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Abstract: The accuracy and reliability of satellite precipitation products (SPPs) are important for
their applications. In this study, four recently presented SPPs, namely, GSMaP_Gauge, GSMaP_NRT,
IMERG, and MSWEP, were evaluated against daily observations from 2344 gauges of mainland China
from 2001 to 2018. Bivariate Moran’s I (BMI), a method that has demonstrated high applicability in
characterizing spatial correlation and dependence, was first used in research to assess their spatial
correlations with gauge observations. Results from four conventional indices indicate that MSWEP
exhibited the best performance, with a correlation coefficient of 0.78, an absolute deviation of 1.6,
a relative bias of −5%, and a root mean square error of 5. Six precipitation indices were selected
to further evaluate the spatial correlation between the SPPs and gauge observations. MSWEP
demonstrated the best spatial correlation in annual total precipitation, annual precipitation days,
continuous wet days, continuous dry days, and very wet day precipitation with global BMI of 0.95,
0.78, 0.78, 0.78, and 0.87, respectively. Meanwhile, IMERG showed superiority in terms of maximum
daily precipitation with a global BMI value of 0.91. IMERG also exhibited superior performance in
quantifying the annual count days that experience precipitation events exceeding 25 mm and 50 mm,
with a global BMI of 0.96, 0.92. In four sub-regions, these products exhibited significant regional
characteristics. MSWEP demonstrated the highest spatial correlation with gauge observations in
terms of total and persistent indices in the four sub-regions, while IMERG had the highest global
BMI for extreme indices. In general, global BMI can quantitatively compare the spatial correlation
between SPPs and gauge observations. The Local Indicator of Spatial Association (LISA) cluster map
provides clear visual representation of areas that are significantly overestimated or underestimated.
These advantages make BMI a suitable method for SPPs assessment.

Keywords: satellite precipitation products; Bivariate Moran’s I; LISA cluster map; GSMAP;
IMERG; MSWEP

1. Introduction

The territory of China is characterized by a wide range of geographical conditions
and climatic zones, which result in a complex and varied distribution of precipitation
across the region. The eastern areas of China are influenced by a monsoonal climate,
while the northwestern regions have a temperate continental climate, and the Tibet Plateau
have an alpine climate [1,2]. These complexities in precipitation patterns influence the
frequency of drought and flood events significantly, which pose a threat to human safety
and well-being, food security, and the stability of the ecosystem [3]. Thus, reliable and high-
resolution quantitative precipitation estimation is of the utmost importance for effective
risk management and climate change adaption.

Precipitation observations can be achieved with three main methods: gauge observa-
tions, weather radars, and satellite sensors [4]. As a traditional precipitation observation
method, the advantages of the gauge observations include accurate point data and long
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historical data. However, the uneven distribution of rain gauges in China would lead to
large errors in the spatial interpolation method for obtaining spatially continuous data
in areas with a low rainfall station density and complex terrain [5]. Weather radars can
provide three-dimensional precipitation observations with temporal and spatial resolutions
of minutes and kilometers, respectively [6]. However, the spatial coverage of radars is
limited, and signal occlusion by complex terrain, signal attenuation, and the inaccuracies
of the reflectivity-precipitation rate (Z-R) relationship leads to uncertainty in precipitation
estimates [7]. Currently, satellite sensors can provide a uniform precipitation measurement
globally, compensating for the limitations of rain gauge observations with its wide spatial
coverage and continuous precipitation measurement [8].

At present, the two landmark satellites for precipitation measurement are the Tropical
Rainfall Measuring Mission (TRMM) [9] satellite and the Global Precipitation Measure-
ment (GPM) satellite [10,11]. GPM is a follow-up plan of TRMM, which can quantify
the microscopic physical properties of precipitation particles and detect light intensity
precipitation and snow more accurately. With the advantages of satellite sensors, a variety
of high resolution satellite precipitation products (SPPs) have been developed [12–17],
including Integrated Multi-Satellite Retrievals for GPM (IMERG), Global Precipitation
Satellite Mapping products (GSMaP), Climate Prediction Center Morphing Technique
(CMORPH) [16], Multi-Source Weighted-Ensemble Precipitation (MSWEP) [17], etc., which
provide researchers with a variety of options.

