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Abstract: The advancements in image super-resolution technology have led to its widespread use
in remote sensing applications. However, there is currently a lack of a general solution for the
reconstruction of satellite images at arbitrary resolutions. The existing scale-arbitrary super-resolution
methods are primarily predicated on learning either a discrete representation (DR) or a continuous
representation (CR) of the image, with DR retaining the sensitivity to resolution and CR guaranteeing
the generalization of the model. In this paper, we propose a novel image representation that combines
the discrete and continuous representation, known as CDCR, which enables the extension of images
to any desired resolution in a plug-and-play manner. CDCR consists of two components: a CR-
based dense prediction that gathers more available information and a DR-based resolution-specific
refinement that adjusts the predicted values of local pixels. Furthermore, we introduce a scale
cumulative ascent (SCA) method, which enhances the performance of the dense prediction and
improves the accuracy of the generated images at ultra-high magnifications. The efficacy and
dependability of CDCR are substantiated by extensive experiments conducted on multiple remote
sensing datasets, providing strong support for scenarios that require accurate images.

Keywords: scale-arbitrary super-resolution; image representation; satellite imagery

1. Introduction

Constrained by transmission bandwidth and hardware equipment, the spatial res-
olution of received remote sensing images may be inadequate, resulting in insufficient
details and failing to meet the requirements of certain practical applications. Moreover,
the variety of resolutions available at ground terminals makes it imperative to reconstruct
satellite images at arbitrary scales. In real-world remote sensing applications, the ability
to represent images at arbitrary resolutions is also crucial for object detection, semantic
segmentation, mapping, and human–computer interaction.

Digital images are typically composed of discrete pixels, each of which represents
different levels of detail at different scales. Single-image super-resolution (SISR) is a widely
used computer vision technique that aims to reconstruct images at various scales. Thanks
to the progress in deep learning, SISR models that operate on fixed integer scale factors (e.g.,
×2/×3/×4) have made significant advancements. However, most existing SISR models
are limited to generating images with fixed integer scale factors, reducing their efficacy
in remote sensing applications. Given the impracticality of training numerous models
for multiple scale factors, developing a SISR method that can accommodate arbitrary
(including non-integer) scale factors remains an open challenge.

In existing natural image-oriented, scale-arbitrary super-resolution techniques, two
representative methods are Meta-SR [1] and LIIF [2]. Both methods make assumptions
that each pixel value is composed of RGB channels. They predict the specific RGB values
of each pixel in the high-resolution (HR) space based on the feature vector, also known
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as the latent code, in the low-resolution (LR) space. However, their specific designs are
different. On the one hand, the meta upscale module in Meta-SR generates convolution
kernels with specific numbers and weights according to the scale factor. These kernels
are then convolved with the latent code to predict the RGB value of a specific pixel. This
approach of mapping the latent code to RGB values is referred to as discrete representation
(DR). On the other hand, the local implicit image function (LIIF) directly predicts the RGB
value of a pixel based on both the coordinates and the latent code. In contrast to the discrete
point-to-point feature mapping in DR, LIIF creates the continuous representation (CR) of
an image through continuous coordinates.

In comparison to discrete digital images, human perception of real-world scenes is
continuous, thus both the discrete representation (DR), as represented by Meta-SR [1], and
the continuous representation (CR), as represented by LIIF [2], can be utilized. CR employs a
neural network-parameterized implicit function for continuous, global, and robust learning,
while DR utilizes a multilayer perceptron (MLP) for discrete, local, and sensitive learning.
In brief, CR enables reconstruction at ultra-high magnifications, while DR produces a more
accurate image with sharper edges by adapting to specific resolutions. In this paper, we
propose a novel method called combined discrete and continuous representation (CDCR)
that incorporates the strengths of both CR and DR.

As illustrated in Figure 1, CDCR starts by producing a dense prediction for a specific
coordinate using a neural network parameterized by an implicit function. Then, it predicts
a set of modulated weights based on the coordinates and the scale factor through an
MLP. These modulated weights are combined with multiple experts to form a modulated
filter, which adjusts the predicted values of the queried pixel. The proposed CDCR has
two benefits: (1) the dense prediction provides more detailed information to improve
prediction accuracy and confidence; and (2) the modulated filter is scale-adaptive and can
enhance high-frequency information in the image at a specific resolution. In addition, a
scale cumulative ascent (SCA) method is proposed to avoid over-smoothing and enhance
the accuracy of predicted images at ultra-high magnifications. The SCA method increases
the resolution of the feature map for better dense prediction and eliminates outliers by
averaging multiple predictions. As shown in Figure 2, CDCR has a clear advantage with
more noticeable details compared to the DR and CR, which is of great help for accuracy-
oriented remote sensing scenarios.

𝑖𝑖, 𝑗𝑗 ,
1
𝑟𝑟

𝑓𝑓

𝑖𝑖, 𝑗𝑗 ,
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Continuous Representation (CR)

Discrete Representation (DR)
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Figure 1. Flows of discrete representation (DR), continuous representation (CR), and combined
discrete and continuous representation (CDCR). The coordinate of the high-resolution image is
represented by (i, j), and the scale factor is represented by r. The function ϕ is designed to predict the
convolution kernel, while the function f directly maps from the coordinates to signals. In CDCR, the
function ϕ predicts a modulated filter that embeds the predicted values into a specified resolution.

The main contributions of this paper can be summarized as follows:

1. A novel approach to image representation, namely CDCR, is proposed, which consists
of a CR-based dense prediction and a DR-based resolution-specific refinement. It can
be inserted into existing super-resolution frameworks to extend and embed images
into any desired resolution.

2. A scale cumulative ascent (SCA) method is introduced to address the underfitting
problem at ultra-high magnifications. By aggregating the predictions from various
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magnification steps, SCA improves the accuracy and confidence of images recon-
structed at ultra-high magnifications.

