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Abstract: Airborne hyperspectral imaging plays an increasingly important role in environmental
monitoring. However, due to the limitations of the acquisition conditions, there are uneven radiation
and chromatic aberrations in the mosaic data. Accurate preprocessing of the original data is the
premise of qualitative and quantitative remote sensing. In this study, we proposed a comprehensive
radiation distortion correction method that integrates radiation attenuation difference correction,
topographic correction, and multi-strip images consistency adjustment (RA-TOC-CA). First, the
radiation attenuation equation was constructed by combining the viewing geometry, terrain, and the
elevation difference between the UAV and the ground to eliminate the radiation attenuation difference
of pixels acquired at the different instantaneous field of view (IFOV). Second, an improved kernel-
driven BRDF model was built combining terrain information and illumination-viewing (flight attitude
and sensor IFOV) geometry to eliminate the radiation unevenness and BRDF distortion caused by
topography. Third, adjusting the reflectance of multi-strip images according to the homonymous
points’ reflectance of adjacent strips should be equal, eliminating the radiation differences between
multiple strips. Based on multi-strip airborne hyperspectral images collected in the Shaanxi province
of China, the correction results of the RA-TOC-CA method were compared with those of the SCS+C
and Minnaert+SCS methods regarding various evaluation criteria. The results showed that SCS+C
and Minnaert+SCS can reduce the topographic effect but cannot eliminate the reflectance difference
at the edges of adjacent images, and SCS+C overcorrects the reflectance. RA-TOC-CA weakened
the topographic effects and brightness gradient, which was physically stable and generalizable.
Compared with previous studies, RA-TOC-CA provided a complete radiation distortion correction
method for airborne hyperspectral images and had a solid theoretical basis. This study introduces an
effective method for radiation distortion correction of airborne hyperspectral images and provides
technical support for large-scale applications of hyperspectral images.

Keywords: airborne hyperspectral; radiation distortion correction; radiation attenuation; topo-
graphic correction

1. Introduction

Airborne hyperspectral remote sensing has played an increasingly important role in
the fields of land use classification [1–3], estimation of soil heavy metal content [4–7], and
plant diversity research [8–10]. However, hyperspectral imaging is affected by several
factors, resulting in uneven radiation and brightness gradient between multi-strip images,
which destroys the radiometric consistency of the mosaicked image [11–14]. The reasons
for this radiation distortion mainly include the following three aspects.

First, the radiation attenuation difference of received energy at the different instan-
taneous field of view (IFOV) is one of the main reasons for radiation distortion [15,16].
For a wide field of view (FOV), the scanning angle gradually increases from the scanning
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center to both sides and the radiation transmission path also gradually increases. Due to
the atmospheric attenuation, the radiance of the same ground object under different IFOV
is different. Horvath et al. [17] and Stokkom et al. [18] considered the sensor altitude and
ground elevation when studying the radiation path difference. However, for the airborne
hyperspectral sensors, changes in the sensor attitude and IFOV also cause radiation path
differences. Tian et al. [16] assumed flat topography, uniform distribution of ground objects,
and sufficient length of strips when eliminating the radiation attenuation difference. This
method is suitable for flat terrain. For areas with large topographic relief, the terrain
information must be considered when constructing the correction model for the radiation
attenuation difference.

Second, the redistribution of the incoming irradiance and the variations of the bidi-
rectional reflectance distribution function (BRDF) caused by topography are also causes
of radiation distortion [19,20]. The topography results in the sunny slope receiving more
energy than the shady slope, and the sun-facing pixels usually have higher reflectance than
those facing in the opposite direction [21]. The topography also causes the geometry of the
sun–target sensor to change, resulting in a bidirectional reflectance distribution different
from that on a flat terrain [19,22]. Therefore, it is necessary to eliminate or at least reduce
topographic effects before the quantitative application of hyperspectral images. Many em-
pirical or semi-empirical topographic correction methods have been reported in previous
studies [23–25]. These methods adjust the reflectance based on the cosine of the local solar
incidence angle (cos(i)). They only consider the illumination conditions and ignore the
viewing geometry, BRDF effect, and often overcorrection for low illumination areas [26].
Physical topographic correction methods based on the radiative transfer model have also
been developed [27,28]. These methods are based on the radiative transfer process with
the advantage of having a physical meaning. However, building a physical model requires
detailed surface feature parameters, which is a time-consuming process and not suitable
for large-scale applications.

The kernel-driven BRDF method describes the complex scattering mechanisms of
land surfaces through the linear combination of an isotropic kernel, a geometric-optical
kernel, and a volumetric scattering kernel [29–31]. Wang et al. [32] proposed a “two-step”
correction scheme based on Ross–Li model (RLM) for multiple-flightline aerial images.
First, the local RLM coefficients and local correction factors (K1) for each flightline were
derived from the original reflectance, and then, the global RLM coefficients and global
correction factors (K2) for all flightlines were derived based on the simulated directional-to-
nadir reflectance. Schläpfer et al. [14] presented a surface-cover-dependent BRDF effects
correction method (BREFCOR), which used a continuous index based on the bottom-of-
atmosphere reflectance to turn the Ross–Thick Li–Sparse BRDF model. The calibrated model
was then used to correct for observation-angle-dependent anisotropy. This model can not
only describe the BRDF shape of ground objects but also eliminate the topography effect by
incorporating topographical factors into the construction of kernel functions. Jia et al. [33]
proposed a method to correct the BRDF effects of airborne hyperspectral imagery over
forested areas overlying rugged topography (RT-BRDF). The local viewing and illumination
geometry of each pixel was calculated based on the characteristics of the airborne scanner
and the local topography, and the Ross-Thick-Maignan and Li-Transit-Reciprocal kernels of
the BRDF model were constructed using these two variables. Queally et al. [34] used the
SCS+C model for topographic correction and then built the flexible bidirectional reflectance
distribution function based on the widely used kernel method.

