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Abstract: In non-terrestrial networks, where low Earth orbit satellites and user equipment move
relative to each other, line-of-sight tracking and adapting to channel state variations due to endpoint
movements are a major challenge. Therefore, continuous line-of-sight estimation and channel impair-
ment compensation are crucial for user equipment to access a satellite and maintain connectivity. In
this paper, we propose a framework based on actor-critic reinforcement learning for traffic scheduling
in non-terrestrial networks scenario where the channel state is non-stationary due to the variability
of the line of sight, which depends on the current satellite elevation. We deploy the framework
as an agent in a multipath routing scheme where the user equipment can access more than one
satellite simultaneously to improve link reliability and throughput. We investigate how the agent
schedules traffic in multiple satellite links by adopting policies that are evaluated by an actor-critic
reinforcement learning approach. The agent continuously trains its model based on variations in
satellite elevation angles, handovers, and relative line-of-sight probabilities. We compare the agent’s
retraining time with the satellite visibility intervals to investigate the effectiveness of the agent’s
learning rate. We carry out performance analysis while considering the dense urban area of Paris,
where high-rise buildings significantly affect the line of sight. The simulation results show how the
learning agent selects the scheduling policy when it is connected to a pair of satellites. The results
also show that the retraining time of the learning agent is up to 0.1 times the satellite visibility time at
given elevations, which guarantees efficient use of satellite visibility.

Keywords: non-terrestrial networks; satellites; link prediction; reinforcement learning; actor-critic;
multipath

1. Introduction

Non-Terrestrial Networks (NTNs), including Low Earth Orbit (LEO) satellite constella-
tions, Unmanned Aerial Systems (UASs), and High Altitude Platforms (HAPs), have been
identified as promising technologies to provide ubiquitous connectivity [1] in the future
generation Internet. For this reason, the Third-Generation Partnership Project (3GPP) [2]
has included NTNs among the supporting technologies for the extension of the terrestrial
fifth generation (5G) into the sixth-generation (6G) mobile networks. NTNs can be exploited
to meet the requirements of emerging technologies, such as ubiquitous artificial intelligence
(AI) and the Industrial IoT (IIoT), for application use cases such as remote monitoring,
goods delivery, connected autonomous vehicles (CAVs), and high-speed transportation
(e.g., trains or aircraft). However, the main challenge in New Radio NTN integration is the
communication between the User Equipment (UE) and the satellite, because it requires the
Line-of-Sight (LOS). In dense urban scenarios, high-rise buildings or tall infrastructures
can severely affect LOS communication due to signal blockage and reflection phenomena.
Communication in the LOS between satellites and the UE becomes even more challenging
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in scenarios where the satellite and the UE are moving relative to each other because, in
these scenarios, the LOS probability changes with the satellite elevation angle. Therefore,
continuous LOS estimation techniques are paramount for the UE to access the satellite and
maintain connectivity.

This paper proposes a Reinforcement Learning (RL)-based network function (NF) to
self-learn the selection of non-terrestrial links with Multi-Path Routing (MPR) in dense
urban scenarios. In an MPR transmission system, an original data stream is split into
sub-streams, each of which is transmitted over its own path [3]. This means that the
transmission system is characterized by multiple spatially or logically separated paths
that are aggregated for transmission [2]. This differs from using only one path at a time
while keeping the others as backups in case of link failures. The paths are distinguished by
attributes such as the source and destination Internet Protocol (IP) addresses and relative
ports. A path is identified by a series of connections from the sender to the receiver. Since
this work considers a direct link or connection between the Unmanned Aerial Vehicle (UAV)
and the satellite, the terms path and link can be used interchangeably. Transmission over
multiple paths can improve channel availability and reliability, data recovery, throughput,
path aggregation and load balancing. It can therefore improve the Quality of Service (QoS)
and Quality of Experience (QoE). Multipath transmission can support UAVs deployed
in satellite networks when there is no LOS [4]. In our scenario, the MPR allows UE with
multiple radios to set up multiple satellite links to improve reliability and data rates [3,4]
even when the performance of a single link is degraded due to LOS variations. Despite
all these advantages of multipath transmission, dynamic path selection and estimating
the required replicas for traffic protection are major challenges and require the Channel
State Information (CSI). In this work, we assume a non-stationary LOS probability due
to the continuous variation in the satellite elevation angle, as provided in [5]. In such
scenarios, a reliable LOS estimation model allows the UE to select a link or more links to
maximize an objective, such as limiting the End-to-End (E2E) loss while using minimal
bandwidth. To this end, we adopt the Actor-Critic (AC) version of RL, which guarantees
better performance with continual learning for the non-stationary LOS probability that
underlies our system. We analyze the latency of the NF agent in recovering from an abrupt
change in the LOS of one or more links. The changes in the LOS are due to the satellite
visibility period, which depends on both the satellite’s elevation angle and the latitude of
the UE.

The main contributions of our work can be summarized as follows:

• We provide a learning-based method for selecting an optimal MPR-based policy
according to the time-varying satellite elevation angle. We also provide a mechanism
for reliable estimation of the non-stationary LOS probability.