3. Experiments conducted on publicly available satellite datasets illustrate the gener-
alizability of CDCR. Both qualitative and quantitative evaluations show that CDCR
outperforms existing methods across multiple scale factors, making it a more effective
method for image representation.

DR CR CDCRRSC11 / highbuildings (15)
×3.4 ×3.4 ×3.4

DR CR CDCRRSSCN7 / b369
×9.7 ×9.7 ×9.7

DR CR CDCRWHU-RS19 / parking_34
×17.6 ×17.6 ×17.6

Figure 2. Visual comparison between DR, CR, and CDCR at scale factors of 3.4, 9.7, and 17.6,
respectively.

2. Related Work
2.1. Single Image Super-Resolution

Image super-resolution aims to recover high-resolution (HR) images from low-
resolution (LR) images, with single image super-resolution (SISR) being a representa-
tive topic. Since the publication of the first super-resolution network constructed by
convolutional neural networks [3], more and more network structures have been explored,
such as residual networks [4,5], recursive networks [6,7], dense connections [8,9], mul-
tiple paths [10,11], attention mechanisms [12–14], encoder–decoder networks [15], and
Transformer-based networks [16–18]. In addition, other generative models, such as genera-
tive adversarial networks (GAN) [19,20], flow-based models [21], and diffusion models [22],
have also been applied to SISR tasks.

SISR is a research priority in the field of remote sensing: Lei et al. [23] propose a
local-to-global combined network (LGCNet) for learning the multi-level features of salient
objects. Jiang et al. [24] introduce a deep distillation recursive network (DDRN), which
includes a multi-scale purification unit to compensate for the high-frequency components
during information transmission. Lu et al. [25] present a multi-scale residual neural network
(MRNN) to compensate for high-frequency information in the generated satellite images.
Jiang et al. [26] introduce an edge-enhanced GAN (EEGAN) for recovering sharp edges in
images. Wang et al. [27] propose an adaptive multi-scale feature fusion network (AMFFN)
to preserve the feature and improve the efficiency of information usage. Several methods
also incorporate attention mechanisms: Dong et al. [28] develop a multi-perception atten-
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tion network (MPSR), which uses multi-perception learning and multi-level information
fusion to optimize the generated images. Zhang et al. [29] present a mixed high-order
attention network (MHAN) with an attention module that outperforms channel attention.
Ma et al. [30] implement a dense channel attention network (DCAN), in which they design
a dense channel attention mechanism to exploit multi-level features. Jia et al. [31] put
forward a multi-attention GAN (MA-GAN), which is capable of improving the resolution
of images at multiple scale factors. Furthermore, Liu et al. [32] develop a diffusion model
with a detail complement mechanism (DMDC), further enhancing the super-resolution
effect of small and dense targets in remote sensing images.

2.2. Scale-Arbitrary Super-Resolution

The standard SISR process comprises a feature extraction module and a reconstruction
module. The core component of the reconstruction module is the upsampling layer, which
enhances the resolution of the feature map. Currently, the widely used deconvolutional
layer [33] and sub-pixel layer [34] in SISR can only handle fixed integer scale factors,
making the model difficult to generalize further. Lim et al. [5] employ multiple upsampling
branches for predetermined scale factors, but the method still cannot be applied to arbitrary
scale factors.

Meta-SR [1] is the first work aimed at scale-arbitrary super-resolution. In Meta-SR, the
meta upscale module utilizes a latent code in LR space to perform a one-to-one mapping
of the RGB value in HR space. Because the switch of the latent code is discontinuous, the
generated image may contain checkerboard artifacts. Chen et al. [2] propose a local implicit
image function (LIIF) to represent the image as a continuous function and introduce a local
ensemble to eliminate the checkerboard artifact. However, the use of a shared MLP for each
pixel in LIIF neglects the local characteristics of the image, which may result in an overly
smooth image. To overcome this problem, Li et al. [35] present an adaptive local image
function (A-LIIF), which employs multiple MLPs to model pixel differences and increase
the detail in the generated image. Ma et al. [36] introduce the implicit pixel flow (IPF) to
convert the original blurry implicit neural representation into a sharp one, resolving the
problem of overly smooth images generated by LIIF.

In addition to building upsampling modules as in Meta-SR and LIIF, some approaches
introduce scale information into the feature extraction module to create scale-aware fea-
ture extraction modules. Such modules include the scale-aware dynamic convolutional
layer for feature extraction [37], the scale attention module that adaptively rescales the
convolution filters [38], and the scale-aware feature adaption blocks based on conditional
convolution [39], among others. These scale-aware modules align with the target reso-
lution, improving the learning ability of the network for arbitrary scale factors. To sum
up, Meta-SR and its subsequent works significantly advance the field of scale-arbitrary
super-resolution by overcoming the limitations of fixed scale factors and improving the
quality of the generated images.

The studies in remote sensing have not fully explored the concept of scale-arbitrary
super-resolution. For instance, Fang et al. [40] propose an arbitrary upscale module based
on Meta-SR and add an edge reinforcement module in post-processing stage to enhance
the high-frequency information of the generated images. In addition, He et al. [41] present
a video satellite image framework that enhances spatial resolution by subpixel convolution
and bicubic-based adjustment. To conclude, there remains a requirement for a general
approach to tackle the challenge of scale-arbitrary super-resolution for satellite images.