The evaluation of SPPs is essential for its applications, which include both global
assessments [18–20] and regional assessments [21–25] covering different time scales [26–30].
Statistical indices such as the absolute deviation (AD), relative deviation (RB), root mean
square error (RMSE), and correlation coefficient (Corr) are most common indices in these
studies [31–34]. In recent years, extreme indices, which are important for flood prevention
and drought management, have received significant attention and have been studied
by many researchers [35–41]. However, most of these indices are grid-based and are
calculated based on the differences between gauge observations and SPP grids with the
same geographical locations. These indices can evaluate the performance of SPPs in a single
grid and their statistical values, such as the mean value, median value, and variance, and
can also provide an overview of the total performance in a region. Nevertheless, evaluating
the performance of SPPs with respect to spatial distribution remains a challenging task.
Most evaluations rely on the figure description without explicit indices. Recently, a map
comparison technique, the Structural Similarity Index (SSI) [42], was used to identify
differences between two spatial distribution maps of precipitation. However, as a map-
based technique, SSI requires gauge observations to be transferred to grid maps through
interpolation, which restrict its application.

The Bivariate Moran’s I (BMI) [43] is a widely adopted spatial correlation index that
represents a spatial weighting of Pearson’s correlation coefficient. The index possesses high
applicability and effectiveness in capturing the spatial correlation and interdependence
between two elements. The BMI is a well-established indicator of spatial correlation and
has been extensively utilized in evaluating the spatial relationships between different
geographical factors [44–46]. Furthermore, the Local Indicator of Spatial Association (LISA)
cluster maps can be utilized to determine the regional distribution of local correlation types
and their statistical significance. Therefore, we believe that the BMI is very suitable for
evaluating the spatial correlation between SPPs and gauge observations.

The objective of this study is to evaluate the performance of four recent SPPs over
mainland China against daily observations from 2344 gauges between 2001 to 2018. The
four SPPs include the current GPM products, GSMaP-Gauge, GSMaP-NRT, IMERG, and
the widely used precipitation fusion product, MSWEP. A novel spatial correlation index,
BMI, is adopted for the first time to evaluate the SPPs with respect to spatial distribution.
The specific objectives include: (1) to assess the performance of the four SPPs in terms of
absolute deviation, relative bias, root mean square error, and correlation coefficient against
the gauge observations; (2) to use the BMI to identify the spatial correlation between six
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precipitation indices obtained from SPPs and those from gauge observations in mainland
China and its sub-regions, and to use the LISA cluster map to analyze the local clustering
characteristics of their differences; and (3) to compare the advantages of the BMI in spatial
assessment with the universal assessment method. The study provides a comprehensive
evaluation of the overall spatial correlation and local clustering characteristics of SPPs over
mainland China and expands the spatial evaluation methods.

2. Materials and Methods
2.1. Study Area

Due to the large differences in natural geographical conditions and contrasts in climate,
precipitation in mainland China is highly variable and characterized by complex spatial
and temporal distributions [47]. Therefore, we divide mainland China into subregions to
capture the regional characteristics of precipitation [48]. According to the altitude, annual
precipitation distribution, and the existence of mountains, it can be divided into three
regions: the eastern monsoon region, the northwest region (NWC), and the Tibet Plateau
region (TP). The eastern monsoon region is further divided into the northern region (NC)
and the southern region (SC) according to the latitude difference, separated by the Qinling
Mountains Huaihe River (Figure 1).
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2.2. Datasets
2.2.1. Four SPPs

IMERG is a level 3 product of the GPM mission, which utilizes data from multiple
satellite sensors onboard the GPM platform, including information from previous missions
such as TRMM. IMERG leverages data from a multitude of Low Earth Orbit (LEO) satellites
and complements it with geostationary Earth orbit (GEO) infrared estimates to overcome
the limited sampling of individual LEO satellites [13]. IMERG has proven useful in various
meteorological and precipitation assessments [49–51]. This study utilized the IMERG v06
Final-Run precipitation dataset, which has a spatial resolution of 0.1◦ and a temporal
resolution of 1 day.