• By including MPR capabilities in our transmission policy, we allow the UE to transmit
on multiple satellite links to improve link availability and data rates and minimize
end-to-end (E2E) loss.

• The novelty in this work is that we provide a self-learning-based LOS tracking mecha-
nism that can work in scenarios with non-stationary link state transition probabilities,
which is a challenge in NTN mobile systems.

In the following part of the paper, we review the literature related to our research and
describe our system model and the architecture of the proposed AC agent. We then present
and discuss the simulation results and finally conclude the paper by setting the direction
for future research.

1.1. Related Work

In this section, we provide various techniques that have been proposed in the literature
for traffic scheduling and protection in multipath transmission systems, LOS prediction
and tracking and the application of RL in multipath traffic scheduling.
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1.1.1. Multipath Traffic Scheduling and Protection

Multipath traffic scheduling means allocating network traffic on multiple paths by
selecting the appropriate path(s) for data transmission to meet specific constraints or ser-
vice requirements. A multipath scheduling technique must take into account both traffic
protection and bandwidth preservation. However, most of the scheduling techniques
proposed in the literature do not take either into consideration. For example, the conven-
tional round-robin (RR) scheduling strategy sends data sequentially over multiple paths
and neglects path conditions. The RR scheduler has been found to perform poorly in the
Multipath Transmission Control Protocol (MP-TCP) [6]. Although the Weighted Round
Robin (WRR) scheduler is improved compared with the (RR) scheduler, the weights it as-
signs to paths are usually static, which makes it impractical under time-varying conditions
such as those in NTN networks. Similarly, the deficit round-robin (DRR) and weighted
fair queuing (WRQ) schedulers [6] do not adapt easily to dynamic channel conditions.
Path-Aware Networking (PAN) scheduling strategies consider path conditions such as the
Round-Trip Time (RTT), Packet Loss Rate (PLR) and bandwidth [7]. The RTT as used in
schedulers such as the round-trip time threshold and the lowest-RTT-first schedulers [6]
enables traffic to arrive before the expiration time [8,9], but the head-of-line blocking can
affect connections that differ greatly in latency. When PLR [9,10] is used for scheduling,
undelivered and delayed traffic is taken as lost traffic. In contrast, our proposed learning-
based scheduling system can adapt to dynamic link states and make proper path selections
and redundancy estimations.

As for traffic protection, several schemes have been proposed, such as Forward Error
Correction (FEC) and Automatic Repeat reQuest (ARQ). FEC can waste bandwidth because
of the fixed redundancy rate that does not take into account the dynamism of the network.
ARQ, on the other hand, uses retransmissions to compensate for lost traffic but can cause
network congestion [11,12] and adversely affect multimedia quality [13]. Thus, it is not
preferred for real-time traffic, especially in satellite transmission, which is characterized
by long delays. In such scenarios, FEC could provide a solution, but it introduces a
computational load on constrained devices such as UAVs. Our learning-based model, on
the other hand, provides traffic protection by using the required redundancy, depending
on the dynamic network conditions, while avoiding excessive overhead.

1.1.2. RL-Based Traffic Scheduling

Recently, there has been great interest in applying RL in transmission networks. As
a result, various RL-based models have been proposed for traffic control and scheduling.
In [14], the authors presented a scheduling framework based on RL for satisfying the
bandwidth requirements of Wi-Fi users. In [15], another scheduler using the RL model
was proposed for multipath QUIC in Wi-Fi and cellular transmissions. An AC framework
was proposed in [16] for dynamic single-user and multi-user access to multiple links in
wireless networks which avoids collisions by selecting suitable links. An RL framework was
proposed in [17] to improve data rates and mitigate E2E delay in IoT networks. The work
in [18] proposed an AC-based scheduling framework for UAV cellular integrated networks.

Inspired by this development, but different from these works, we propose a learning-
based framework that performs path selection and traffic protection by repeating traffic over
multiple links to provide redundancy. Using an AC-based algorithm, our agent searches
for a policy to select suitable satellite links in terms of LOS availability and determine how
much redundancy is required to protect traffic against channel losses due to a varying
LOS probability, which depends on the changing satellite elevation angle. Redundancy
estimation is carried out in such a way as to provide enough protection without wasting
bandwidth. Moreover, the AC algorithm used by our agent is a model-free RL algorithm
that does not require knowing in advance the model’s underlying transmission channels.
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1.1.3. LOS Prediction and Tracking

Various LOS prediction and tracking methods have also been proposed. For example,
in [19], the authors proposed a theoretical model that estimates the probability of cloud-free
LOS (CFLOS) for satellite links based on the satellite elevation and the altitude of the
ground station. Sun et al. [20] proposed a method for detecting Non-Line-of-Sight (NLOS)
using data from the Global Navigation Satellite System. In [21], the authors proposed an
empirical model to estimate the LOS probability for satellite and HAP communications.
In contrast to these physical and empirical methods, we propose an RL-based model for
non-stationary scenarios in which LEO satellites move continuously, causing their elevation
angles and consequently the LOS probability to change. Moreover, our model allows UE to
estimate the traffic scheduling policy for multiple satellites, allowing for multiple parallel
transmissions.

