environmental vulnerability, TOPSIS was
used to quantify social and economic recoverability. Finally, based on k-means clustering
of infrastructure and environmental vulnerability and social and economic recoverability,
the flood resilience of Changchun City was evaluated. The results show the influence of
different factors on flood resilience and the characteristics of flood resilience as reflected by
infrastructure and environmental vulnerability and socioeconomic recoverability. Further-
more, cities in the same cluster have the same flood resilience characteristics.

The proposed framework can enhance the understanding of infrastructure and envi-
ronmental vulnerability as well as socioeconomic recoverability. Cluster analysis of the two
can identify urban clusters with similar flood resilience, and provide guidance for further
upgrading and improvement of cities in the same cluster and learning from different urban
clusters. The proposed model is simple to operate and can be used to evaluate the flood
resilience of different regions by simply adjusting the indicator bodies according to different
regions. On this basis, the key points that need to be improved in urban planning at all
levels are clarified, and the strategies to improve the institutional system are proposed
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from the perspective of policy and public participation, which can provide new ideas for
improving urban flood resistance ability and help decision makers determine the key points
for improving urban flood resistance ability.

However, there are some challenges in developing composite indicators and measuring
elasticity in this study. Due to the lack of previous flood impact information, it is impossible
to build a flood scenario model to integrate the actual flood results in Changchun into the
flood resilience evaluation index model. In the future, the actual flood scenario model
and flood resilience evaluation index model can be combined to reflect the urban flood
resilience more objectively and accurately.
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