Third, the difference in acquisition conditions between multi-strip images is also a
factor for radiation distortion [35,36]. For a single-strip image, only the above two factors
are usually eliminated. However, hyperspectral images in the study area are usually
mosaicked from multiple strips. Due to the differences in acquisition time and weather
conditions, there may still be radiation differences at the edges of adjacent images after
topographic correction, resulting in discontinuous results. Therefore, it is necessary to
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make consistent adjustments to all the images as the homonymous points’ reflectance of
adjacent strips should be equal.

The objective of this paper is to develop a comprehensive radiation distortion cor-
rection method, which includes three steps: (1) construction of the radiation attenuation
equation to eliminate the radiation attenuation difference between different IFOV; (2) com-
bining illumination-viewing geometry and terrain to build a kernel-driven BRDF model
to eliminate the topography effect; and (3) adjusting the reflectance difference between
multi-strip images to obtain a seamless mosaic of hyperspectral data. We evaluated the
newly developed radiation distortion correction method by visual inspection and quan-
titative assessment. This study calculates the radiation transmission path by combining
the viewing geometry, terrain, and the elevation difference between the UAV and the
ground and overcoming the deficiency of previous studies, which could only eliminate the
radiation attenuation difference over flat terrain. This study uses a kernel-driven BRDF
model to weaken the topographic effect, avoid the overcorrection of the empirical methods
and many parameters required by the physical methods, and adjust the consistency to
further eliminate the differences between multi-strips. It has a complete theoretical basis
and physical mechanism.

2. Study Area and Data Overview
2.1. Study Area

The study area (110◦18′22′′E, 39◦18′01′′N) is located in the northern part of Shaanxi
Province in China (Figure 1), which belongs to the arid and semi-arid plateau continental
climate zone with an average elevation of 1207 m. The average annual temperature is 6.2 ◦C,
while the highest and lowest temperatures recorded are 36.6 ◦C and −31.4 ◦C, respectively.
The annual precipitation is between 300 mm and 400 mm. The main vegetation types are
steppe, deciduous broad-leaved shrubs, and sandy vegetation. The main plant varieties
include Populus L., Pinus tabuliformis Carr., Caragana korshinskii Kom., Hippophae rhamnoides
L., and Medicago sativa L.
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2.2. Remote Sensing Data

The airborne hyperspectral images were acquired on 19 July 2020 and 16 August
2021 using Wind4 (DJI, Shenzhen, China) equipped with an integrated sensor system.
The properties of multi-strip airborne hyperspectral images are listed in Table 1. In this
study, the data from 19 July 2020 were utilized to construct the RA-TOC-CA method in
Section 3, and the results were analyzed in Section 4. Then, the algorithm was applied to
the data on 16 August 2021 to verify the generalizability of the RA-TOC-CA method, with
the results shown in Section 4.5. The integrated sensor system consisted of an imaging
spectrometer SPECIM FX10 (SPECIM, Oulu, Finland), a control system (DPU), as well as a
Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS). The DPU
can be used to set flight plans, acquisition frequency, exposure time, and other parameters.
The GNSS and INS can record the position and attitude of the imaging spectrometer. The
SPECIM FX10 can obtain hyperspectral data with a high signal-to-noise ratio, and it has
been commonly used in laboratories and on airborne platforms to collect hyperspectral
images. The detailed technical parameters are given in Table 2. The Phantom 4 RTK
(DJI, Shenzhen, China) was used to collect digital photos and these photos were used in
PhotoScan Pro 1.4.5 (Agisoft, St. Petersburg, Russia) to generate the digital orthophoto
map (DOM) and digital elevation model (DEM). The slope and aspect were generated
by ArcGIS 10.4.1 (ESRI, Redlands, FL, USA) based on the DEM. Radiometric calibration
and geometric correction of hyperspectral images were performed using CaliGeoPro 2.2.4
(SPECIM, Oulu, Finland).

Table 1. Properties of multi-strip airborne hyperspectral images.

Flight Date Strip Name Time Interval Solar Zenith
Angle (◦)

Solar Azimuth
Angle (◦)

19 July 2020

a1 9:46–9:51 AM 41.61–42.52 102.64–103.64
a2 9:51–9:57 AM 40.54–41.44 103.82–104.85
a3 12:17–12:23 PM 19.28–19.57 160.57–163.79
a4 12:23–12:29 PM 19.01–19.24 164.39–167.74

16 August 2021

b1 10:09–10:14 AM 41.51–42.26 116.52–117.64
b2 10:14–10:19 AM 40.68–41.42 117.78–118.92
b3 11:04–11:09 AM 32.91–33.52 133.04–134.62
b4 12:28–12:33 PM 25.71–25.82 172.07–174.49
b5 12:33–12:38 PM 25.64–25.71 174.78–177.22

Table 2. Hyperspectral imager parameters.