2. Materials and Methods
2.1. Channel Model

Figure 1 shows the reference scenario considered in this paper. We studied LOS esti-
mation and link selection in the presence of dual connectivity in NTNs with simultaneous
use of two radios, as envisioned by the 3GPP [2]. In this architecture, the LEO satellites
are equipped with the gNB Distributed Unit (DU) [22], while the Centralized Unit (CU)
is located on the ground. We considered a scenario in which the satellites and a UAV
equipped with two pieces of UEs were moving relative to each other. We made use of the
StarLink satellite system with a mass constellation of 3000 LEO satellites. The UE could
connect to two satellites simultaneously. To allow our framework to overcome energy
constraints, our AC agent ran on the Ground Control Station (GCS) of the UAV which had
enough computational resources. After computations, the GCS sent the traffic scheduling
policy to the energy-constrained UE (UAV), which only performed traffic scheduling over
the satellite links. (see Figure 1).

Figure 1. Reference scenario: a UE (UAV) accessing two satellites in an NTN in a dense
urban environment.

According to [23], a satellite in the constellation moves in a circular orbit with inclina-
tion ι at an altitude h and an orbit radius rS = rE + h, and the satellites move independently
of each other. The same authors in [23] defined

γ(θ) = cos−1((rE/rS) · cos(θ)− θ) (1)

as the central angle between the Earth station (the UE in this case) and the locus of the
trajectory points of the satellite corresponding to an elevation angle θ, with θmin ≤ θ ≤ θmax.
For any single point of the satellite’s locus, the maximum elevation angle θmax determines
the visibility time of the satellite and the distribution of the elevation angles in the visibility
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region [23]. The visibility region is defined as the smallest angle γ(θmax) for which the
satellite is visible from the UE along its whole trajectory. Therefore, given the UE latitude
φ0, the probability for a satellite in its trajectory to be visible from the UE can be determined
from the Probability Density Function (PDF) of θmax, denoted by

fΘmax (θmax) =
G(θmax)

K
·

·
(

cos(φ0 + γ(θmax))

π
√

sin2(ι)− sin2(φ0 + γ(θmax))
+

cos(φ0 − γ(θmax))

π
√

sin2(ι)− sin2(φ0 − γ(θmax))

)
(2)

where θmin ≤ θmax ≤ π
2 and

G(θmax) =
1 + (rE/rS)

2 − 2(rE/rS)cos(γ(θmax))

1− (rE/rS)cos(γ(θmax))

K =
1
π

sin−1
(

sin(φ0 + γ(θmin))

sin(ι)

)
sin−1

(
sin(φ0 − γ(θmin))

sin(ι)

)
(3)

The PDF in Equation (2) may assume different shapes according to ι, φ0 and γ(θmax),
as detailed in [23]. For space limitations, we will only account for the PDF of elevation
angles considering the points of the satellite’s trajectory in the visibility region. The authors
in [23] derived the PDF fΘ(θ) as the marginalization of the joint probability fΘ,Θmax (θ, θmax),
defined as in the following equation:

fΘ(θ) =
∫ θmax

θ
fΘ,Θmax (θ, θmax)dθmax (4)

where θmin ≤ θ ≤ θmax and

fΘ,Θmax (θ, θmax) =
G(θ)sin(γ(θ))√

cos2(γ(θmax))− cos2(γ(θ))
·

· fΘmax (θmax)∫ θmax

θmin

fΘmax (x) · cos−1
(

cos(γ(θmin))

cos(γ(x))

)
dx

.

Therefore, the satellite visibility interval from UE at a given latitude as the elevation
angle varies from θi to θj was given in [23] as

Tθi ,θj =
∫ θj

θi

2
ωS −ωEcos(ι)

cos−1
(

cos(γ(θi))

cos(γ(x))

)
fΘj(x)dx. (5)

The satellites move in different orbits at different speeds. According to 3GPP [4], the
LOS probability changes with the changing satellite elevation angle. In general, the LOS
probability increases with the elevation, reaching a maximum at Nadir (90◦) when the
satellite is above the UE if it is in the orbital plane of the satellite. In dense urban areas, the
LOS probability is lower, especially at low altitudes, because the signal is obstructed by
and reflected off of high-rise buildings. Consequently, the AC agent must learn whether
to schedule traffic transmission on any one link or on both links simultaneously (for
redundancy), according to a given QoS requirement and according to the estimate of the
LOS probability model of the two links as the satellites change their elevation angles.

In this work, for the channel model, we adopted the statistical model for mixed propa-
gation conditions provided by the International Telecommunication Union (ITU) for the
design of Earth-space land mobile telecommunications systems [5]. In this ITU recom-
mendation, a communication channel between a satellite and a UAV or any land mobile
terminal is characterized by variations in the received signal power due to shadowing
from buildings and vegetation, as well as multipath fading as a result of reflections from
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obstacles and from the ground. The ITU recommendations [5] provide a three-state Markov
chain model to characterize the behavior of the land mobile satellite channel: (1) The first
state is characterized by the presence of the LOS. This state is modeled by a Ricean fading
for unshadowed areas with high received signal power. (2) The second is the state with
no LOS due to strong shadowing and blocking from obstacles. This state is modeled with
Rayleigh fading. (3) Between these two states, there is a third state known as the transition
state, in which the multipath component power increases or decreases linearly [5]. For the
purpose of this work, we followed a more simplified Markov chain model known as the
Lutz model [24,25], which approximates the three states into two states: The first is the
lossless good state (G) with LOS, and the second is the bad state (B) with no LOS which is
characterized by shadowing, blocking and erroneous traffic reception.

