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Abstract: Surface waves play an essential role in regulating the mixing processes in the upper ocean
boundary, and then directly affect the air–sea exchange of mass and energy, which is important
for the intensity prediction of tropical cyclones (TCs). The relative and integrated impacts of the
wave breaking (WB) and the wave orbital motion (WOM) on the mixing and ocean response to TC
forcing are investigated under typhoon Megi (2010), using the modeled data from a fully coupled
air–sea–wave model. It is shown that the WOM can effectively increase the turbulence mixing in
the upper ocean, thus significantly deepening the mixing layer depth and cooling the sea surface
temperature. The WB can modulate the mixing layer depth and sea surface temperature to some
extent in the cold tail zone with a shallow mixing layer (owing to typhoon forcing), whereas the
WOM plays a predominant role. On the aspect of ocean currents driven by typhoon winds, the
WOM-induced mixing significantly weakens the current velocity and shear strength in the upper
ocean mixing layer, while the relative contribution for turbulence production between the WOM and
the current shear differs at different vertical regions. Moreover, the effect of the WOM on the upper
ocean turbulent mixing are dependent on the location with respect to the typhoon center, the local
vertical thermal structure, and surface wave states.

Keywords: mixing; typhoon; wave orbital motion; wave breaking

1. Introduction

The upper ocean boundary or mixed layer plays a critical role in regulating the earth
environment, which involves all aspects of oceanic and atmospheric change. For example,
the development of a tropical cyclone (TC) and its intensity are sensitively dependent on the
thermal structure and sea surface temperature (SST) of the upper mixed layer [1,2], as TCs
are intense air–sea interaction phenomena and gain energy such as the latent and sensible
heat from the upper ocean to intensify. For another example, in the process of air–sea gas
exchange, such as carbon dioxide, methane, and nitrous oxide (important greenhouse gases
after water vapor), their exchange rates are affected by the turbulence in the surface ocean
where wave breaking can greatly enhance the turbulence [3,4]. In terms of air–sea fluxes
of mass and energy, the physical process of turbulent mixing in the upper ocean plays an
import role in controlling weather and climate change [4]. However, there are still some
gaps in current knowledge about the mixing process of the upper ocean [4].

The underestimation for the mixed layer depth (MLD) and the overestimation for
the SST usually occur in the existing oceanic models when simulating the upper ocean
in summer [5,6]. It is believed that some physical processes (such as surface waves)
related to the upper ocean turbulence mixing are absent in oceanic models, leading to
insufficient mixing.
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Surface waves are considered to play an important role in regulating the upper ocean
turbulent mixing. Some field observations and simulations have indicated that wave
breaking (WB) increases mixing near the ocean surface, but has a minor or non-significant
effect on SST and MLD, although the observed characteristics of dissipation rate under the
condition of WB can be well-simulated [7–9].

Recently, the mixing owing to wave orbital motion (WOM) has received extensive
concern. Offshore observations [10] and laboratory experiments [11–13] have shown that
WOM generates turbulence and enhances mixing [14]. Unlike WB, which influences the
turbulence and mixing to the depth at the wave height scale, WOM injects turbulence
deeply at the scale of wave length, which is much larger than wave height [14]. In nu-
merical studies, it is suggested that the overestimated SST and underestimated MLD are
significantly improved if including the mixing owing to WOM into global oceanic or
climate models [15–17].

Langmuir turbulence, the phenomena of interaction between Stokes drifts and small-
scaled vorticities generated by surface winds and waves, is another wave-related mecha-
nism for enhancing the turbulence mixing in the upper ocean [18–20]. Some simulation
results show that ocean models represent the upper ocean thermal structure well when
Langmuir turbulence is explicitly resolved [21,22]. However, parameterization of Langmuir
turbulence for ocean models remains a challenge. There are great differences between
current Langmuir turbulence schemes, which obscure the Langmuir effect magnitude
under realistic forcing [23].