Main Technical Details Data

Spectral range (nm) 400–1000
Spectral resolution (nm) 2.7

Bands 224
Samples 1024

Frame frequency (Hz) <300
FOV (◦) 38

3. Methodology

For the main causes of radiation distortion, the method proposed in this paper includes
the following three steps: (i) radiation attenuation difference correction, unifying the
radiation transmission path of all pixels as the average elevation difference between the
UAV and the ground to eliminate the radiation attenuation difference; (ii) topographic
correction, combine terrain information, illumination-viewing (sensor’s attitude and IFOV)
geometry to construct an improved kernel-driven BRDF model to eliminate the uneven
illumination and BRDF effect caused by topography; (iii) consistency adjustment of the
multi-strip images, adjust the reflectance according to the fact that homonymous points’
reflectance of adjacent strips should be equal, generate a mosaic result with high radiometric



Remote Sens. 2023, 15, 1828 5 of 23

consistency. Figure 2 shows the flowchart of radiation distortion correction for airborne
hyperspectral images.
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3.1. Radiation Attenuation Difference Correction

The IFOV of the push broom imaging spectrometer increases from the scanning center
point to the sides, which changes the radiation transmission path and leads to radiation
attenuation. According to Bougner’s theorem [37], the radiance after radiation attenuation
at the IFOV of θi is calculated by:

Ei(λ) = E0(λ)e−
∫ Hi

0 K(λ,h)dh (1)

where λ is the wavelength, E0(λ) is the radiance of the ground object, Hi is the radi-
ation transmission path, K(λ, h) is the radiation attenuation coefficient, and dh is the
atmospheric thickness.

The radiation attenuation coefficient represents the ratio of radiation energy attenua-
tion over the unit distance, and it is calculated by:

K(λ, h) = −dE(λ)/(E(λ) ∗ dh) (2)

where dE(λ) is the radiation attenuation through dh, and E(λ) is the radiation intensity.
Airborne hyperspectral image acquisition is generally performed in a clear and cloud-

less environment at a low flight altitude. Thus, it can be assumed that the radiation
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attenuation coefficient is related only to wavelength and atmospheric characteristics, and
independent of the pixel’s location [16]. Equation (1) can be simplified as follows:

Ei(λ) = E0(λ)e−K(λ)∗Hi (3)

The radiation transmission path is a function of the viewing geometry, terrain informa-
tion (slope and aspect), and the elevation difference between the UAV and the ground, and
it can be calculated by using Equation (4). The schematic diagram of the viewing geometry
is shown in Figure 3.

Hi =
4H

cos(iv)
(4)

cos(iv) = cos(θv) cos(α) + sin(θv) sin(α) cos(β− ϕv) (5)

cos(θv) = cos(θr + θi) cos
(
θp
)

(6)

ϕv = ϕh ± 180◦ − atan
(
tan(θr + θi)/ sin

(
θp
))

(7)

where 4H is the elevation difference between the UAV and the ground, iv is the local
view zenith angle, α is the slope, β is the aspect, θv is the view zenith angle, ϕv is the
view azimuth angle, θr is the roll angle, θi is the IFOV, θp is the pitch angle, and ϕh is the
heading angle.
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According to the assumption of radiation uniformity, the mean ground radiance
of each column is equal. Equation (8) represents that the mean ground radiance of the
scanning center point was equal to that of other columns.

1
m

m

∑
j=1

Eij(λ)

e−K(λ)Hij
=

1
m

m

∑
j=1

E⊥j(λ)

e−K(λ)H⊥j
(8)

where m is the number of rows, Eij(λ) is the radiance of row j in column i, Hij is the
radiation transmission path of row j in column i, E⊥j(λ) is the radiance of row j in the
scanning center point, and H⊥j is the radiation transmission path of row j in the scanning
center point.
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To avoid the errors caused by the irregular distribution of ground objects and the
phenomenon of “the same thing with different radiance”, we constructed the radiance
equation group of the scanning center point and other columns and calculated the radiation
attenuation coefficient using the least-squares method. Once the radiation attenuation
coefficient was obtained, Equation (9) was used to unify the radiation transmission path of
all pixels as the average elevation difference between the UAV and the ground to complete
the correction of the radiation attenuation difference.

Ec(λ) = Ei(λ)
e−K(λ)∗4Ha

e−K(λ)∗Hi
(9)

where Ec(λ) is the corrected radiance, and4Ha is the average elevation difference between
the UAV and the ground.

3.2. Topographic Correction

After the radiation attenuation difference correction, the atmospheric correction was
performed using the moderate resolution atmospheric transmission (MODTRAN) 5 model
to convert the radiance to reflectance. The Mid-Latitude Summer atmospheric model and
Rural aerosol model were selected according to the flight date and geographic location. The
meteorological parameters were obtained from the local meteorological station. The sensor
altitude and ground elevation were obtained from the INS data and DEM, respectively. We,
then, used a kernel-driven BRDF approach to eliminate the uneven illumination and BRDF
effect caused by topography.