We now derive the state transition probabilities according to the Lutz model. Following
the work in [26], we let

τs =

(
1− b b

g 1− g

)
be the switching matrix of the Lutz model. In this model, the time required to transmit a
bit is taken as the channel state transition unit, and b and g are the transition probabilities
from G to B and from B to G, respectively, with G denoting the good state and B denoting
the bad state.

If we let Lg and Lb denote the mean length (in meters) of the G and B states, respec-
tively, as derived in [24], and let ν be the speed in meters per second (m/s) of a moving
vehicle, and we then assume that the packets transmitted by the vehicle have a length of l
bits, with R being the bit rate in bits per second (bps), then the state time durations Db and
Dg are given by Dg = 1/b and Db = 1/g, respectively, equal to

Db =
R

ν · l Lg; Dg =
R

ν · l Lb. (6)

Then, it follows that

b = (
R

ν · l Lg)
−1; g = (

R
ν · l Lb)

−1 (7)

According to [5], Lb and Lg can be computed as follows:

LG,B = exp

(
µG,B +

σ2
G,B

2

) er f c

(
logdurmin,G,B−(µG,B+σ2

G,B)

σ
√

2

)

er f c

(
logdurmin,G,B−µG,B

σ
√

2

) (8)

where (µ, σ)G,B and durmin are the mean, standard deviation and minimum state lengths in
meters, respectively, of the channel states.

These parameters ((µ, σ)G,B and durmin) are provided in [5] for urban, suburban and
rural environments at different elevation angles and transmission frequencies as reported
in Table 1.

Table 1. Satellite link parameters for the dense urban area in France at 2.2 GHz [5].

Elevation µG,B σG,B durminG,B

20◦ 2.0042, 3.6890 1.2049, 0.9796 3.9889, 10.3114
30◦ 2.7332, 2.7582 1.1030, 1.2210 7.3174, 5.7276
45◦ 3.0639, 2.9108 1.6980, 1.2602 10.0, 6.0
60◦ 2.8135, 2.0211 1.9595, 0.6568 10.0, 1.9126
70◦ 4.2919, 2.1012 2.4703, 1.0341 118.3312, 4.8569
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For the purpose of this work, we used the parameters for an urban environment at
2.2 GHz to compute the mean lengths of the channel states Lg and Lb using Equation (7).
We then used Equation (6) to calculate the corresponding transition probabilities g and
b for our channel model as reported in Table 2. We then used these transition matrices
to create Markov link state traces for training our model. We assumed successful traffic
reception only if there was an LOS (i.e, it was in a good state). We also assumed that the
UAV received some feedback reports as described in [3], indicating the traffic reception
status and the link state.

Table 2. Satellite link state transition probabilities for the dense urban area in France at 2.2 GHz.

Elevation P(B → G) (g) P(G → B) (b)

20◦ 0.00014310 0.00047466
30◦ 0.00024460 0.00027570
45◦ 0.00020318 0.00007556
60◦ 0.00105161 0.00010797
70◦ 0.00052923 2.76683× 10−6

2.2. Problem Formulation

LOS estimation on multiple links can be formulated as a Markov decision process
(MDP). Specifically, it is modeled as a Partially Observable Markov Decision Process
(POMDP) [27] because, at any observation time, the RL agent can only observe the link(s)
it has selected. A POMDP is defined by the tuple {S ,A, P(st+∆t|st, at), rt}, where S is
the state space of the system and A denotes the action space for achieving the optimal
choice. P(st+∆t|st, at) is the probability of being in state st+∆t ∈ S after a time interval ∆t
conditioned by the action at ∈ A and the state st ∈ S , and rt is the immediate reward for
the action at that leads to the state transition from st to st+∆t. In the following, we describe
the POMDP for our problem, where we assume that the UE can select a subset of the N
available satellite links to which it is connected.

1. State space: We assumed the state of each selected channel to be a binary variable
with values in {LOS, NLOS} so that we could formally define the state of the link
n = 1 . . . N at time t as follows:

snt =

{ +1 if snt = LOS

−1 otherwise.

Each of the N links dynamically changes its state between LOS and NLOS according
to its own transition matrix Tn as defined in [28]. In our use case, we assumed that
the number of available links was N = 2 so that we could define the link state space
as the set of vectors S = {st | st = [s1t, . . . , sNt]}, which generates a state space
S = {[LOS, LOS], [LOS, NLOS], [NLOS, LOS], [NLOS, NLOS]}.