Under some extreme conditions, particularly TC conditions, complicated changes
occur for the ocean currents and surface waves due to the frequently changing and rotat-
ing winds. Thus, the turbulence generation and mixing of the upper ocean are complex
problems and have not been resolved completely. The influence of WOM on the ocean
turbulent mixing under the condition of a TC were reported in a few studies [24,25], but the
integrated effect of WOM and WB has not been discussed. Although the WB is considered
to play a limited role in deepening the MLD, it can also have an effect on the SST change
and turbulent dissipation, especially under a shallow mixed layer [8,9,26], which is very im-
portant for the air–sea interface gases exchange [3]. Moreover, concurrently resolving both
WOM and WB in the coupled air–sea–wave model makes the model involved with com-
plete physical processes and in accord with the real situation. In this paper, the Langmuir
turbulence effect is not discussed to avoid potential overmixing. It is still not completely
clear whether the mixing processes due to the WOM and Langmuir circulation have an
overlap [27]. Moreover, it is quite difficult to distinguish between WOM-induced mixing
and Langmuir turbulence, as they coexist and both are related to water particle orbits.

During October in 2010, the typhoon center of Megi moved across the middle of
two moorings deployed in the South China Sea (SCS). These two moorings were very close
to the typhoon track, and measured rare profiles for current and temperature under the
typhoon condition, which provided us a precious chance to study the upper ocean mixing
and response under the condition of a TC. In this study, we analyzed and discussed the
influence of WOM and WB on the mixing and response of upper ocean under typhoon Megi
(2010), adopting observed data from the two moorings and simulated results from a coupled
air–sea–wave model [28]. The rest of this paper is organized as below: introductions of
typhoon Megi (2010), mooring observations, model information related to the simulated
results, and the mixing parameterizations of WOM and WB are described in Section 2;
observed and modeled results and analysis are shown in Section 3; the mixing induced by
surface waves in different regions and stages under typhoon Megi (2010) is discussed in
Section 4; the conclusions and summaries are listed in Section 5.

2. Data and Methods

Our previous paper [28] discussed the effect of mixing owing to WOM and WB on
the intensity and size for typhoon Megi (2010), using a fully coupled air–sea–wave model
system. In this paper, we use our previous model results [29] which were validated using
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various observations to focus on the effect of waves-induced mixing on the response of
upper ocean to TC forcing. Here, we just describe the key information about the coupled
model, the domain and period for the simulation, and numerical experiments. We do
not repeat the model parameter and scheme settings for brevity. For more information
on the model parameter and scheme settings, please read the paper by Zhang et al. [28]
for reference.

2.1. Typhoon Megi (2010) and Observations

Typhoon Megi began to develop as a tropical depression on 13 October 2010 in the
western North Pacific, then headed to the west and moved across the Philippines on
18 October. When it entered SCS on 19 October, it quickly made a sharp turn and moved
northward. On 23 October, Megi made its final landfall on the south coast of China. Before
Megi’s first landfall in the Philippines, the maximum wind speeds near Megi center reached
about 70 m/s which is the maximum intensity during Megi. While passing through the
Philippines, Megi’s intensity was significantly decreased, then increased rapidly again after
it entered SCS. After 6:00 UTC on 20 October, Megi began to decay slowly.