3.2.1. Model Construction and Kernel Selection

The kernel-driven BRDF model decomposes the reflectance into a linear combination
of an isotropic kernel, a geometric-optical kernel, and a volumetric scattering kernel. The
isotropic kernel represents the radiation fraction without angular dependence, and the
geometric-optical kernel describes the geometric structures of the land surface that are
not related to wavelength, while the volumetric scattering kernel describes the volumetric
scattering effects, which are dependent on the wavelength, with longer wavelengths having
stronger scattering power [38,39]. The generic kernel-driven BRDF model is as follows:

ρ(θv, θs, ϕv, ϕs, α, β, c, λ)
= fiso(c, λ) + fvol(c, λ)kvol(θv, θs, ϕv, ϕs, α, β, c, λ)
+ fgeo(c, λ)kgeo(θv, θs, ϕv, ϕs, α, β, c, λ)

(10)

where fiso is the isotropic scattering coefficient, kvol and fvol are the volumetric scattering
kernel and coefficient, and kgeo and fgeo are the geometric-optical kernel and coefficient. θv
is the view zenith angle, θs is the solar zenith angle, ϕv is the view azimuth angle, ϕs is
the solar azimuth angle, α is the slope, β is the aspect, c is the land-cover type, and λ is
the wavelength.

This study used the Li-Transit-Reciprocal (LTR) kernel [40,41] as geometric-optical
kernel and the hotspot-revised Ross–Thick–Maignan (RTM) kernel [33,42] as volumetric
scattering kernel. The objective of this paper was to construct kernel functions combining
terrain, illumination angle, flight attitude, and sensor IFOV. We mainly introduce using
Equations (6) and (7) to calculate the view zenith angle and the view azimuth angle.

kvol =

(
π
2 − ξ

)
cos(ξ) + sin(ξ)

cos(is) + cos(iv)

(
1 +

(
1 +

ξ

ξ0

)−1
)
− π

4
(11)

cos(ξ) = cos(is) cos(iv) + sin(is) sin(iv) cos(ϕs − ϕv) (12)

cos(is) = cos(θs) cos(α) + sin(θs) sin(α) cos(β− ϕs) (13)
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kgeo =

{
kLSR, B ≤ 2

kLDR = 2
B kLSR B > 2

(14)

kLSR = O− sec
(
i′s
)
− sec

(
i′v
)
+

1
2
(
1 + cos

(
ξ ′
))

sec
(
i′s
)

sec
(
i′v
)

(15)

B = sec
(
i′s
)
+ sec

(
i′v
)
−O (16)

O =
1
π
(t− sin(t) cos(t))

(
sec
(
i′s
)
+ sec

(
i′v
))

(17)

cos(t) =
h
b

√
D2 + (tan(i′s) tan(i′v) sin(ϕs − ϕv))

2

sec(i′s) + sec(i′v)
(18)

D =
√

tan2(i′s) + tan2(i′v)− 2 tan(i′s) tan(i′v) cos(ϕs − ϕv) (19)

cos
(
ξ ′
)
= cos

(
i′s
)

cos
(
i′v
)
+ sin

(
i′s
)

sin
(
i′v
)

cos(ϕs − ϕv) (20)

i′s = tan−1(
b
r

tan(is)) (21)

i′v = tan−1(
b
r

tan(iv)) (22)

where is is the local solar zenith angle, iv is the local view zenith angle, ϕs is the solar
azimuth angle, ϕv is the view azimuth angle, θs is the solar zenith angle, α is the slope,
and β is the aspect. A constant value of ξ0 = 1.5◦ is used to indicate the half-width of the
hotspot for most of the targets [42]. The relative canopy height h/b is set to 2 for trees and
shrubs, and 1 for grass. The relative canopy shape b/r is set to 1 for all land-cover types.

3.2.2. Kernel Coefficients Determination

Accurate calculation of kernel coefficients is a key step in building the BRDF model.
Previous studies demonstrated that terrestrial reflectance anisotropy varies with the land
cover type [13,43–45], and the estimation of coefficients based on the stratification of the
surface is a good choice [39,46]. Therefore, we used the random forest (RF) method to
classify the whole set of images into four types: herb, shrub, tree, and bare soil and
established a classification-based BRDF model.

The stratified sampling method [33] was used to obtain the number of pixels to fit the
kernel coefficients, and the specific steps followed were as follows:

(1) n took any values between 1000 and 10,000, with a step length of 100 pixels
(i.e., 1000, 1100, . . . , 9900, 10,000); for each land type, calculated the cos(i) of all pixels
and arranged them in ascending order, extracted n pixels at equal intervals from the
sorted sequence;

(2) Based on the reflectance and kernel functions of the selected pixels in step (1), the
kernel coefficients of different land types were fitted using the least-squares method;

(3) The RMSE between the fitted reflectance and the image reflectance was calculated,
and the coefficients corresponding to the smallest RMSE were selected as the optimal
kernel coefficients.

As shown in Figure 4, the RMSE value on the same band did not change significantly
with the sample number. The kernel coefficients corresponding to the minimum RMSE
were selected for a subsequent correction.
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Figure 4. The RMSE of fitted reflectance with different sample numbers. (a) herb, (b) shrub, (c) tree,
(d) bare soil.