2. Actions: An action constitutes the choice of the appropriate transmission pattern (i.e., a
subset of the N links). The action space is the set of vectors
A = {at | at = [ρ1t, . . . , ρNt]}, where ρnt = 1 indicates that the nth link is selected
and it is ρnt = 0 otherwise for n = 1 . . . N. In this case study, we assumed that
we had a pair of radio interfaces (i.e., N = 2), which led to having an action space
A = {[0, 1], [1, 0], [1, 1]}.

3. Reward: The immediate reward rt is defined as a penalty to the agent and is propor-
tional to the E2E loss rate above the threshold calculated over an episode, as in the
following equation:

rt =

{ −(ψ−ϕ)
η if ψ >= ϕ

1
η otherwise.

(9)
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where ψ is the E2E loss, ϕ is the E2E loss threshold and η is the number of transmission
links used in the previous episode. The first term in the equation encourages the
use of double transmissions when there are losses, while the second term conserves
bandwidth in favorable link conditions.

2.3. Actor-Critic RL Architecture

In this part, we describe the architecture of the actor-critic algorithm. As shown
in Figure 2, the architecture of our AC learning agent model consists of three networks:
the actor πθa(st), the critic network Qθc(st, at) and the target critic network Qθtc(st, at),
parameterized by θa, θc and θtc respectively:

1. Actor: The actor explores a policy π that maps the agent’s observation of the state to
the action space A : using the mapping policy which is the function of the state:
πθa(st) : S → A. To explore the optimal policy π∗, the actor selects actions at
from the action space A and optimizes its selection policy in order to maximize the
long-term rewards. The selected action is given by

at ∼ πθa(st) (10)

The agent’s optimization goal of the long-term rewards can be represented by

π∗(at|st) = arg max
at

E
[ ∞

∑
t=0

γtrt

]
(11)

where γ is the discounting factor.
2. Critic: The critic is used to estimate the state-action value Qθc(st, at), which gives

the goodness of the action selected by the actor at time t and state st and is used to
optimize the agent’s selection policy in the direction of maximizing future rewards.

3. Target-Critic: To overcome the instability problem of the critic due to frequent updates,
we use a third network, the target-critic network, to perform the Bellman’s estimation
of the future state-action values. When the action at is taken at time t and executed
by the agent by transmitting the traffic over the network, the received feedback from
the environment is sent to the target critic to estimate the future state-action value.
The feedback includes the instant reward rt and the next state of the environment
(transmission paths). The future state-action values are estimated as follows:

Qθtc(st+∆t, at+∆t) = rt + γQθc(st+∆t, at+∆t) (12)

Figure 2. Architecture of the actor-critic learning agent.
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Updating the Networks

The estimates of the critic and target-critic networks were used to compute the Time
Difference (TD) error [29]:

δt = rt + γQθc(st+∆t, at+∆t)−Qθc(st, at) (13)

Then, the critic was updated as given below:

Q∗θc
= arg min

Qθc

(δ)2. (14)

The actor was updated by using the policy gradient. The policy gradient was computed
using the TD error as follows:

∇θa J(θa) = Eπθa
[∇θat lnπθat(st, at)δt] (15)

where ∇θa J(θa) is the policy gradient and J(θa) is the policy objective function.
The actor was then updated using the gradient descent method as follows:

θa = θa + β∇θa lnπθa(st, at)δt (16)

where β is the learning rate of the actor. Finally, we updated the target critic network by
using a soft update method:

θtc = α θtc + (1− α)θc. (17)

We designed the actor and critic networks using the TensorFlow-2 and Keras libraries
with an ADAM optimizer in a fully connected multilayer perceptron Neural Network (NN)
with the parameters given in Table 3.

Table 3. Simulation parameters.

Name Value

Number of hidden layers 3
Number of neurons for hidden layer 64

Discount factor (ξ) 0.96
Learning rate for the actor (β) 0.001
Learning rate for the critic (α) 0.005

Optimizer ADAM
UAV velocity (ν) 10 m/s
Packet length (l) 1000 bits

2.4. The Learning Process of the AC Agent

At the beginning of each transmission window, the agent using the actor network will
select the path (s) to use for transmission according to the observed channel state. It will
then transmit the traffic over the selected paths. After several rounds of transmissions,
it will receive feedback from the receiver on the loss rate over that window and the path
states determined by the reception status. The reward is then computed and sent to the
target-critic network to estimate the future state-action values. The critic network estimates
the action-state value. The TD error is then computed as the difference between the critic
and the target-critic estimates. Then, the actor and critic networks are updated using
the TD error. Finally, after several transmission windows, the target-critic network is
updated, copying the weights of the critic network. The full learning procedure is detailed
in Algorithm 1.
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Algorithm 1 The training procedure for the AC-DRL agent for traffic scheduling

1: Set to T the total length of the video to be transmitted, the number of iterations per
episode to m, and the learning rates for the actor and the critic networks to β and
α, respectively. Set the initial state to s0, the target-critic network update interval to
n = km with k positive integer, and the counter for the target-critic update j = 0. Finally,
set the parameters of the actor network, the critic network, and the target-critic network
to θ0

a , θ0
c and θ0

tc, respectively.
2: while t ≤ T do

- Select the action at ∼ πθa(st) according to the available policy;
- Set i = 0;

3: while i ≤ m do
- Transmit the video traffic in bits in each iteration by using the selected action at;