There were two moorings which were quite close to Megi center at 00:00 UTC on
22 October; the right mooring (RM) was at 21◦03.59′N, 118◦25.61′E, about 25 km to the
right of Megi’s center; the left mooring (LM) was at 21◦06.57′N, 117◦52.66′E, about 30 km
to the left of Megi’s center (Figure 1). RM and LM, equipped with Acoustic Doppler
Current Profilers, measured the ocean currents from about 400 m to 40 m with 8m vertical
resolution and 180 s temporal interval [30]. RM, equipped with 28 thermometers and
2 CTDs, measured the ocean temperature from about 360 m to 60 m with 10 m vertical
resolution and 60 s temporal interval [30]. The raw measurements were preprocessed by
linear interpolation in the vertical direction and averaging every 30 min, providing data
with temporal and vertical resolution of 30 min and 5 m.
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right and left mooring buoys, respectively.
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In the work by Zhang et al. [28], these simulated results of typhoon track, intensity,
size, sea surface temperature, sea subsurface temperature, surface winds, and surface
waves for Megi were validated using best track data developed by Joint Typhoon Warning
Center (JTWC), observations provided by Remote Sensing System (RSS), the RM described
above, and altimeters of JASON-1 and -2. In this paper, we did not repeat the validation
for these simulated results for brevity; however, we used the observed currents from the
two mooring buoys to verify the modeled currents.

2.2. Description for the Coupled Model and Simulation

Here, we simply describe the coupled ocean–atmosphere–wave–sediment transport
(COAWST) (v3.1) model [2]. This model was used for the simulation in Zhang et al. [28]
and produced the simulated data for our investigation. COAWST (v3.1) includes
three main components: the Advanced Research Weather Research and Forecasting
(WRF) model; the Regional Ocean Modeling System (ROMS); and the Simulating Waves
Nearshore (SWAN) mode.

WRF contains various schemes and parameterizations for physical processes, which is
widely applicable to predictions of atmospheric motions at different scales and research
experiments [31]. SWAN involves a variety of wave-related actions, such as refraction,
wave–wave interactions, wave dissipation, and shoaling [32]. ROMS is usually utilized to
simulate the ocean environment, such as ocean temperature, currents, etc., by solving the
Reynolds-Averaged Navier–Stokes (RANS) equations with a terrain-following coordinate.
In the coupling between WRF and ROMS, SSTs are sent from ROMS to WRF, and momen-
tum and heat fluxes are transferred back to ROMS (Figure 2). In the coupling between
SWAN and WRF, wave parameters, i.e., wave period, wave length, and significant wave
height, are sent from SWAN to WRF, and 10 m winds are passed back to SWAN. In the
coupling between ROMS and SWAN, ocean surface elevation, current, and bathymetry
from ROMS are sent to SWAN, and wave parameters calculated by SWAN, such as percent
wave breaking, wave length, significant wave height, etc., are exchanged back to ROMS. For
more complete and detailed information about this model, please refer to Warner et al. [2].
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Figure 2. Data exchange between three components, i.e., WRF, ROMS, and SWAN, in COAWST.

The simulation domain covered the northern SCS. WRF, ROMS, and SWAN have the
same horizontal grid points of 220 × 256 with 6 km spatial resolution. The simulation
period was from 12:00 UTC on 19 October to 00:00 UTC on 23 October. For more details
about the model settings, initial and boundary conditions, please refer to Zhang et al. [28].
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2.3. Parametrization Scheme of Wave-Induced Mixing
2.3.1. Wave Orbital Motion

The turbulent source item induced by WOM, abbreviated as PW, was added by
Zhang et al. [28] into a generic length scale (GLS) turbulence closure scheme [33,34] in-
corporated in COAWST:

D
Dt

(k) =
∂

∂z

[
νt

σk

∂

∂z
(k)

]
+ Ps + Pw + Pb − ε (1)

and
Dψ

Dt
=

∂

∂z

(
νt

σψ

∂ψ

∂z

)
+

ψ

k
(c1(Ps + Pw) + c3Pb − c2εFwall) (2)

where k represents the turbulent kinetic energy (TKE); Pb and Ps are the turbulent produc-
tions owing to buoyancy and current shear, respectively; ε represents the TKE dissipation
rate; Fwall is a wall function; ψ is a generic parameter; c1, c2, c3 are constant coefficients;
σψ and σk represent Schmidt numbers of ψ and k, respectively; and νt is the eddy viscosity.
PW is calculated by the following equation [35]:

PW = b1kwω3
p

Hs
3

8
e3kwz (3)

where b1 is a dimensionless coefficient, setting as the constant of 0.0014 following previous
studies [24,28,36]; Hs, ωp, and kw are significant wave height, peak wave radian frequency,
and wave number, respectively. z represents the water depth with negative values in ocean.