GSMaP is another project under the Japan Precipitation Measurement Mission (PMM)
scientific team. The GSMaP algorithm utilizes various Passive Microwave/Infrared
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(PMW/IR) sensors, such as the GPM Microwave Imager (GMI) [52]. GSMaP_MVK is
obtained by a joint passive microwave and infrared inversion algorithm based on the
Kalman filter moving vector method [53]. Another near-real-time product of GSMaP_NRT
was developed and attracted many data users because of its short latency (about 3 h after
observation). GSMaP_Gauge is then obtained by correcting the GSMaP_MVK using CPC
rainfall station data. GSMaP_NRT and GSMaP_Gauge products are used in this study with
resolutions of 0.1◦ and 1 d.

MSWEP is a recently developed global precipitation dataset by Beck et al. [54]. It
incorporates global site data, multiple satellite observations, and reanalysis data, and it is
revised with some runoff and potential evapotranspiration data. MSWEP has attracted
extensive international attention since its release due to its relatively high spatial resolution
(0.1◦), long time series (1979–2017), and strong data integrity [55]. In this study, MSWEP
V2 is adopted in the study, and the daily precipitation was obtained by accumulating
precipitation observations for 3 h.

2.2.2. Rain Gauge Data

In this study, daily precipitation data from 2344 meteorological gauges in China
from 2001 to 2018 were used. The dataset was compiled by the China Meteorological
Administration (CMA). The quality of the data set was strictly controlled before release.
We preprocessed the missing daily precipitation data using multi-year daily averages at a
given point in time. The distribution of rain gauges is shown in Figure 1.

2.3. Methods
2.3.1. Conventional Indices

In order to compare the performance of four SPPs generally, we used the point-to-pixel
method to calculate AD, RB, RMSE, and Corr between each gauge’s observation data
and satellite precipitation data, and carried out the spatial average of the index values of
different sub-regions. The calculation methods are as follows [56,57]:

AD =
1
N ∑N

i=1|Si − Gi|, (1)

RB =
∑N

i=1(Si − Gi)

∑N
i=1(Gi)

∗ 100%, (2)

RMSE =

√
1
N ∑N

i=1(Si − Gi)
2, (3)

Corr =
∑N

i=1
(
Si − S

)(
Gi − G

)√
∑N

i=1
(
Si − S

)2
√

∑N
i=1
(
Gi − G

)2
, (4)

where N is the number of gauges; S and G are the SPPs data and the gauge observations, re-
spectively; S is the average of the SPPs data; and G is the average of the gauge observations.

2.3.2. Spatial Correlation Analysis
BMI

The BMI, which encompasses both global and local variations, has been widely ac-
knowledged as a suitable tool to compare the spatial correlation between two geographic
elements [58]. In this research, we employed the BMI method to investigate the spatial
correlation between SPPs and gauge observations.

The calculation equations of global BMI and local BMI can be expressed as follows:

IB =
N ∑N

i ∑N
j 6=i WijZG

i ZS
j

(N − 1)∑N
i ∑N

j 6=i Wij
(5)
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IB
i = ZG

i ∑N
j=1 WijZS

j , (6)

where IB, IB
i refer to the global and local BMI, respectively; N is the total number of

gauges; ZG
i and ZS

j refer to the standardized value of gauge observations for i site and the
standardized value of SPPs for the j site, respectively; and Wij is the Euclidean distance
weight between i and j sites.

The values of IB, IB
i range from −1 to 1. A positive value indicates a positive spatial

correlation between SPPs and gauge observations, while a negative value indicates a
negative spatial correlation [59]. IB can also be expressed as the slope of the linear fit to the
bivariate Moran scatter plot, which consists of a plot with the spatially lagged standardized
satellite precipitation data on the y-axis and the standardized gauge observations on
the x-axis.

The LISA cluster map is derived from local BMI, and identifies the spatial correlation
clusters as: High-High (H-H), Low-Low (L-L), High-Low (H-L), and Low-High (L-H). H-H
and L-L clusters indicate that there is a positive correlation between SPPs and satellite
gauge observations in this region, while H-L and L-H clusters indicate that there is a
negative correlation between them. In this study, the significance of the local BMI was
assessed by a permutation test [58], and the significance level was set to 0.05.