4: if i = m− 1 then
- Receive feedback from the receiver on the loss rate and the future

5: states of the paths determined by the reception status in the last iteration;
- Compute the reward rt according to (9);
- Compute the state-action value Qθc(st, at);
- Calculate the future state-action values according to Equation (12);
- Calculate the TD error according to Equation (13);
- Update the critic parameters by minimizing: δ2

t ;
- Update the actor policy according to Equation (16);
- Update the agent’s state observation: st;

6: end if
- Set i = i + 1;
- Set j = j + 1;

7: end while
8: if j = n then

- Update the target-critic network according to Equation (18);
- Set j = 0;

9: end if
10: end while

For the purpose of comparison and performance evaluation of the RL method, an
optimal traffic allocation policy was defined. This was considered optimal because we
assumed that the channel state model was known in advance. Thus, the steady state
probabilities were known accurately in each context and for all available paths.

2.5. Simulation Set-Up

We simulated UAV satellite transmission with dual connectivity, in which one UAV
could use two pieces of UEs to connect to two different satellites. Our goal was to train an
AC learning agent to estimate the LOS model of the two satellites and the optimal policy for
selecting appropriate links (transmission policy) while tracking the changes in the elevation
angles of the satellites. As pointed out earlier, the LOS probability changes according to the
elevation angle. Therefore, the learning agent must continuously track the variation of the
LOS of the two satellites as a function of the elevation angles. To this end, using a satellite
tracker (https://satellitemap.space, accessed on 11 January 2023), pairs of Starlink satellites
visible from Paris, France at a given time were selected. A satellite pair was selected that
provided clear handoff events that forced the learning agent to retrain its model. This
means that as the elevation angle of one satellite decreased and, consequently, the LOS
probability decreased, the corresponding UAV interface connected to a new visible satellite
with a higher elevation angle. Note, however, that the handoffs of the two interfaces did
not happen simultaneously, since the two radio interfaces were independent of each other.

Since the new connections had channel models different from the previous ones, the
learning agent was forced to retrain to adapt to the new environment. The selected pairs of
angles and the two handoff events are shown in Figure 3.

https://satellitemap.space
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Figure 3. Elevation angles of the pair of satellites connected to the UE in different contexts.

Figure 4 shows the probability mass function of the satellite visibility at given eleva-
tion angles, evaluated using Equation (4), compared with the empirical values achieved
from the real dataset collected by the satellite tracker during a window of 15 min (the
maximum allowed).

Figure 4. Probability that a satellite is visible from UE at given satellite elevation angles in Paris.

The ITU recommendations in [5] provide the link parameters required to compute
the state transition probabilities at different elevation angles, propagation frequencies and
environments. These parameters are reported in Table 1 for each state: the good state (G)
and bad state (B). These include the mean (µ), variance (σ) and minimum duration of each
state in the given propagation environment. For the purpose of this work, we used the
parameters for the dense urban scenario at 2.2 GHz and elevation angles of 45◦, 60◦ and 70◦,
at which the satellites were visible from Paris, France, which was our reference scenario.
By applying these parameters in Equations (6)–(8), we computed the corresponding state
transition probabilities, as reported in Table 2. Other parameters used for the computation
included the velocity of the mobile UE (ν = 10 m/s) and the packet length (l = 1000 bits).

Using the selected pairs of angles, shown in Table 4, and the computed transition
probabilities, we constructed state transition matrices for each satellite and for each pair
of elevation angles, obtaining a total of six transitions or contexts (i.e., in each context or
range of elevation angles, we transitioned to a different channel model). The duration of
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the context was approximated to the minimum satellite visibility time. It is important to
note that we did not draw any assumptions about the physical layer schemes or channel
loss models because it was not mandatory for the training of the AC agent, according to
the objective function that was designed. We then trained our AC agent using the channel
traces of LOS and NLOS created above. The simulated AC networks consisted of 3 fully
connected layers with 64 neurons on each layer. The output layer of the actor had a softmax
activation function because it had to give the probabilites of selecting each channel, while
the output layer of the critic networks had no activation functions because they gave only
a single value: the state-action value. The other simulation parameters are reported in
Table 3. We ran the simulation for 6 million iterations, with 1 million iterations for each
context. On each iteration or transmission event, we considered it to have good reception
only if the reported channel state was good or in the LOS. The E2E loss was computed after
an episode of 1000 iterations, and the results are reported in the following sections.

Table 4. Satellite elevation angles in each context.

Context Satellite 1 Satellite 2

1 70◦ 45◦

2 60◦ 45◦

3 45◦ 60◦ (handoff)
4 60◦ (handoff) 60◦

5 70◦ 60◦

6 70◦ 70◦

3. Results

We now provide the simulation results in terms of the following aspects: learning rate,
path selection, E2E loss rate and bandwidth utilization.

3.1. The AC Agent Learning Performance

Figure 5 shows the total discounted rewards obtained by the agent in a set of contexts
represented by different colors. In this figure, we present the median and the 25th and
75th percentiles of rewards. The smooth semi-plateaus within the colored stripes show the
steady states that the model achieved at convergence within each context.