2.3.2. Wave Breaking

The mixing induced by WB is considered as a turbulence source for ocean surface.
COAWST provides an option to incorporate the effect of WB on mixing, adopting the param-
eterization proposed by Craig and Banner [8]. In COAWST, WB is introduced into the GLS
turbulence closure scheme (i.e., Equations (1) and (2)) through boundary conditions [37]:

νt

σk

∂

∂z
(k) = εw, z = ζ (4)

νt

σψ
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∂z
= − σk

σψ
·
(
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µ

)p
·i·ki−1·(κ·(z0 − z))j·y

− νt

σψ
·
(

c0
µ

)p
·j·ki·κ·(κ·(z0 − z))j−1, z = ζ

(5)

where κ is the von Karman constant; εw is the TKE flux due to WB; c0
µ, i, j, and p are constant

coefficients; z0 represents the surface roughness; y is set to εw on the surface.

2.4. Numerical Experiments

We chose four experiments which were conducted in the simulations of Zhang et al. [28]
to investigate the influence of mixing due to WB and WOM on the upper ocean for Megi.
Table 1 summarizes these four experiments.

Table 1. Experiments for typhoon Megi to evaluate the relative and integrated impacts of turbulent
mixing due to wave breaking (WB) and wave orbital motion (WOM).

Expts. Description

E0 Exclude WB and WOM
E1 Include WB
E2 Include WOM
E3 Include both WB and WOM
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3. Results

We presented and compared the model results of SST, MLD, current, etc., among differ-
ent experiments to study the relative and integrated effects of WOM and WB on the upper
ocean under typhoon forcing, and did not validate the simulated typhoon track, intensity,
subsurface temperature, SST, surface wind speed, and surface waves using observed data
as the verification for these modeled results was performed by Zhang et al. [28].

3.1. SST and MLD

The validations for SST and MLD (the depth with a bias of 0.5 ◦C for ocean temperature
compared with the SST) in Zhang et al. [28] indicated that the simulated MLDs, SSTs, and
subsurface temperature matched the measurements from RM and RSS well, especially
in E2 and E3. Comparing the modeled SSTs and MLDs in experiments (E1, E2, and E3)
including wave-induced mixing with the control experiment E0, it was generally shown
that the WB resulted in a tiny decrease for SST and a slight increase for MLD, whereas the
WOM led to a great SST decrease and a large MLD increase (Figures 3 and 4).
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Figure 3. Simulated daily mean SST in different numerical experiments on 22 October 2010. (a) SST
in the control experiment excluding wave-induced mixing. (b–d) Deviations of SST compared with
the control experiment for each of the three experiments including mixing owing to surface waves
(i.e., considering only the mixing owing to wave breaking, only the mixing owing to wave orbital
motion, and both these two factors). The black dot indicates the position of Megi’s center at 00:00 UTC
on 22 October 2010. The black line represents Megi’s track. The ellipse marked with “T” in the panel
(a) represents the classic cold tail zone behind Megi’s center. Text boxes marked with “A”, “B”, and
”C” in the panel (c) display three different and representative analysis areas.
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Figure 4. Same as Figure 3, but for MLD. (a) MLD in the control experiment excluding wave-
induced mixing. (b–d) Deviations of MLD compared with the control experiment for each of the
three experiments including mixing owing to surface waves.