2.3. Image Rescaling

Compared to super-resolution models that primarily focus on image upscaling, image
rescaling (IR) integrates both image downscaling and upscaling to achieve more precise
preservation of details. Therefore, the upscaling component of IR can also be used for
super-resolution reconstruction of images at arbitrary resolutions. Xiao et al. [42] developed
an invertible rescaling net (IRN) with a deliberately designed framework but limit it to a
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fixed integer scale factor. In contrast, Pan et al. [43] proposed a bidirectional arbitrary image
rescaling network (BAIRNet) that unifies image downscaling and upscaling as a single
learning process. Later, Pan et al. [44] introduced a simple and effective invertible arbitrary
rescaling network (IARN) that achieves arbitrary image rescaling with better performance
than BAIRNet. In the field of remote sensing, Zou et al. [45] proposed a rescaling-assisted
image super-resolution method (RASR) to better restore lost information in medium-low
resolution remote sensing images.

As a newly emerged field, IR requires modeling the process of downscaling images and
supporting image magnification at non-integer scale factors. However, most IR methods
mainly focus on exploring continuous representations of images at lower scale factors
(e.g., less than 4×) and neglect the potential underfitting problem that may arise at higher
scale factors.

3. Methods

In this section, we first formally define the discrete and continuous representation
in scale-arbitrary super-resolution. Subsequently, we introduce a novel approach that
leverages a combination of the discrete and continuous representation, and provide an
in-depth explanation of its individual components. Lastly, we examine the underfitting
problem at ultra-high magnifications and suggest a scale cumulative ascent method as a
practical approach to mitigate the problem.

3.1. Discrete Representation (DR) and Continuous Representation (CR)

Scale-arbitrary super-resolution aims to enlarge a low-resolution image by a scale
factor of r. Suppose a low-resolution image X ∈ Rh×w×c can be encoded into 2D features
F ∈ Rh×w×d. In that case, a neural network-parameterized decoder φ can be used to convert
the features F into the corresponding high-resolution image Z ∈ Rbrhc×brwc×c, where h and
w represent the height and width of the image or feature, while d and c represent the depth
of the features and the number of channels in the image, respectively. Therefore,

Z = φ(F, r). (1)

The mapping function φ : F 7→ Z can be either a discrete mapping based on DR
(denoted as φD) or a continuous mapping based on CR (denoted as φC). The difference
between the two is noted below.

3.1.1. Discrete Representation (DR)

DR is designed to perform a discrete mapping from low-resolution (LR) space to
high-resolution (HR) space. Given a scale factor of r, the resolution of the LR and HR space
can be determined. Next, DR needs to match each coordinate x = (i, j) in the HR space to
its corresponding coordinate x′ = (i′, j′) in the LR space. Let T be the coordinate mapping
function, then T (x, r) = x′. When the value of r is fixed, the function T (x, r) = x′ can be
simplified as T (x) = x′ to emphasize the mapping relationship between the original input
x and its transformed output x′. The RGB value of the HR image at coordinate x can be
predicted based on the feature F[T (x)] at coordinate T (x). The discrete kernel is defined
as W(x). As a result, Equation (1) can be updated to

W(x) = ϕ(x− T (x)), (2)

Z(x) = φD(F[T (x)], W(x)) = F[T (x)] ·W(x), (3)

where W(x) is a set of dynamic filters predicted based on the coordinate offset ∆x =
x− T(x). W(x) serves two purposes: first, it corrects the coordinate offset ∆x caused by
non-integer r in the coordinate matching; second, it reduces the number of channels d in
the feature map to fit the number of channels c in the predicted image.
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3.1.2. Continuous Representation (CR)

CR aims to predict a continuous mapping function φC. Typically, φC is an implicit
neural representation parameterized by a neural network that represents an image as a
function f : X 7→ S mapped from the coordinate domain X to the signal domain S , i.e.,

s = f (v, x), (4)

where v is the code vector, x = (i, j) ∈ X represents the 2D coordinates of the HR image,
and s = (sr, sg, sb) ∈ S refers to the RGB value of the HR image at coordinate x. Firstly,
assume that the 2D coordinates of the feature extracted from the image are uniformly
distributed, so the coordinates x′ in LR space and x in HR space can be normalized to a
range of [−A, A] (A is a predefined positive value) to obtain x̃′ and x̃, respectively. Due
to the continuity of the coordinates, the implicit neural representation naturally suits the
continuous representation of images. Then, according to the nearest neighbor function
U , the coordinate x̃′ closest to x̃ is obtained by U (x̃, r) = x̃′, where r represents the scale
factor. Similar to Section 3.1.1, U (x̃, r) = x̃′ can be simplified as U (x̃) = x̃′. Finally, the
latent code required for the implicit neural representation comes from the feature F[U (x̃)]
at coordinate U (x̃). As a result, Equation (4) can be revised as

Z(x̃) = φC(F[U (x̃)], x̃−U(x̃)). (5)

In summary, DR is a two-stage process that predicts the discrete kernel W(x) at
coordinate x in a high-resolution image, while CR is a one-stage process that directly
maps the normalized continuous coordinate x̃′ to RGB values Z(x̃′). In terms of super-
resolution performance, DR can optimize the performance at arbitrary resolutions through
resolution-specific kernels and is more effective at smaller scales, while CR predicts a more
general representation, resulting in better performance at larger scales due to its strong
generalization. Experiments conducted by Chen et al. [2] confirm this view.

3.2. Combined Discrete and Continuous Representation (CDCR)

Based on the aforementioned studies, this paper proposes a method that combines
discrete and continuous representation, referred to as CDCR. In CDCR, CR guarantees the
accuracy of high-magnification predictions, while DR fine-tunes the generated image and
strengthens high-frequency information at the desired resolution.