Figure 5. Total discounted rewards achieved at different elevation angles.
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3.2. Path Selection

Figure 6 shows the categorical distribution achieved by the RL agent for the trans-
mission with satellite 1 (sat1), satellite 2 (sat2) and both satellites (sat1,2) in the different
contexts, corresponding to the probabilities P(1), P(2) and P(1, 2), respectively. These
are the path selection probabilities achieved by both the AC agent and the optimal policy
after convergence.

Figure 6. Categorical distribution for multi-link scheduling with AC vs. optimal scheduling at
different elevation angle PLRs! (PLRs!) (good = 0, bad = 1).

3.3. E2E Loss Rate

Figure 7 reports the E2E loss rate achieved by our AC agent, the optimal policy and a
round-robin scheduling scheme that does not use redundancy and transmits using only a
single path in a round-robin fashion without considering the channel conditions of each
path. In our simulations, the E2E loss event κ occurred when all the transmitted bit(s) were
lost; that is, they could not be recovered on any of the paths. The E2E loss rate in terms of
the Bit Error Rate (BER) was calculated as follows:

ψ =
∑m

i=1 κ

∑m
i=1 η

(18)

where ψ is the E2E loss rate in terms of the BER, κ is the loss event at a given iteration (κ = 1
if all sent bits are lost and κ = 0 otherwise), m is the number of iterations in a window
(episode) and η is the number of bits transmitted in each iteration, which is equal to the
number of links used in each iteration because each bit was transmitted over a unique link.
The numerical values of the average E2E loss rates are reported in Table 5.

Table 5. E2E loss rate and bandwidth utilization.

Model E2E Loss Rate (BER) Bandwidth (Mbps)

Actor-critic 5.12% 2.1
Optimal policy 4% 2.1
Round-robin 8% 1.5
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Figure 7. E2E Loss rates.

3.4. Bandwidth Utilization

Figure 8 shows the bandwidth used by our AC agent and the optimal policy in
different contexts. On average, both had a repetition factor of 1.4, corresponding to a
2.1 Mbps average throughput. In our simulation, we used 1.5 Mbps as the source rate. On
the other hand, the RR system consumed the least bandwidth, with an average bandwidth
of 1.5 Mbps (omitted in the figure because it always transmitted with one bit without
repetitions). The numerical results are presented in Table 5.

Figure 8. Bandwidth utilization.

4. Discussion

We now discuss in detail the simulation results presented above and provide a proof of
concept for how our AC agent works and how it can handle a non-stationary channel model
by retraining its model either after moderate changes in the elevation angle or after abrupt
changes (e.g., due to handoffs). We do not wish to elaborate on how the satellite sequences
were selected to perform the handoffs. This could instead be the subject of future studies
to determine an optimal strategy for the handoffs that moderates the abrupt changes and
shortens the learning periods. We evaluated the performance of our AC agent in terms
of the following aspects: retraining performance, path selection, E2E loss reduction and
bandwidth utilization. We also compared the performance of our agent with the optimal
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policy and an RR system that transmitted with only a single path in a round-robin fashion
with no regard to the path conditions.

4.1. Learning Performance

Figure 5 shows the total discounted rewards obtained by the agent in a set of contexts
represented by different colors. As explained above, in each context, we had different pairs
of satellite elevation angles and, consequently, different channel models characterized by
different channel state transition probabilities. As a result, in each context, the agent had
to retrain to track the change in the channel model, as shown by the different discounted
rewards that the agent obtained in each context. In the figure, the smooth semi-plateaus
within the colored stripes show the steady states the model reached within the context. In
contexts 2, 3 and 4, the rewards were lower in relation to the other contexts because the
satellites were at low elevation angles, forcing the agent to struggle when compensating for
the loss due to low LOS probabilities and high loss probabilities. Note that the reward was
proportional to the lost traffic in each episode. On the other hand, in contexts 5 and 6, the
satellite elevation angles were relatively high. Thus, the channel conditions were favorable,
and the agent could easily reach convergence with high rewards. These results show that
our AC agent can dynamically detect the change in a satellite’s elevation angle that triggers
the change in LOS probability and schedule traffic appropriately to overcome the loss. The
relative motions of each satellite are shown in Figure 3, which similar to Figure 5 shows the
sequence of contexts, the relative elevation angles and two abrupt handoff events. Figure 5
also shows the average duration it took the agent to retrain the NN model after a change in
elevation angle, juxtaposed with the relative context duration. As mentioned earlier, this
is of the utmost importance to optimally utilize the satellite visibility time. It was found
that the RL agent required on average 2000 iterations to update the NN parameters and
reach a local steady state, which is equivalent to 0.1× the satellite visibility time at a given
elevation angle, guaranteeing efficient use of satellite visibility.