In the classic cold tail zone (shown in Figure 3a and marked with “T”) along Megi’s
track and behind Megi’s center, where the MLD was shallow (about 20 m), the WB cooled
the SST by about 0.5 ◦C and deepened the MLD by 5–10 m, whereas it did not effectively cool
the SST or deepen the MLD in the other zone with relative deep MLD (Figures 3b and 4b).
The simulated results in E2 showed that the mixing induced by WOM cooled SST and
deepened MLD much greater than the WB (Figures 3c and 4c), and suggested a trend in
the region along Megi’s track that the shallower the mixing layer, the more the mixing
layer (SST) was deepened (decreased). Note that the effect of the mixing induced by WOM
on MLD and SST was dependent on the local vertical thermal structure and surface wave
states. We chose two typical and different areas to study the effects of WOB on the MLD
and SST at different spatial regions which were forced by typhoon winds, but had different
responses to typhoon forcing. For example, in the zone along typhoon track (zone A shown
in Figures 3c and 4c), a large amount of cold water was pumped up due to Ekman pumping,
then the thermocline was uplifted and the MLD became shallow with the value of ~25 m in
E0 (Figure 4a). The WOM can penetrate turbulence into a deep depth at wave length scale
which may reach approximately 100 m under typhoon conditions, significantly enhancing
the upper ocean mixing, so the MLD in zone A was deepened obviously (increased by
20–30 m), and the SST is decreased markedly (reduced by about 2.0 ◦C), compared with
E0. In the zone without Ekman pumping (zone B shown in Figures 3c and 4c), the surface
waves were still large due to the typhoon forcing, so the WOM injected the turbulence
deeply enough and entrained colder water from below the mixed layer base or thermocline,
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leading to obvious MLD deepening and SST cooling. The MLD (SST) in E2 was 25 m deeper
(2.0 ◦C cooler) than in E0 in zone B. In the zone far away from the typhoon, such as zone C
shown in the Figures 3c and 4c, there was an obvious deepening for MLD in E2, but the
SST cooling seemed relatively small. This was an interesting and seemingly unusual result.
The main reason for this scenario was the local seasonal thermocline and relatively small
surface waves. As shown in Figure 5, in zone C, there was a very shallow MLD (~10 m)
and a weak seasonal thermocline near the surface, and below the seasonal thermocline was
a profound mixing layer, and the bottom of this main mixing layer was as deep as about
70 m. When the mixing induced by WOM was taken into account (in E2), the seasonal
thermocline disappeared due to the enhanced mixing induced by WOM. However, the
local WOM did not influence deeply the lower part or the bottom of the main mixing layer
which is below the initial seasonal thermocline, as the surface waves were relatively small
at this location (see Figure 11 in Zhang et al. [28]). As shown in Figure 6, the turbulence
production induced by WOM Pw in zone C was quite small, about two orders of magnitude
smaller than in zones A and B (note the different color bars in different panels), and the
depth of the isoline for 1 × 10−5 m2/s3 in the zone C was about 30 m, much shallower
than the bottom of the main mixing layer, indicating that the mixing owing to WOM in
the zone C influenced to the relative shallow depth. Although the modeled MLDs in E2
showed that the MLD in the zone C was deepened significantly (more than 50 m compared
with E0), the value of MLD in the zone C actually represented the depth of main mixing
layer base. Additionally, the difference for the water temperature between the main mixing
layer and the ocean surface was small, so the reduction of SST in E2 was small. It was also
noticed that in the zone C, the MLD was obviously deepened by ~10 m after considering
WB in E1. This was also due to the local shallow MLD above the seasonal thermocline
as described above. In this area, the local wave height was about 6~7 m (see Figure 11 in
Zhang et al. [28]), and the WB effectively changed the local shallow MLD.
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Figure 6. The turbulence production induced by wave orbital motion PW (m2/s3) at locations A, B, and
C in experiment E2. The black dashed lines represent the isoline of 1 × 10−5 m2/s3.

In E3, both WOM and WB were considered, and the modeled results for SST and
MLD were almost the same as those in E2, indicating that the WOM had an overpowering
influence on the upper ocean turbulence mixing compared with WB, whereas the effect of
mixing owing to WB was negligible compared with WOM-induced mixing [28].