3.2.1. CR-Based Dense Prediction

Figure 3 depicts the proposed CDCR method. The coordinate x̃ in HR space and the
coordinate x̃′ in LR space are normalized to the interval [−A, A]. In contrast to the standard
CR, for each coordinate x̃ in HR space, we perform a dense prediction of the RGB values
for a set of 3× 3 pixels centered at x̃. To this end, we refer to the work of Chen et al. [2] and
expand the latent code and coordinate information specified in Equation (5). On the one
hand, we concatenate the adjacent latent code, i.e., expand the number of feature channels
from d to 9d:

F̃mn = Concat
({

Fm+p,n+q
}

p,q∈{−1,0,1}

)
; (6)

On the other hand, we obtain the position coordinates Ut(x̃) of the four closest latent
codes to x̃ through the nearest neighbor function Ut that is oriented in different directions.
Note that t = 00, 01, 10, and 11 represent four directions of the top left, top right, bottom
left, and bottom right of the queried pixel, respectively. In Figure 3, these latent codes
are identified as z∗00, z∗01, z∗10, and z∗11. We incorporate the coordinate offset x̃− Ut(x̃) and
the shape c̃ of the queried pixel at coordinates x̃ into the 2D coordinate information ζt(x̃),
that is,

ζt(x̃) = Concat(x̃−Ut(x̃), c̃), (7)
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where c̃ = (A/hr, A/wr) depends on the scale factor r, indicating the height and width of
the queried pixel. As a result, the CR-based dense prediction can be represented as

Z∗t (x̃) = φ+
(

F̃[Ut(x̃)], ζt(x̃)
)

(8)

M(x̃) = ∑
t∈{00,01,10,11}

St′

S
· Z∗t (x̃) (9)

where φ+ is an enhanced dense prediction that yields a greater number of channels. The
definition of Z∗t comes from Equation (5). The factor St′ serves as a weight, with t′ being
diagonal to t (i.e., ‘10’ to ‘10’, ‘00’ to ‘11’) and S = ∑t St. The output M(x̃) in Equation (9)
represents the RGB predictions of 3× 3 pixels centered at x̃. The CR-based dense prediction
provides the foundation for the DR-based resolution-specific refinement.

②

FC FC
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Figure 3. The structure of CDCR. CDCR consists of two parts: a CR-based dense prediction and
a DR-based resolution-specific refinement. In the first part, we derive a set of 3× 3 predictions
centered at coordinate (i, j) through the dense prediction fθ . In the second part, we adjust the
predictions for the given resolution by means of two branches: Branch 1 (designated by symbol ¬)
pre-modulates the features based on scale information, while Branch 2 (designated by symbol )
further embeds the predicted pixels into the specified resolution by leveraging the coordinate offsets
and modulated features.

3.2.2. DR-Based Resolution-Specific Refinement

CR may result in overly smoothed predictions. To enhance the high-frequency infor-
mation in the images, we perform DR-based resolution-specific refinement on the dense
predicted features obtained at each coordinate x̃ in HR space.

As shown in Figure 3, the proposed DR-based resolution-specific refinement contains
two branches: Branch 1 aims at resolution awareness and feature modulation, while
Branch 2 primarily enhances high-frequency information in the generated images. The
work of Wang et al. [39] demonstrates that features learned from images are different
for various target resolutions. In other words, the features required by the network vary
for different resolutions. Hence, we pre-modulate the dense predicted features based
on scale information in Branch 1: Initially, the shape of the queried pixel is fed into a
modulator composed of two fully connected layers to generate modulated weights pi.
Subsequently, these resolution-based modulated weights pi and experts Pi are combined
into a scale-modulated filter to pre-modulate the dense predicted features M, i.e.,

Me = M + M ∗
(

1
k

k

∑
i=1

pi · Pi

)
, (10)
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where Me stands for the dense features with scale awareness. The experts contain k
convolution kernels that are trained to recognize various resolutions. The modulated
feature Me provides better discrimination compared to M and forms the foundation for
learning high-frequency information at a specific resolution.

In Branch 2, we use DR to predict the RGB value of the queried pixel at coordinate x̃:
Firstly, we establish a set of coordinate offsets v based on x̃:

v = Concat
(
{Rt}t∈{00,01,10,11}, c̃

)
, (11)

where Rt = x̃−Ut(x̃) represents the distance between the queried pixel and the latent code
z∗t . c̃ denotes the height and width of the queried pixel. Then, we directly predict the RGB
value of each pixel from the coordinate offset v and the modulated feature Me. According
to Equation (3), the DR-based resolution-specific refinement can be simplified to

Z(x̃) = Me[(x̃)] · ϕ(v). (12)

In short, the prediction of the modulated filter is carried out in Branch 1 based on scale
information, while the prediction of high-frequency information is conducted in Branch
2 through DR. The network effectively captures the residual high-frequency information
between the smoothed prediction and the ground truth, reducing over-smoothing and
decreasing the learning difficulty.

4. Discussions: The Underfitting Problem at Ultra-High Magnifications

The performance of existing models at ultra-high magnifications (e.g., r ≥ 8) remains
inadequate due to the persistent underfitting problem. Regrettably, there is a scarcity
of studies that address this problem. Our investigation reveals that the main causes of
underfitting at ultra-high magnifications are: (1) the model tries to fit low magnifications
(in-distribution) during training, resulting in neglect of the generalizability of high magnifi-
cations (out-of-distribution); (2) the resolution of the feature (i.e., latent code) is significantly
lower compared to the predicted image, i.e., the feature coordinates are too sparse, leading
to excessive utilization of each feature vector.

The majority of scale-arbitrary super-resolution methods [1,2,35,37] set 1 < r ≤ 4 as in-
distribution and r ≥ 4 as out-of-distribution, and this setting is followed in this paper. We
define the probability of a set of 3× 3 pixels in HR space crossing a matrix array connected
by latent codes as ψ. Figure 4a illustrates a qualitative comparison between in-distribution
and out-of-distribution to demonstrate the sparsity of latent code coordinates. Figure 4b
provides a quantitative computation of the sparsity index ψ. The sparsity of the latent
code increases as ψ decreases. As depicted in Figure 4b, ψ displays substantial differences
between in-distribution and out-of-distribution, e.g., ψ = 0.94 for r = 4, while ψ = 0.27 for
r = 20. To mitigate the rapid decrease in ψ, we introduce a scale cumulative ascent (SCA)
method to enhance the prediction ability of the proposed CDCR in out-of-distribution
scenarios.