Selected Precipitation Indices

The spatial correlation between gauge observations and SPPs was achieved by cal-
culating the BMI between precipitation indices computed using gauge observations and
those obtained from SPPs. Eight widely used precipitation indicators defined by the Expert
Group on Climate Change Detection and Indices (ETCCDI) [60,61] were selected. The
six indicators were mainly divided into three categories, and their definitions are shown
in Table 1.

Table 1. Detailed information on precipitation indices.

Sort Index Definition Units

Total indices
ATP Annual total precipitation mm
ATD Annual total precipitation days days

Persistent indices
CDD Maximum number of consecutive dry days days
CWD Maximum number of consecutive wet days days

Extreme
indices

R95 The 95th percentile of daily precipitation on wet days mm
Rmax Annual max 1-day precipitation mm

Frequency indices R25 Annual count of days when daily precipitation is >25 mm days
R50 Annual count of days when daily precipitation is >50 mm days

3. Results
3.1. Conventional Indices

The conventional indices of the satellite precipitation data in China and its subregions
were presented in Table 2. The results showed that MSWEP had the best performance, with
a Corr of 0.78, an AD of 1.6, a RB of −5%, and a RMSE of 5. IMERG was ranked second,
while GSMaP_NRT performed the poorest due to the lack of merged rain gauge data.
Among the four regions, the highest correlation between SPPs and gauge observations
was observed in SC, whereas the lowest correlation was in NWC. MSWEP show the
highest correlation in all four regions, with a Corr of 0.80, 0.78, 0.70, and 0.74 respectively.
GSMaP_Gauge and GSMaP_NRT largely underestimated the daily precipitation in SC, but
overestimated it in NC, NWC, and TP, particularly in NWC, with an RB of 53% and 209%,
respectively. IMERG overestimated the daily precipitation in all four regions, with a RB of
10%, 6%, 22%, and 13%, respectively. MSWEP mainly underestimated daily precipitation in
NC, SC, and NWC by −8%, −6%, and −3%, respectively, but showed a positive deviation
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of 18% in TP. Overall, MSWEP and IMERG performed better than GSMaP_Gauge and
GSMaP_NRT in four sub-regions, especially in TP and NWC.

Table 2. The conventional indices of the satellite precipitation data in China and its sub-regions.

Index SPP NC SC NWC TP China

Corr

GSMaP_Gauge 0.62 0.65 0.44 0.55 0.61
GSMaP_NRT 0.49 0.60 0.37 0.47 0.53

IMERG 0.73 0.73 0.64 0.66 0.71
MSWEP 0.80 0.78 0.70 0.74 0.78

AD

GSMaP_Gauge 1.5 3.1 0.5 1.5 2.2
GSMaP_NRT 1.9 3.1 2.1 1.8 2.4

IMERG 1.4 3.0 0.2 1.3 2.0
MSWEP 1.0 2.4 0.0 1.1 1.6

RB

GSMaP_Gauge 4% −8% 53% 23% 5%
GSMaP_NRT 40% −12% 209% 56% 35%

IMERG 10% 6% 22% 13% 9%
MSWEP −8% −6% −3% 18% −5%

RMSE

GSMaP_Gauge 5.4 8.7 3.2 4.2 6.7
GSMaP_NRT 8.0 9.6 6.4 5.5 8.4

IMERG 4.7 7.9 2.2 3.5 5.9
MSWEP 3.9 6.7 2.0 3.0 5.0

The high performance of the MSWEP product can be attributed to its integration of
precipitation estimates from multiple sources, including satellite-based estimates, gauge-
based observations, and reanalysis data. Notably, the incorporation of a large number of
gauge observations has significantly enhanced its accuracy, which may explain why it has
the best performance in the study. Moreover, SC has the highest density of rain gauges
on the Chinese mainland. This provides ample data sources for the SPPs to improve their
estimates, especially for the MSWEP and GSMaP_Gauge. In contrast, NWC has a sparse
rain gauge network, which restricts the improvement of SPPs in this region. This difference
in rain gauge density may be one of the reasons why SC has a higher correlation with
gauge observations compared to NWC.