4.2. Path Selection Performance

Figure 6 shows the categorical distribution achieved by the RL agent at convergence
in each context. These are the probabilities P(1), P(2) and P(1, 2) for transmitting with
satellite 1 (sat1), satellite 2 (sat2) and both satellites (sat1,2), respectively. According to [28],
the higher the elevation angle, the higher the LOS probability, since there are fewer obstacles
such as buildings at high elevation angles than at low elevation angles. It can be seen that
our agent can recognize this pattern in each context and transmit more on a link with a
higher elevation angle (i.e., with a higher LOS probability). In the second context (60◦ and
45◦), the agent transmitted more on satellite link 1, which was at 60◦, than on satellite link
2, which was at a lower elevation of 45◦. In the scenario where both satellites had the same
elevation angle, as in contexts 4 (60◦ and 60◦) and 7 (70◦ and 70◦), the agent distributed
traffic equally between the two links. Another observation is that the agent prefers double
transmissions when both satellites are at lower altitudes (i.e., it uses replicas to compensate
for the loss due to low LOS probabilities at low elevations). This was evident in context 2
(60◦ and 45◦) and context 3 (45◦ and 60◦). On the other hand, when all links were favorable,
as in context 6 (70◦ and 70◦), the model transmitted with single links (without replicas)
to save bandwidth. The same happened when the two satellites differed significantly in
their elevation angles, as in context 1 and context 5. Figure 6 also shows the comparison
between the categorical distributions achieved by the AC and those achieved by the optimal
policy, where the system knew the channel model in advance and therefore had a relatively
optimal prediction. It can be seen that our AC agent achieved a quasi-optimal scheduling
policy in all contexts, even under non-stationary conditions without a priori knowledge of
the channel model.
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4.3. Tracking the E2E Loss Threshold

The agent’s main task is to select an appropriate subset of the available connections to
avoid E2E losses. Since we transmitted the information traffic together with replicas, the
data were considered lost if both the information bits and their replicas were lost. The E2E
loss threshold was set to 5%. As explained earlier, we set the loss probability for LOS to
0% and that for noLOS to 100%. The results presented in Figure 7 show the E2E loss rate
achieved by our AC agent, the optimal policy and an RR scheduling scheme that did not
use redundancy and transmitted only over a single path in a round-robin fashion without
considering the channel conditions of each path. It is shown that our AC agent was able to
track the predefined E2E loss threshold of 5% and achieve an average loss rate of 5.12%,
which was very close to the loss rate of 4% achieved by the optimal policy. It outperformed
the RR system, which had a loss rate of 8%. In each context, the agent exhibited the typical
learning behavior of an RL model. At the beginning of a context, the loss was high because
the model was still learning and searching for the optimal scheduling pattern according
to the channel conditions of that context. However, after convergence, the loss decreased
toward the end of the context until a new context began. As can be seen from Figure 7, in
contexts 2, 3 and 4 with satellite elevation angles of 45◦ and 60◦, the agent experienced
higher losses compared with contexts 1, 5 and 6 with elevation angles of 60◦ and 70◦,
despite the small difference in elevation angles. This was because the LOS probabilities
were quite low at 45◦ and 60◦ compared with the probabilities at an elevation angle of 70◦.
For example, while the minimum LOS duration at 70◦ was 118, it was 10 at 60◦ and 45◦

(see Table 1). According to Equation (8), this affects both the LOS probability and the loss
probability. For this reason, the losses in contexts 2, 3 and 4 were high, while the losses in
contexts 5 and 6 were well below the threshold in all models.

4.4. Bandwidth Utilization

Figure 8 shows the bandwidth used by our AC agent compared to the optimal policy
in different contexts. To make good use of the bandwidth, the agent must determine
appropriately when to use replicas to compensate for losses without wasting bandwidth. As
mentioned earlier, too much redundancy can waste bandwidth, while too little redundancy
means less protection. The results show that the performance of the AC agent was similar
to that of the optimal policy in terms of bandwidth utilization. Both policies traded the
bandwidth to overcome high loss rates in high-loss contexts (contexts 2 and 3) and use little
bandwidth in contexts with relatively favorable conditions in terms of loss rate (contexts
1, 4, 5 and 6). On average, both had a repetition factor of 1.4, which corresponded to
an average redundancy of 40% (i.e., 40% of the traffic was used to protect information
traffic). The repetition factor of 1.4 corresponded to an average throughput of 2.1 Mbps,
with 1.5 Mbps as the average source rate. On the other hand, the RR system consumed the
least bandwidth, with an average bandwidth of 1.5 Mbps (omitted in the figure because
it always transmits with one bit without repetitions), but it did not reach the E2E loss
threshold (see Figure 7) because it did not use redundancy.

5. Conclusions

In this work, we proposed an actor-critic RL agent for LOS estimation in non-stationary
conditions deployed in multi-link NTNs in dense urban environments. The simulation
results showed that the learning agent had a performance similar to an optimal policy which
had total knowledge of the channel model in estimating the LOS probabilities of multiple
satellite links, selecting the suitable scheduling policy for the selection of the links and
tracking the predefined E2E loss threshold and bandwidth utilization. Multiple links were
used to increase the resilience to E2E loss, reliability, data rate and throughput and thus
improve the QoS. In this work, we outlined the handoffs between LEO satellites with real
traces from the Starlink constellation that lead to an abrupt change in the elevation angles
with respect to the user equipment. In future research, we plan to deepen the analysis of the
handoff policies and investigate the integration of both ground and terrestrial segments.
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