SCA achieves an ultra-high magnification of images through a stepwise increase in
resolution. As illustrated in Figure 5, the initial CDCR module enhances the density of the
latent codes, providing more comprehensive feature information for subsequent CDCR
modules. This approach significantly improves the accuracy of high-resolution image
reconstruction during the upsampling process. In this paper, we establish multiple serial
stages of magnification with multiple scale factors r1, r2, . . . , where r = ∏ ri. The SCA
method divides the scale factor r into the following format:

r =

r1r2 = (r1 − δ) ·
(

r2 +
r2δ

r1−δ

)
, rm < r ≤ rM

r1r2r3 = (r1 − γ) · r2 ·
(

r3 +
r3γ

r1−γ

)
, r ≥ rM

(13)
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Figure 4. The sparsity of the latent code at different scale factors. Figure (a) shows the density of the
LR coordinates compared to the HR spatial coordinates at scale factors of 3.3 and 8.1. The sparsity
index ψ is calculated in Figure (b) to demonstrate the density of the latent code at different resolutions.

𝑟𝑟11 = 2.7

𝑟𝑟21 = 3.7

𝑟𝑟10 = 3.7𝑟𝑟20 = 3.7
𝑟𝑟12 = 5.54

𝑟𝑟22 = 1.85

LR

SR0

SR1
SR2

Figure 5. The proposed scale cumulative ascent (SCA) method operates at a scale factor of 9.7. The
figure depicts that LR in the low-resolution manifold space is enlarged through three pathways,
resulting in SR0, SR1, and SR2 in the high-resolution manifold space. Here, rj

i denotes the i-th scale
factor of the j-th pathway. The final prediction is obtained by averaging these SR images. On the
one hand, SCA improves the effectiveness of dense prediction and increases accuracy in out-of-
distribution scenarios by augmenting the density of the latent code. On the other hand, as a single
LR image may correspond to multiple HR images, utilizing SCA to average multiple predictions
enhances the robustness of the generated HR images.

In Equation (13), the scale factor r is decomposed into multiple ri. If rm < r ≤
rM, SCA performs a two-step magnification, while if r ≥ rM, it performs a three-step
magnification. δ = {δ1, δ2, ...} and γ = {γ1, γ2, ...} are predetermined. The SCA method
has three advantages: (1) it makes full use of the model’s strong ability to fit data within
in-distribution; (2) it effectively increases the density of the latent code, leading to improved
results for dense predictions; and (3) it reduces the risk of outliers in out-of-distribution
scenarios by averaging the predictions obtained from different magnification sequences.

5. Experiments

In this section, we first provide an overview of the experimental datasets and training
parameters. Then, we compare our proposed CDCR method with current state-of-the-art
scale-arbitrary super-resolution methods. After that, we evaluate the impact of the CR-
based dense prediction, DR-based resolution-specific refinement, encoder, and SCA on
prediction accuracy. Finally, we analyze the complexity of the methods.
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5.1. Datasets and Metrics

We employ the AID dataset [46] for training in this study. AID is a large-scale aerial
image dataset consisting of 10,000 images with a resolution of 600× 600 pixels, covering
30 classes of scenes. The dataset includes images collected by various remote sensing
sensors, each with a spatial resolution of 0.5–0.8 meters, covering diverse seasons and time-
frames.

The test datasets include RSC11 [47], RSSCN7 [48], and WHU-RS19 [49]: (1) The
RSC11 dataset [47] comprises a total of 1232 high-resolution remote sensing images, which
cover 11 distinct scene categories and multiple cities in the United States. Each image
has a size of 512 × 512 pixels and a spatial resolution of 0.2 meters. (2) The RSSCN7
dataset [48] is comprised of 2800 remote sensing images, which are classified into seven
distinct scene categories. Each image has a size of 400× 400 pixels. Within each category,
the images are collected using four different scale variations and from multiple imaging
angles. (3) The WHU-RS19 dataset [49] consists of 1005 remote sensing images covering
19 land use categories, each with a size of 600× 600 pixels. Images in each category are
acquired from diverse geographic locations, exhibiting variations in scale (with a maximum
spatial resolution of 0.5 m) and illumination conditions.

It is noteworthy that the aforementioned datasets are acquired from Google Earth
(Google Inc.). These images may have undergone several pre-processing techniques, such
as geometric correction, noise reduction, and color balancing, and have been subjected to
image compression (e.g., conversion from high bit depth to 8-bit depth) to optimize storage
and transmission efficiency.

Given the high demand for image accuracy in remote sensing imagery, we utilize peak
signal-to-noise ratio (PSNR) in decibels (dB) as a measure of image accuracy. A higher
PSNR value indicates greater image accuracy.

5.2. Implementation Details

During the training phase, the scale factor is established within a range of ×1 to ×4
(in-distribution). During the testing phase, the scale factor extends to ×6∼×20 (out-of-
distribution) beyond the training range. Each low-resolution (LR) image patch is of size
48× 48 and is derived through bicubic downsampling of the corresponding high-resolution
(HR) image. The value of variable A is set to 1. A random scale factor, denoted as rb,
is sampled for each batch from a uniform distribution ranging from ×1 to ×4, resulting
in HR image patches with a size of b48rbc × b48rbc pixels. Subsequently, the HR images
are transformed into pairs of coordinates and RGB values, and a random sample of 482

(equal to 2304) is selected. The loss function adopted is the `1 loss, and the optimizer
utilized is ADAM with an initial learning rate η = 0.0001. The training period is set
for 1000 epochs, with a reduction in the learning rate by half every 200 epochs. The
encoder employed is the EDSR [5] model with 16 residual blocks. For details on the
SCA configuration, please see Section 5.4.4. The code will be made publicly available at
https://github.com/Suanmd/CDCR/.