3.2. Sea Surface and Subsurface Currents

In this subsection, the influence of surface waves-induced mixing on the ocean
currents driven by typhoon winds was analyzed. The observed currents obtained from
two moorings (LM and RM) were utilized to verify the simulated results. Note that the
observation data of ocean currents from 60 m to the ocean surface was absent. In order
to study the impacts of mixing owing to WB and WOM on ocean current field under
typhoon winds more clearly, the tides were removed from the observed and simulated
currents. Firstly, both the movements at high frequency and errors in measurement were
removed from the observed currents using a low-pass filter following Zou et al. [30].
Then, the tide currents which were calculated by the tidal analysis program T_TIDE [38]
were removed. Figure 7 presents the tide currents and the currents after removing tides
at the LM and the RM.

Figures 8 and 9 are the modeled currents (tides removed) of four experiments at the
locations of LM and RM, respectively. Generally, the simulated currents (below 60 m)
agreed with the observations reasonably. The biases between the modeled results and the
observed currents may be attributed to the model grid resolution, the error of typhoon
track, and the method used to process the observed data from moorings. Some com-
mon scenarios were observed and captured in the mooring observations and modeled
results: (1) The currents driven by typhoon winds in the upper layer were more powerful
on the right of Megi’s center than on the left. This difference was owing to the same direc-
tions between wind stress and near-inertial current on the right of Megi’s track, whereas
opposite directions on the left [39]. (2) Near-inertial oscillations (NIOs) were active at
almost all depths, and stronger in the mixed layer, and became more evident after the
passage of Megi. Guan et al. [40] found that NIOs decayed rapidly within two inertial
periods (33.3 h at RM and 33.4 h at LM) after Megi passed. Note that our simulation period
did not cover this quick damping of NIOs.
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Comparing the simulated subsurface currents among the different experiments
(Figures 8 and 9), it was found that the surface waves-induced mixing weakened the current
velocity and shear strength in the upper mixed layer. In E1 considering only WB, the
modeled results were slightly weaker than those in E0, indicating that the WB had a small
effect on the ocean currents, as it did for SST and MLD. In E2, including the WOM-induced
mixing, the simulated currents were significantly weakened by 40% in the upper mixed
layer, compared with E0. The modeled sea surface currents of E1 and E2 were also weaker
with varying degrees than in E0 (Figure 10) in areas affected by typhoon forcing, similarly
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to the scenarios of subsurface currents. In E3 with both WB and WOM, the modeled results
for the surface and subsurface currents were almost the same as those in E2, indicating that
the WOM overpowered the WB with absolute predominance in terms of ocean currents
driven by typhoon winds.
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Figure 10. Sea surface currents (removed tides) simulated in different experiments at 00:00 UTC on
22 October 2010. The black dot in the panel (c) represents the typhoon center (M) at 00:00 UTC on
22 October. Two black circles in the panel (c) represent the locations of the right (R) and left (L) sides
of Megi’s center (M).