3.2.3. Angle Normalization

Calculate the ratio of the simulated reflectance at the reference geometry (nadir view,
flat topography, mean solar angles for all strips) to the simulated reflectance at the observed
geometry [47], and then multiply the image’s original reflectance by this ratio to obtain the
topographically corrected reflectance.

ρc = ρ
ρ(θv = 0◦, θs = θs_mean, ϕv = 0◦, ϕs = ϕs_mean, α = 0◦, β = 0◦, c, λ)

ρ(θv, θs, ϕv, ϕs, α, β, c, λ)
(23)

where ρc is the topographically corrected reflectance, ρ is the image’s original reflectance,
ρ(θv, θs, ϕv, ϕs, α, β, c, λ) is the simulated reflectance at the observed geometry,
ρ(θv = 0◦, θs = θs_mean, ϕv = 0◦, ϕs = ϕs_mean, α = 0◦, β = 0◦, c, λ) is the simulated reflecta-
nce at the reference geometry, θs_mean is the mean solar zenith angle for all strips, and
ϕs_mean is the mean solar azimuth angle for all strips.

3.3. Consistency Adjustment between Multi-Strip Images

After the topographic correction, adjacent images may still have radiation differences
due to differences in multi-strip images acquisition time, meteorological conditions, and
other factors. According to the fact that the reflectance of homonymous points in adjacent
images should be equal, the reflectance was adjusted by:

ρ′i = a ∗ ρi + b (24)

where ρi and ρ′i are the reflectance before and after correction, respectively, and a and b are
correction coefficients.

The reflectance difference of the homonymous points between adjacent images after
correction should be the smallest. That is, the difference of the mean value and the standard
deviation between the adjacent image overlapping areas is the smallest, which can be
expressed by Equations (25) and (26).

ε
ij
M = ai ∗Mi + bi −

(
aj ∗Mj + bj

)
(25)

ε
ij
V = ai ∗Vi − aj ∗Vj (26)
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where ε
ij
M is the difference of the mean value between the ith and jth strips after correction,

ε
ij
V is the difference of the standard deviation between the ith and jth strips after correction,

ai and bi are correction coefficients for the ith strip, aj and bj are correction coefficients
for the jth strip, Mi and Vi are the mean value and standard deviation of the ith strip,
respectively, and Mj and Vj are the mean value and standard deviation of the jth strip,
respectively.

In addition, the difference of the mean value and standard deviation of images before
and after correction should be minimal, which can be expressed by Equations (27) and (28).

εii
M = ai ∗Mi + bi −Mi (27)

εii
V = ai ∗Vi −Vi (28)

where εii
M is the difference between the mean value before and after correction of the ith

strip, and εii
V is the difference between the standard deviation before and after correction of

the ith strip.
The error equations for all strips are shown in Equation (29), and the least-squares

method was used to calculate the correction coefficients. After obtaining the correction
coefficients of each strip, the hyperspectral images with consistent radiation can be obtained
through Equation (24).

...
ε

ij
M

ε
ij
V
...

εii
M

εii
V
...


=



. . .
0 · · · Mi 1 · · · · · · −Mj − 1 · · · 0
0 · · · Vi · · · · · · · · · −Vj · · · · · · 0

...
0 · · · Mi 1 · · · · · · · · · · · · · · · 0
0 · · · Vi 0 · · · · · · · · · · · · · · · 0

· · ·





...
ai
bi
...
aj
bj
...


+



...
0
0
...
−Mi
−Vi

...


(29)

3.4. Correction Effect Evaluation

To evaluate the effectiveness of the proposed RA-TOC-CA method, the RA-TOC-CA
and two other methods (i.e., SCS+C and Minnaert+SCS, see Table 3) were used to correct
the radiation distortion of hyperspectral images. The correction effects of different methods
were assessed through visual inspection and quantitative indicators.

(1) The mean radiance of each scanning column before and after the correction of the
radiation attenuation difference was calculated. An ideal correction method should reduce
the differences in the mean radiance of different columns [16].

(2) Visual inspection checked if the reflectance difference between sunny and shady
slopes and chromatic aberration of the mosaicked data are weakened.

(3) The linear relationship between the cos(i) and the reflectance and the mean re-
flectance between different aspects were analyzed. An effective correction method should
result in the R2 values between the cos(i) and the reflectance to zero [48] and reduce the
reflectance difference between different aspects [49].

(4) The reflectance difference of homonymous points and the brightness gradient
between adjacent images were analyzed. An effective correction method should reduce the
reflectance difference and brightness gradient [33].

(5) The correlation between the airborne image spectra and the ground spectra was
analyzed. The handheld hyperspectral camera SPECIM IQ (SPECIM, Oulu, Finland) was
used to collect the ground spectra data. The results of an effective correction should show a
high correlation with the ground spectra [50].
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Table 3. Expressions of the methods for comparison.

Correction Method Expression Reference

SCS+C ρSCS+C = ρ cosθscosα+C
cosi+C [51]

Minnaert+SCS ρMinnaert+SCS = ρ cosθs
kcosα

cosik [52]

(6) The generalizability of the proposed method was verified. An effective method can
be extended to different airborne hyperspectral images to eliminate radiation distortion [33].