3.2. Spatial Correlation Analysis
3.2.1. Total Indices
BMI in China

The global BMI of ATP and ATD was calculated and their bivariate Moran scatter plots
were shown in Figures 2 and 3. As illustrated in Figure 2, the BMI of ATP for GSMaP_Gauge,
GSMaP_NRT, IMERG, and MSWEP are 0.93, 0.74, 0.96, and 0.95, respectively. Products
such as GSMaP_Gauge, IMERG, and MSWEP demonstrate good spatial correlation with
the gauge observations and effectively capture the spatial pattern of ATP. Meanwhile,
GSMaP_NRT exhibits a significantly lower BMI compared to the other products. In Figure 3,
the BMI of ATD for the four products were found to be 0.77, 0.71, 0.68, and 0.89, respectively.
Despite having the best spatial correlation for annual precipitation, IMERG demonstrates
poor performance in capturing annual precipitation days. However, the scatter plot in
the figure indicates that MSWEP can effectively capture not only the spatial distribution
characteristics of annual precipitation but also the number of annual precipitation days.

The LISA cluster maps of ATP and ATD are presented in Figures 4 and 5. Figure 4
indicates that the ATP produced by GSMaP_Gauge, IMERG, MSWEP, and the gauge
observations demonstrate a strong positive spatial correlation with L-L clusters in NWC,
NC and TP, and H-H clusters in central and southern SC. Meanwhile, there is a notable
negative spatial correlation between the gauge observations and GSMaP_NRT in the TP,
which is evidenced by the L-H clusters in the eastern region of the plateau, suggesting that
GSMaP_NRT significantly overestimates ATP.
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In Figure 5, the ATD obtained by the four SPPs and the gauge observations display
significant positive spatial correlation in NWC and NC with L-L clusters. GSMaP_NRT and
GSMaP_Gauge show a strong positive correlation in the northeast and northwest regions
of SC and the eastern region of the TP, as indicated by H-H clusters. IMERG demonstrates
strong positive correlation with H-H clusters in the eastern SC, but it also shows a negative
spatial correlation with L-H clusters in the junction between NC and SC, suggesting that
IMERG significantly overestimates ATD. MSWEP demonstrates a higher proportion of
H-H clusters in the SC and TP compared to the other precipitation products.

BMI in Four Sub-Regions

The BMI for the total indices of four sub-regions were calculated and presented in
Table 3. Results indicate that IMERG has the highest spatial correlation with the gauge
observations for ATP across all sub-regions. Among the ATD, MSWEP performed the best
in both NC and SC. In summary, MSWEP excels at capturing the spatial distribution of total
indices in NC and SC, IMERG performs well in NWC, and both IMERG and GSMaP_Gauge
perform well in Tibet Plateau TP.
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the number in the bracket represent the corresponding number of gauges: (a) GSMaP_Gauge,
(b) GSMaP_NRT, (c) IMERG, and (d) MSWEP.

Table 3. The global BMI of total indices in four sub-regions.

Index Sub-Region GSMaP_Gauge GSMaP_NRT IMERG MSWEP

ATP

NC 0.79 0.65 0.88 0.85
SC 0.80 0.45 0.87 0.83

NWC 0.65 0.38 0.73 0.65
TP 0.67 0.63 0.67 0.60

ATD

NC 0.38 0.35 0.62 0.84
SC 0.30 0.20 0.01 0.65

NWC 0.53 0.51 0.63 0.60
TP 0.60 0.60 0.60 0.60

3.2.2. Persistent Indices
BMI in China

The results of the global BMI and its scatter plots for CDD and CWD between SPPs
and gauge observations are presented in Figures 6 and 7, respectively. As can be seen from
the scatter plots, the global BMI for the CDD of GSMaP_Gauge, GSMaP_NRT, IMERG,
and MSWEP are 0.66, 0.65, 0.67, and 0.78, respectively. The global BMI for the CWD of
the four products were 0.73, 0.65, 0.70, and 0.78, respectively. Among the four products,
MSWEP has the highest spatial correlation with the gauge observations, indicating that it
has the best performance in capturing CDD and CWD. Conversely, GSMaP_NRT, which
did not incorporate gauge observations, performed the worst.