4. Discussion

In this section, we discussed the mixing and turbulence production owing to surface
waves in the upper ocean under typhoon forcing. Figure 11 displays the TKE among
different experiments at locations of the typhoon center (M), the right (R), and the left
(L) sides of Megi’s center (indicated in Figure 10c). In E1 with WB, the TKE was strongly
increased, about two orders of magnitude larger than that in E0, and the maximum TKE
appeared at the ocean surface. In E2 with WOM, the TKE was about one order of magnitude
larger than that in E0. The greatest value of TKE was at some depth below the sea surface
and the TKE near the surface was quite small, which was what we would expect as the
vortex’s size should be restricted near the surface [35]. Although the maximum value
of TKE induced by WB in E1 was much larger than that induced by WOM in E2, the
influencing depth of WB was shallower than WOM. The effect of WB was limited to the
very shallow depth, and did not effectively impact the mixing at deeper depth. As shown
in Figure 11, the depth of TKE isoline of 1 × 10−3 m2/s2 in E1 was quite similar to that
in E0, whereas the depth of TKE isoline of 1 × 10−3 m2/s2 in E2 was much deeper to
that in E0, indicating the WOM injected turbulence deeply. In addition, when both these
two wave-related mixing processes were considered in E3, the maximum TKE appeared
under the sea surface and was consistent with the value in E1, much larger than in E2,
implying that the WOM may also penetrate turbulence induced by WB to deeper depth.
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Note that the depth of TKE isoline of 1 × 10−3 m2/s2 in E3 is almost the same as in E2,
suggesting that the mixing due to WOM was predominant compared with WB.
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Figure 11. TKE (m2/s2) among different experiments at locations of L, M, and R (indicated in
Figure 10c). The black dashed lines represent the isoline of 1 × 10−3 m2/s2.

Complex and frequently changing currents and waves occur under typhoon forcing.
The current shear and wave-induced turbulence are the main sources of turbulence pro-
duction. The relative importance between the current shear and WOM differs at different
regions. As shown in Figure 12a–c, the WOM had a predominant impact in the upper region
of the mixing layer with Pw/Ps > 1, whereas the current shear was comparable to or little
greater than the WOM near the bottom of the mixing layer. This variation was owing to the
attenuation of WOM from the ocean surface (as shown in Figure 6) and the enhancement
of current shear at the bottom of the mixing layer (as displayed in Figures 8 and 9).
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Figure 12. (a–c) The ratio of the shear production (Ps) and wave orbital motion-induced turbulence
production (Pw) in different zones of L, M, and R of experiment E2. (d–f) The temperature in different
zones of L, M, and R of experiment E2. The black vertical lines in panels (b,e) display the time when
typhoon center passed. The MLDs are marked by white dashed lines.

During Megi, the current shear and WOM-induced turbulence productions changed
quickly. For example, before Megi’s center reached the location M, the Pw was about two or-
ders of magnitude greater than Ps, resulting in deepening the mixed layer (Figure 12b).
When the typhoon center approached near location M (about six hours before 00:00 UTC
on 22 October), the ratio of Pw/Ps enhanced rapidly, and the Pw was about four orders of
magnitude greater than Ps in the upper region of the mixing layer. The underlying cause
for this scenario was that the ocean currents in the typhoon eye were rather weak, while
the surface waves were relatively strong with the significant heights of about 8 m (see
Figure 11 in Zhang et al. [28]). Thus, the Pw was absolutely predominant compared with
Ps in this situation. After the typhoon center passed through the location M, the scenario of
cold suction due to Ekman pumping began (Figure 12e), the ratio of Pw/Ps decreased, and
the Pw was about two orders of magnitude greater than Ps. Then, when the typhoon center
moved far away from the location M (about 20 h later), the ratio of Pw/Ps re-increased,
and Pw was about three orders of magnitude larger than Ps. Although the typhoon center
was far away from the location M, there was still large surface waves in the local area,
dominating TKE production and mixing in the upper ocean, finally deepening MLD. In
the left and right sides of Megi’s center forced by high typhoon winds, i.e., the locations
of L and R, it was shown that WOM-induced TKE production always overpowered the
TKE production from current shear, especially after the typhoon center moved far away
(Figure 12a,c), as it did at the location of M.