5.3. Comparing Methods

In this part, we compare CDCR with the dominant scale-arbitrary super-resolution
methods. The compared methods are:

1. Bicubic: The baseline method that works for any scale factors.
2. Meta-SR [1]: The representative method for DR.
3. LIIF [2]: The representative method for CR.
4. ArbSR [39]: A scale awareness method based on DR. The scale-aware upsampling

layer of the method is extracted for comparison.
5. A-LIIF [35]: An adaptive local method based on CR. It models pixel differences

through multiple MLPs to eliminate possible artifacts in LIIF.

https://github.com/Suanmd/CDCR/
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6. CDCR (ours): The method proposed in this paper combines both DR and CR. It
involves a CR-based dense prediction and a DR-based resolution-specific refinement
but does not include SCA.

The above methods are all implemented with the same settings described in Section 5.2
to ensure fairness in the comparison. The quantitative results are shown in Table 1.

Table 1. Quantitative comparison of various methods across multiple scale factors using PSNR(dB).
The best values for each scale factor across different datasets are highlighted in bold.

In-Distribution Out-Of-Distribution

Dataset Method ×2 ×3 ×4 ×6 ×8 ×12 ×16 ×20

RSC11 [47]

Bicubic 30.33 27.31 25.75 24.16 23.26 22.19 21.51 21.05
Meta-SR [1] 33.23 29.52 27.57 25.46 24.30 22.97 22.19 21.63
LIIF [2] 33.21 29.52 27.58 25.50 24.35 23.01 22.23 21.66
ArbSR [39] 33.20 29.50 27.55 25.44 24.29 22.96 22.18 21.62
A-LIIF [35] 33.23 29.52 27.58 25.49 24.36 23.02 22.23 21.67
CDCR (ours) 33.26 29.58 27.63 25.54 24.39 23.05 22.25 21.68

RSSCN7 [48]

Bicubic 29.96 27.47 26.16 24.75 23.92 22.95 22.35 21.94
Meta-SR [1] 32.14 29.01 27.42 25.68 24.69 23.54 22.84 22.38
LIIF [2] 32.15 29.02 27.44 25.71 24.73 23.58 22.88 22.42
ArbSR [39] 32.11 29.00 27.40 25.66 24.68 23.53 22.84 22.38
A-LIIF [35] 32.14 29.01 27.44 25.71 24.73 23.58 22.87 22.42
CDCR (ours) 32.18 29.04 27.46 25.74 24.75 23.59 22.88 22.43

WHU-RS19 [49]

Bicubic 33.47 29.87 27.92 25.84 24.69 23.37 22.61 22.06
Meta-SR [1] 36.56 32.24 29.91 27.30 25.86 24.24 23.33 22.70
LIIF [2] 36.55 32.24 29.94 27.35 25.93 24.30 23.39 22.75
ArbSR [39] 36.53 32.21 29.89 27.28 25.85 24.23 23.33 22.70
A-LIIF [35] 36.55 32.24 29.93 27.35 25.92 24.30 23.39 22.75
CDCR (ours) 36.62 32.28 29.97 27.39 25.95 24.31 23.40 22.77

Table 1 demonstrates the superiority of CDCR. CR performs optimally at high magni-
fication levels, while DR may exhibit better results at low magnifications. By integrating
these two characteristics, CDCR enhances the prediction results for most scale factors.
Compared to the baseline, the improvement decreases as the scale factor increases.

The following pages present a qualitative comparison of the methods. We evaluate
scale factors of ×4/×8 (refer to Figure 6) and ×12/×20 (refer to Figure 7) on the test
datasets. The results demonstrate that CDCR offers significant improvement in some
specific scenes, such as the edges of vehicles and lines of lanes.

5.4. Ablation Study

In this section, we examine the importance of the individual components of CDCR
and demonstrate the improved results brought about by the integration of SCA.

5.4.1. Analysis of CR-Based Dense Prediction

The CR-based dense prediction integrates more information to enhance its ability to
predict uncertain pixels. In Equation (9), M(x̃) denotes the predicted values for a set of
9 pixels centered at x̃. In practice, the density of the prediction needs to be considered.
To this end, we conduct experiments in three groups: the first group involves no dense
prediction, i.e., predicting the RGB value for the pixel at x̃ (denoted as CDCR-c1); the
second group involves semi-dense prediction, i.e., predicting the RGB values of a set of
4 pixels centered at x̃ (denoted as CDCR-c4); and the third group involves dense prediction,
i.e., predicting the RGB values of a set of 9 pixels centered at x̃ (denoted as CDCR-c9 and
set as the default). The results are presented in Table 2.
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RSC11 / highbuildings (4) Bicubic Meta-SR LIIF Bicubic Meta-SR LIIF

ArbSR A-LIIF CDCR ArbSR A-LIIF CDCR

×4 ×8

RSSCN7 / c001 Bicubic Meta-SR LIIF Bicubic Meta-SR LIIF

ArbSR A-LIIF CDCR ArbSR A-LIIF CDCR

×4 ×8

WHU-RS19 / footballField_12 Bicubic Meta-SR LIIF Bicubic Meta-SR LIIF

ArbSR A-LIIF CDCR ArbSR A-LIIF CDCR

×4 ×8

Figure 6. Visual comparison of the different methods at scale factors of 4 and 8.

On the one hand, the enhancement from CDCR-c1 to CDCR-c4 is substantial, indicat-
ing the effectiveness of dense prediction. On the other hand, the enhancement observed in
CDCR-c9 compared to CDCR-c4 appears to be minimal, implying a diminishing return of
the dense prediction.