4. Results
4.1. Effects of Radiation Attenuation Difference Correction

This section compares the radiance curves before and after the correction of the
radiation attenuation difference. Since the comparison methods SCS+C and Minnaert+SCS
are used to correct the image reflectance, they are not used in this part. The results of
all bands are similar, and the sky diffuse radiation in the near infrared band (834.83 nm)
is small [20,53], which has a more remarkable effect. The following is an example of
this band to show the radiation distortion correction effects. The mean radiance of each
scanning column before and after the correction of the radiation attenuation difference
was calculated, as shown in Figure 5. Due to different radiation transmission paths, the
uncorrected image showed a decreasing trend from the center to the edge. The standard
deviation between the mean radiance of each column was 186.56 W/cm2/sr/µm. After
correction, the difference between the mean radiance of each column decreased and the
standard deviation was reduced to 82.02 W/cm2/sr/µm. There were still differences in the
corrected mean radiance, mainly due to the following two points: the distribution of ground
objects between different columns was not completely consistent, and the components of
the same objects at various locations are different, resulting in different radiance.
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4.2. Visual Inspection of Radiation Distortion Correction

The outline, seamline, and true color composite images of the hyperspectral mosaic
data are presented in Figure 6. The reflectance in the uncorrected image was significantly
affected by topographic effects, i.e., shaded areas were darker than illuminated areas. In
addition, there were obvious cross-track brightness gradients in the uncorrected hyper-
spectral image, which destroyed the integrity of the mosaic result. It can be noticed that
SCS+C and Minnaert+SCS weakened the topographic effect, but there was still a bright-
ness gradient between adjacent images. The SCS+C image became too bright in some
shaded areas, indicating that the reflectance was overcorrected. Although the RA-TOC-
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CA corrected image still has a certain topographic effect, the algorithm eliminated the
brightness mismatch at the image’s edge and realized the seamless mosaicking of multiple
flight strips.
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Figure 6. True color composite images before and after correction. (a) Outline and seamline of the
hyperspectral mosaic image, (b) Uncorrected mosaic, (c) SCS+C corrected mosaic, (d) Minnaert+SCS
corrected mosaic, (e) RA-TOC-CA corrected mosaic.

4.3. Effects of Topographic Correction
4.3.1. Correlation Analysis of Reflectance and Cosine of the Local Solar Incidence Angle

This section compares the relationship between cos(i) and reflectance corrected by
different methods. The relationship between the reflectance at 834.83 nm and the cos(i)
is shown in Figure 7. There was a positive linear relationship between the uncorrected
reflectance and cos(i); for the herb, shrub, tree, and bare soil, the R2 values were 0.1235,
0.1538, 0.1313, and 0.1163, respectively. The correlations decreased after using the three
methods, indicating that the influence of illumination conditions was weakened. RA-
TOC-CA achieved the best results for each land type (the R2 values of the herb, shrub,
tree, and bare soil were 0.0031, 0.0051, 0.0001, and 0.0212, respectively). However, the
slope of herb, shrub, and tree turned negative after SCS+C correction, while the slope of
shrub after RA-TOC-CA correction also became negative, indicating that the reflectance
was overcorrected. The overcorrection of SCS+C is consistent with other studies [54,55].
Unlike the strategy that relies on the regression relationship between the reflectance and
illumination conditions [56,57], RA-TOC-CA not only considers the illumination geometry
but also the viewing geometry (sensor’s attitude and IFOV), which has a more complete
physical mechanism.

4.3.2. Reflectance of Different Aspects

The aspect was divided into steps of 15◦, and the mean reflectance was calculated
in different intervals, as shown in Figure 8. In the uncorrected image, the reflectance
over the sun-facing aspects was remarkably larger than those in the opposite directions.
Compared with the uncorrected image, SCS+C showed the opposite trend. That is, the
reflectance of the shady aspect was larger than that of the sunny aspect, which indicates
that SCS+C overcorrected the reflectance. After Minnaert+SCS and RA-TOC-CA correction,
the reflectance difference decreased significantly over each aspect. However, the area of the
RA-TOC-CA-derived circle was larger than the uncorrected image, which indicated that
the corrected reflectance increased as a whole. This was because the radiance increased
after reducing the radiation attenuation difference and the reflectance value increased after
atmospheric correction.
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Figure 7. Density scatterplots between the reflectance of herb (a–d), shrub (e–h), tree (i–l), and bare
soil (m–p) at 834.83 nm and the cosine of the local solar incidence angle (cos(i)). (a) Uncorrected, (b)
SCS+C, (c) Minnaert+SCS, (d) RA-TOC-CA; (e) Uncorrected, (f) SCS+C, (g) Minnaert+SCS, (h) RA-
TOC-CA; (i) Uncorrected, (j) SCS+C, (k) Minnaert+SCS, (l) RA-TOC-CA; (m) Uncorrected, (n) SCS+C,
(o) Minnaert+SCS, (p) RA-TOC-CA.

To quantitatively analyze the reflectance distribution, the coefficient of variation (CV)
of the reflectance across different aspects is listed in Table 4. Minnaert+SCS performed the
best in the shrub (1.24%). For the herb, tree, and bare soil, RA-TOC-CA had the lowest CV
(1.44%, 1.54%, and 1.57%, respectively).