In the aspect of the TKE dissipation rate ε, WB and WOM-induced mixing can ob-
viously enhance the ε, and WOB has a more significant impact than WB. As shown in
Figure 13, when the wave-induced mixing was not taken into account (E0), the area with
high value of ε was mainly concentrated in the region very close to the surface. When the
WB-induced mixing was considered in E1, the ε in the upper ocean boundary was increased
significantly compared with E0, whereas the region with effective values of the ε (larger
than the background ε with the value of 1 × 10−8~1 × 10−7 m2/s3) was not deepened. For
example, the depth of isolines of 1 × 10−7 m2/s3 in E1 was basically the same as in E0. This
is consistent with our understanding that the effect of WB on deepening the mixed layer
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is quite limited. In E2, which included the WOB-induced mixing, the distribution of the
ε was significantly different from that in E1 and E0. The area with effective values of the
ε in E2 was obviously deepened, i.e., the isoline of 1 × 10−7 m2/s3 was deepened by about
80~100 m compared with E0 or E1. When the WB and WOM were considered together in
E3, the characteristics of ε in most regions were almost consistent with E2. These results
implied that WOM played a dominant role in regulating the ε in the upper ocean boundary
compared with WB. The current results of ε were from numerical simulation, which need
to be verified by more observations under TC conditions in the future.
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5. Conclusions

The relative and integrated impacts of mixing owing to WOM and WB on the response
of upper ocean to typhoon Megi (2010) in SCS were investigated, adopting the simulated
results from Zhang et al. [28] and observations from two mooring buoys near to the
typhoon track.
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Comparing simulated results among different experiments showed that the WOM
significantly enhanced the mixing of the upper ocean, resulting in extensive MLD deepening
and great SST cooling, which is consistent with previous studies [24,25]. Under typhoon
Megi (2010) conditions, the wave breaking had a non-negligible effect on regulating MLD
and SST at locations with a shallow MLD (at wave height scale), e.g., cold tail zone, while
the WOM played a dominant role. When considering the WOM and WB concurrently, the
WOM may also penetrate turbulence induced by wave breaking near the surface to some
deep depth, but much shallower than the influence depth of WOM. Note that the impact of
wave orbital motion on MLD and SST was dependent on the local vertical thermal structure
and surface wave states. In the zone with a local seasonal thermocline and relatively small
surface waves, the mixing induced by WOM can make the seasonal thermocline disappear,
but its influencing depth is shallow. Thus, the MLD displayed as the depth of the main
mixing layer bottom, and a slight SST cooling, was exhibited.

On the aspect of currents in the upper ocean driven by typhoon winds, it was found
that wave-induced mixing weakened current velocity and shear strength of the upper mix-
ing layer. The relative importance of current shear and WOM for turbulence productions
differed at different regions. In the upper area of the mixing layer, WOM played a dominant
role, i.e., Pw/Ps > 1, whereas the current shear was comparable to or little greater than the
wave orbital motion at the depth near the base of the mixing layer. Furthermore, ocean
current shear and WOM-induced turbulence productions changed quickly in the upper
area of the mixing layer at different time stages during Megi.

Our study provides a suggestive insight for impacts of mixing induced by WB and
WOM on the upper ocean (including at different spatial regions and at different time stages)
under the condition of typhoon Megi (2010) in SCS. However, there are a variety of special
geographic locations and complex topography in SCS, and various scales of motion are
active, e.g., large-scale circulation, mesoscale eddies, and internal tides. In our present work,
we do not consider the interactions between these different scales motions or surface waves-
induced mixing. Moreover, only one typhoon case was selected to be studied in this paper,
and this typhoon moved slowly in SCS, which provided the upper ocean enough time
to respond to the typhoon forcing [41]. Typhoon processes with different characteristics
cause different ocean responses. For example, a typhoon with sudden path change can
make the oceanic responses much more remarkable than the one moving straight [42].
Furthermore, typhoons moving in different oceanic regions, e.g., continental shelves or
the open ocean, have quite different impacts on the upper ocean [43,44]. Therefore, the
effects of wave-induced mixing on the upper ocean under TCs with different natures need
to be investigated more. In future work, the surface waves-induced mixing under the
modulation by the complex background in SCS, and more case studies based on more
reliable and complete observations of atmosphere, ocean, and waves, are required.
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