Table 2. Ablation experiment on dense prediction. -c1 represents no dense prediction, -c4 represents
semi-dense prediction, and -c9 represents dense prediction. The optimal PSNR values for each scale
factor across different datasets are emphasized in bold.

In-Distribution Out-Of-Distribution

Dataset Method ×2 ×3 ×4 ×6 ×8 ×12 ×16 ×20

RSC11 [47]
CDCR-c1 33.22 29.55 27.60 25.52 24.37 23.03 22.24 21.67
CDCR-c4 33.26 29.58 27.63 25.54 24.39 23.04 22.24 21.67
CDCR-c9 33.26 29.58 27.63 25.54 24.39 23.05 22.25 21.68

RSSCN7 [48]
CDCR-c1 32.15 29.03 27.45 25.72 24.73 23.58 22.88 22.42
CDCR-c4 32.18 29.04 27.46 25.73 24.75 23.59 22.88 22.42
CDCR-c9 32.18 29.04 27.46 25.74 24.75 23.59 22.88 22.43

WHU-RS19 [49]
CDCR-c1 36.56 32.26 29.94 27.36 25.93 24.30 23.39 22.76
CDCR-c4 36.60 32.28 29.97 27.38 25.95 24.31 23.40 22.77
CDCR-c9 36.62 32.28 29.97 27.39 25.95 24.31 23.40 22.77
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RSC11 / grassland (7) Bicubic Meta-SR LIIF Bicubic Meta-SR LIIF

ArbSR A-LIIF CDCR ArbSR A-LIIF CDCR

×12 ×20

RSSCN7 / d273 Bicubic Meta-SR LIIF Bicubic Meta-SR LIIF

ArbSR A-LIIF CDCR ArbSR A-LIIF CDCR

×12 ×20

WHU-RS19 / airport_36 Bicubic Meta-SR LIIF Bicubic Meta-SR LIIF

ArbSR A-LIIF CDCR ArbSR A-LIIF CDCR

×12 ×20

Figure 7. Visual comparison of the different methods at scale factors of 12 and 20.

5.4.2. Analysis of DR-Based Resolution-Specific Refinement

As shown in Figure 3, there are two branches in the DR-based resolution-specific
refinement process. Branch 2 is essential to DR, while Branch 1 is introduced to pre-
modulate the features in a scale-aware manner. The pre-modulation in Branch 1 integrates
k experts, each with a varying focus on different scales. To assess the impact of the
resolution-specific pre-modulation, we conduct three groups of experiments: the first
experiment omits pre-modulation (denoted as CDCR-k0); the second experiment utilizes
k = 3 (denoted as CDCR-k3); the third experiment utilizes k = 10 (denoted as CDCR-k10
and set as the default). The quantitative results are presented in Table 3.

Table 3 highlights the requirement for resolution-specific modulation. In other words,
the combination of CR and DR through the utilization of pre-modulation is essential.
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Table 3. Ablation experiment on pre-modulation in resolution-specific refinement. -k0 indicates the
absence of pre-modulation, while -k3 and -k10 indicate the integration of 3 and 10 experts for pre-
modulation. The optimal PSNR values for each scale factor across different datasets are emphasized
in bold.

In-Distribution Out-Of-Distribution

Dataset Method ×2 ×3 ×4 ×6 ×8 ×12 ×16 ×20

RSC11 [47]
CDCR-k0 33.23 29.52 27.60 25.51 24.36 23.02 22.23 21.65
CDCR-k3 33.27 29.57 27.63 25.54 24.39 23.03 22.24 21.67
CDCR-k10 33.26 29.58 27.63 25.54 24.39 23.05 22.25 21.68

RSSCN7 [48]
CDCR-k0 32.15 29.02 27.45 25.72 24.73 23.58 22.87 22.41
CDCR-k3 32.19 29.05 27.46 25.73 24.75 23.59 22.88 22.43
CDCR-k10 32.18 29.04 27.46 25.74 24.75 23.59 22.88 22.43

WHU-RS19 [49]
CDCR-k0 36.53 32.24 29.93 27.36 25.92 24.30 23.38 22.75
CDCR-k3 36.62 32.29 29.97 27.38 25.94 24.31 23.40 22.76
CDCR-k10 36.62 32.28 29.97 27.39 25.95 24.31 23.40 22.77

5.4.3. Analysis of Encoder

A stronger encoder leads to more powerful latent codes, thus enhancing the effect of
the predicted results. In this research, we select three encoders, namely EDSR [5], RDN [9],
and RCAN [12]. The number of channels in the feature maps is set to 64. The configuration
of the EDSR model consists of 16 residual blocks, as described in Section 5.2. The RDN
model is structured with 16 residual dense blocks, each composed of 8 convolutional layers.
The RCAN model comprises 10 residual groups, each consisting of 20 residual channel
attention blocks. The performance of Meta-SR, LIIF, and CDCR on the RSC11 dataset is
assessed in Table 4.

Table 4 clearly shows the significant influence of the encoder on the outcome. Despite
its high complexity, the RCAN model performs best in our experiment. Moreover, Table 4
confirms the strong generalizability of our proposed method.

Table 4. Ablation experiment on encoder. The encoders employed in this experiment are sourced
from three SISR frameworks: EDSR, RDN, and RCAN. The optimal PSNR values for each scale factor
are shown in bold.