4.4. Analysis of Overlapping Areas of Adjacent Flight Strips

We first evaluated the reflectance difference of the homonymous points between
adjacent strips through visual inspection and then assessed the reflectance difference using
the quantitative indicator. An example of the reflectance curves of the homonymous points
in the adjacent images is shown in Figure 9. The reflectance of strip B was significantly
higher than that of strip A before correction, more significant in the near infrared band
(>700 nm). The effect of the three correction methods was Minnaert+SCS, SCS+C, and
RA-TOC-CA, from inferior to superior. In particular, the reflectance curves almost coincide
in the partial spectral range after RA-TOC-CA correction. The RMSE of the homonymous
points’ reflectance in the adjacent images is shown in Figure 10. Compared with the
uncorrected spectrum, all three methods reduce the RMSE, especially in the near infrared
band, implying that the adjacent images had more similar spectral values in the overlapping
area. RA-TOC-CA resulted in the lowest RMSE, compared with the uncorrected image,
the RMSE of the herb, shrub, tree, and bare soil decreased by 33.57%, 27.76%, 14.40%, and
36.35% on average, respectively.
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Figure 8. The average reflectance of herb (a–d), shrub (e–h), tree (i–l), and bare soil (m–p) in different
aspects. The radius represents the magnitude of the reflectance with zero in the center, and the
polar angle represents the aspect. (a) Uncorrected, (b) SCS+C, (c) Minnaert+SCS, (d) RA-TOC-
CA; (e) Uncorrected, (f) SCS+C, (g) Minnaert+SCS, (h) RA-TOC-CA; (i) Uncorrected, (j) SCS+C,
(k) Minnaert+SCS, (l) RA-TOC-CA; (m) Uncorrected, (n) SCS+C, (o) Minnaert+SCS, (p) RA-TOC-CA.

Table 4. The coefficient of variation (%) of reflectance across different aspects.

Correction Method Herb Shrub Tree Bare Soil

Uncorrected 2.98 2.91 1.63 4.06
SCS+C 2.99 2.57 7.56 2.22

Minnaert+SCS 1.69 1.24 3.29 2.39
RA-TOC-CA 1.44 2.13 1.54 1.57
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Figure 9. An example of the reflectance curves of the homonymous points for herb (a–d), shrub (e–h),
tree (i–l), and bare soil (m–p) in the adjacent images. (a) Uncorrected, (b) SCS+C, (c) Minnaert+SCS,
(d) RA-TOC-CA; (e) Uncorrected, (f) SCS+C, (g) Minnaert+SCS, (h) RA-TOC-CA; (i) Uncorrected,
(j) SCS+C, (k) Minnaert+SCS, (l) RA-TOC-CA; (m) Uncorrected, (n) SCS+C, (o) Minnaert+SCS,
(p) RA-TOC-CA.

We also calculate the transition from one strip to another. The specific procedure was
as follows: The two right-most strips, denoted as strips A and B, were selected; the seamline
of the mosaic image is presented in Figure 11. Next, 50 columns from the seamline to the
left were selected as the reflectance of strip A, and 50 columns to the right were selected
as the reflectance of strip B. After removing the non-vegetated area, the mean reflectance
of each column was calculated (Figure 12). The uncorrected reflectance increased sharply
at the abscissa of zero, which indicated that there is a brightness mismatch at the edge of
adjacent images. SCS+C and Minnaert+SCS reduced the two strips’ difference, but the
effect was not significant, and the reflectance of these two methods showed an overall
increase and decrease trend, respectively, compared with the uncorrected image. The
gradient of the RA-TOC-CA corrected reflectance at the abscissa of zero declined, and the
integrity was better.
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Table 5. The regression results between the image spectra (y) and the ground spectra (x) at 834.83 nm.

Correction Method Equation R2

Uncorrected y = 0.3584x + 0.0486 0.8356
SCS+C y = 0.3404x + 0.0546 0.7899

Minnaert+SCS y = 0.3438x + 0.0504 0.7937
RA-TOC-CA y = 0.3679x + 0.0548 0.8534

4.5. The Generalizability of RA-TOC-CA

To verify the generalization ability of the proposed algorithm, the RA-TOC-CA method
was applied to the airborne hyperspectral images collected on 16 August 2021. The com-
parison between uncorrected and corrected images is presented in Figure 14. There were
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clear cross-track brightness gradients in the uncorrected image, while these gradients were
almost absent in the image corrected by the RA-TOC-CA method. This demonstrates that
the RA-TOC-CA method has good generalization ability and can correct the radiation
distortion of different hyperspectral images.

4.6. Reflectance Comparison between the Image and the Ground Spectra

An example of the reflectance of the image and the ground spectra is shown in
Figure 13. The shapes of the two reflectance curves were similar, but there were significant
differences in the values. The image spectra were the absolute reflectance obtained by the
atmospheric correction, while the ground spectra were the relative reflectance. Moreover,
the spectral response functions of the two sensors were different, as was their sensitivity
to ground objects. Accordingly, the reflectance of the same ground objects obtained by
two sensors was different to a certain extent. The reflectance comparison between the
image and ground spectra at 834.83 nm is shown in Table 5. There was a high linear
relationship between the image and the ground reflectance. Compared with the uncorrected
image, R2 of SCS+C and Minnaert+SCS decreased, whereas RA-TOC-CA achieved the
highest correlation.
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5. Discussion
5.1. Comparison of Different Methods