In-Distribution Out-Of-Distribution

Dataset Method ×2 ×3 ×4 ×6 ×8 ×12 ×16 ×20

Meta-SR [1]
EDSR [5] 33.23 29.52 27.57 25.46 24.30 22.97 22.19 21.63
RDN [9] 33.44 29.71 27.77 25.63 24.47 23.09 22.27 21.70
RCAN [12] 33.51 29.77 27.79 25.66 24.48 23.10 22.29 21.72

LIIF [2]
EDSR [5] 33.21 29.52 27.58 25.50 24.35 23.01 22.23 21.66
RDN [9] 33.39 29.68 27.76 25.65 24.49 23.13 22.32 21.74
RCAN [12] 33.47 29.75 27.82 25.72 24.56 23.17 22.35 21.77

CDCR (ours)
EDSR [5] 33.26 29.58 27.63 25.54 24.39 23.05 22.25 21.68
RDN [9] 33.41 29.71 27.77 25.67 24.51 23.14 22.33 21.76
RCAN [12] 33.50 29.79 27.83 25.72 24.57 23.18 22.35 21.78

5.4.4. Analysis of SCA

The paper states that the purpose of SCA is to enhance the dense prediction during the
inference phase. SCA allows the combination of multiple magnification steps to enhance
the realism of the generated image. As described in Section 4, rm is set to 6.0, and rM is
set to 12.0. δ1 is sampled from a uniform distribution, ranging from 0.1 to 0.5. δi+1 is also
sampled from this distribution and added to δi. The setting of γ is the same as δ. Table 5
showcases the typical results when SCA is introduced (denoted as CDCR+).
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Table 5. Effect of SCA on results at ultra-high magnifications. The optimal PSNR values for each
scale factor are shown in bold.

Integer-Factor Decimal-Factor

Dataset Method Settings ×6 ×8 ×12 ×16 ×20 ×9.7 ×17.6

RSC11 [47] CDCR base 25.54 24.39 23.05 22.25 21.68 23.72 22.01
CDCR+ w/ SCA 25.56 24.42 23.08 22.29 21.72 23.75 22.05

RSSCN7 [48] CDCR base 25.74 24.75 23.59 22.88 22.43 24.17 22.73
CDCR+ w/ SCA 25.75 24.77 23.62 22.91 22.46 24.19 22.76

WHU-RS19 [49] CDCR base 27.39 25.95 24.31 23.40 22.77 25.14 23.12
CDCR+ w/ SCA 27.41 25.98 24.35 23.44 22.81 25.17 23.16

The utilization of the SCA method is imperative in cases of ultra-high magnifications.
To demonstrate the reliability brought by SCA, we display the visualization results in
Figure 8.

The results in Figure 8 depict that SCA can decrease the presence of artifacts in
the image and render a more realistic representation of the scene in some cases. It is
worth noting that the complexity of SCA is high due to the large number of predictions
involved. Therefore, we only display the results of CDCR+ in this section. The discussion
of complexity can be found in Section 5.5.

SCA
×12 ×20

base SCAbase SCAbase
×16RSC11 / 

railway (32)

SCA
×12 ×20

base SCAbase SCAbase
×16RSSCN7 / 

d082

SCA
×12 ×20

base SCAbase SCAbase
×16WHU-RS19 / 

port_15

Figure 8. Enhancement brought about by SCA at scale factors of 12, 16, and 20.

5.5. Complexity Analysis
5.5.1. Experimental Environment

The experiments are conducted by a server cluster with a 64-bit Linux operating
system. The hardware includes Tesla V100 GPU (32 GB memory) and Intel(R) Xeon(R)
Gold 6230 CPU @ 2.10 GHz.

5.5.2. Complexity of Representative Methods

The complexity of each method is evaluated using the RSC11 test set and a scale
factor of 9.7. The evaluation is performed by measuring the #FLOPs (G), #Params (M), and
Inference Time (s) of each method. The results are presented in Table 6, where #FLOPs
(G) denotes the average computation required for each image, #Params (M) represents the
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number of model parameters, and Inference Time (s) signifies the average time required for
inference on a single image. On the one hand, CDCR exhibits low computational overheads
and a modest number of parameters. On the other hand, CDCR+ requires the prediction
of multiple magnification steps, leading to a notable increase in the inference time. As
such, CDCR+ is more suitable for scenarios in remote sensing where accuracy is paramount
rather than computational efficiency.

Table 6. The statistics of FLOPs, Params, and Inference Time for different methods. #FLOPs (G)
indicates the computation amount for a single image during the inference phase. #Params (M)
indicates the number of model parameters, and Inference Time (s) indicates the average time taken to
infer an image.

Method #FLOPs (G) #Params (M) Inference Time (s)

Meta-SR [1] 3.83 1.67 0.076
LIIF [2] 5.99 1.57 0.234
ArbSR [39] 2.90 1.23 0.079
A-LIIF [35] 6.31 1.67 0.566
CDCR (ours) 6.05 1.58 0.270
CDCR+ (ours) - - 2.979

6. Conclusions

This paper proposes a novel image representation method, i.e., the combined discrete
and continuous representation (CDCR), to address the challenging problem of reconstruct-
ing satellite images at arbitrary resolutions. As a plug-in method, CDCR can be integrated
into existing super-resolution frameworks, enabling the generation of images at any desired
resolution. Our CDCR combines the advantages of continuous representation (CR) and
discrete representation (DR). On the one hand, the CR-based dense prediction ensures
the generalization ability of the model, while on the other hand, the DR-based resolution-
specific refinement with modulated modules improves high-frequency information in
generated images and mitigate over-smoothing issues that may arise from CR. Addition-
ally, this paper introduces a scale cumulative ascent (SCA) method during the inference
phase to tackle the underfitting problem at ultra-high magnifications for the first time. The
SCA method requires a large amount of inference time to produce more accurate images,
which is crucial for remote sensing scenes with high accuracy requirements. To the best of
our knowledge, this is the first work to systematically categorize and compare a majority
of scale-arbitrary super-resolution methods in remote sensing scenes. As a general model,
it may be considered to decrease the number of hyperparameters in CDCR to mitigate
the potential impact of excessive manual design on the generated results. In the future,
our focus will be on improving the efficiency of image representation methods, including
enhancements to the encoder, to drive further advancements in super-resolution techniques
in remote sensing.
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