In addition to the proposed RA-TOC-CA method, the SCS+C and Minnaert+SCS
methods were used in the comparison tests, which have been proven to be effective in
eliminating the terrain effect [58–61]. The experimental results showed that both SCS+C
and Minnaert+SCS weakened the topographic effect, but SCS+C overcorrected the original
image, and there were still cross-track brightness gradients in the two correction data.
SCS+C has been developed based on the Lambertian hypothesis [62]. This approach was
constructed under the assumption of dense vegetation with a continuous canopy and
implements the topographic correction by normalizing the sunlit canopy area. SCS+C
neglects the volume scattering of leaves within the canopy. When the canopy area is
larger than a pixel or the canopy is shaded within the pixel, SCS+C cannot eliminate the
effects caused by surrounding terrain or canopy shading [63]. Moreover, SCS+C ignores
the BRDF distortion caused by surface orientations [62]. Minnaert+SCS was based on the
non-Lambertian hypothesis, and the influence of the BRDF was added to the correction
process; namely, parameter k was used to indicate the degree of bidirectional reflection [63].
However, Minnaert+SCS only considered direct solar radiation, not diffuse reflection and
surrounding terrain radiation [23]. Therefore, the correction effect of these two methods is
not ideal. RA-TOC-CA was based on the radiation transfer process, not only considering
the illumination-viewing geometry but also eliminating the radiation attenuation difference
caused by the wide field of view and adjusting the reflectance of multi-strip images as a
whole. The proposed method has certain deficiencies in eliminating the radiation difference
between sunlit and shaded, which are clearly visible in the true color composite image.
Nevertheless, RA-TOC-CA reduces the BRDF effect and brightness gradient and obtains an
image with good radiometric consistency.

5.2. Physical Soundness Analysis

When the solar and viewing directions are perpendicular to the aspect, the slope does
not influence the reflectance. That is, the reflectance does not change before and after
terrain correction under these geometric conditions [48]. To analyze the correction meth-
ods’ physical soundness, the density scatterplots between the uncorrected and corrected
reflectance at 834.83 nm over aspects perpendicular to the solar and viewing directions are
presented in Figure 15. The fitting results of the same correction method for different land
types were similar. The points in the SCS+C-derived scatterplot were clustered around
the 1:1 line, but they showed a slight shift to high values, indicating that the reflectance
was overestimated by the SCS+C method. The Minnaert+SCS-derived reflectance showed
an opposite trend to that of SCS+C, i.e., the fitting line shifted to low values, revealing
that the reflectance was under-corrected by this method, which was consistent with the
conclusion in Section 4.4. RA-TOC-CA had the highest R2, but the RMSE of shrub was
higher than SCS+C and that of bare soil was higher than Minnaert+SCS. RA-TOC-CA had
the largest Bias, revealing a systematically positive shift in reflectance. This is because the
radiance value increased when the radiation attenuation difference was eliminated, and the
reflectance value after atmospheric correction increased accordingly. These results showed
that the RA-TOC-CA method corrects hyperspectral data on a physical level and avoids
the appearance of unreasonable correction results.
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Figure 15. Density scatterplots between the corrected and original reflectance of herb (a–c), shrub
(d–f), tree (g–i), and bare soil (j–l) over aspects perpendicular to the solar and viewing directions.
(a) SCS+C, (b) Minnaert+SCS, (c) RA-TOC-CA; (d) SCS+C, (e) Minnaert+SCS, (f) RA-TOC-CA;
(g) SCS+C, (h) Minnaert+SCS, (i) RA-TOC-CA; (j) SCS+C, (k) Minnaert+SCS, (l) RA-TOC-CA.

5.3. Future Work

In the final step of eliminating radiation distortion, the correction coefficients are
calculated by the error equation that the reflectance of the adjacent strips’ homonymous
points should be equal. The relative reflectance between different strips is good, but there is
no certain physical basis for the solution of absolute reflectance. In the future, a radiometric
correction method with more complete physical characteristics will be studied.

In addition, the proposed elimination method for the radiation attenuation difference
is based on the assumption of radiation uniformity. Although the proposed method can
achieve good results for evenly-distributed ground objects, its correction effect could decay
when the ground objects change considerably. As explained before, the proposed RA-
TOC-CA method first eliminates the radiation attenuation difference and then removes the
topographic effect. The topography affects the radiance of hyperspectral data. In the future,
methods for eliminating the effects of radiation attenuation and topography simultaneously
will be studied.
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6. Conclusions

In this paper, we presented a comprehensive method for correcting the radiation
distortion of airborne hyperspectral images (RA-TOC-CA). The RA-TOC-CA method is
based on multi-angular scanning and takes into account the topography, illumination-
viewing geometry, and radiation differences between multiple strips, which has a complete
theoretical basis. The proposed method was compared with the other two methods (SCS+C
and Minnaert+SCS) in correcting the radiation distortion of airborne hyperspectral images.
In general, all three methods weakened the topographic effects, but the images corrected by
SCS+C and Minnaert+SCS still had cross-track brightness gradients, and SCS+C overcor-
rected the reflectance. The RA-TOC-CA method not only had the best visual effect but also
outperformed the other two methods in quantitative assessment. RA-TOC-CA provides an
effective approach to reducing radiation attenuation difference, topographic effects, and
radiation differences between multiple strips, and facilitates the generation of high-quality
hyperspectral data.
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