Remote Sens. 2023, 15, 1823 10 of 25

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 27 
 

 

3.2.2. Persistent Indices 
BMI in China 

The results of the global BMI and its scatter plots for CDD and CWD between SPPs 
and gauge observations are presented in Figures 6 and 7, respectively. As can be seen from 
the scatter plots, the global BMI for the CDD of GSMaP_Gauge, GSMaP_NRT, IMERG, 
and MSWEP are 0.66, 0.65, 0.67, and 0.78, respectively. The global BMI for the CWD of the 
four products were 0.73, 0.65, 0.70, and 0.78, respectively. Among the four products, 
MSWEP has the highest spatial correlation with the gauge observations, indicating that it 
has the best performance in capturing CDD and CWD. Conversely, GSMaP_NRT, which 
did not incorporate gauge observations, performed the worst. 

  

  
Figure 6. The global BMI scatter plot of CDD between the gauge observations and the four SPPs: (a) 
GSMaP_Gauge, (b) GSMaP_NRT, (c) IMERG, and (d) MSWEP. 

Figure 6. The global BMI scatter plot of CDD between the gauge observations and the four SPPs:
(a) GSMaP_Gauge, (b) GSMaP_NRT, (c) IMERG, and (d) MSWEP.

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 27 
 

 

  

Figure 7. The global BMI scatter plot of CWD between the gauge observations and the four SPPs: 
(a) GSMaP_Gauge, (b) GSMaP_NRT, (c) IMERG, and (d) MSWEP. 

The LISA cluster maps for CDD and CWD are depicted in Figures 8 and 9, respec-
tively. It is evident from Figure 8 that the CDD values obtained from the four SPPs exhibit 
a substantial positive spatial correlation with the gauge observations, as demonstrated by 
the L-L clusters in the northern region of SC and the H-H clusters in NWC and TP. How-
ever, a significant negative correlation between the GSMaP_NRT and GSMaP_Gauge and 
the gauge observations is observed in the northeast of NC, indicated by the L-H clusters. 
IMERG exhibits a negative spatial correlation with H-L clusters in the southeast of NC 
and L-H clusters in the west and south of SC. MSWEP displays a negative spatial correla-
tion with H-L clusters in the border region between SC and TP. 

  

Figure 7. The global BMI scatter plot of CWD between the gauge observations and the four SPPs:
(a) GSMaP_Gauge, (b) GSMaP_NRT, (c) IMERG, and (d) MSWEP.

The LISA cluster maps for CDD and CWD are depicted in Figures 8 and 9, respectively.
It is evident from Figure 8 that the CDD values obtained from the four SPPs exhibit a
substantial positive spatial correlation with the gauge observations, as demonstrated by the
L-L clusters in the northern region of SC and the H-H clusters in NWC and TP. However,
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a significant negative correlation between the GSMaP_NRT and GSMaP_Gauge and the
gauge observations is observed in the northeast of NC, indicated by the L-H clusters.
IMERG exhibits a negative spatial correlation with H-L clusters in the southeast of NC and
L-H clusters in the west and south of SC. MSWEP displays a negative spatial correlation
with H-L clusters in the border region between SC and TP.
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Figure 8. The LISA cluster maps of CDD between the gauge observations and the four SPPs and the
number in the bracket signify represent the corresponding number of gauges: (a) GSMaP_Gauge,
(b) GSMaP_NRT, (c) IMERG, and (d) MSWEP.

In Figure 9, the CWD values obtained from the four SPPs exhibit a positive spatial
correlation with the gauge observations, as demonstrated by the L-L clusters in NWC and
NC as well as the H-H clusters in TP and the southern region of SC. The L-H and H-L
clusters, which are present in the results of GSMaP_NRT, GSMaP_Gauge, and IMERG,
are much smaller compared to those in the CDD values. This indicates that the spatial
correlations for CWD are much better than those for CDD.
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BMI in Four Sub-Regions

The results of the global BMI analysis of the persistent indices in four regions are
presented in Table 4. The analysis reveals that MSWEP has the highest spatial correlation
with CDD and CWD in all four regions. In comparison, the CDD values obtained from
GSMaP_Gauge, GSMaP_NRT, and IMERG have significantly lower spatial correlations
with the gauge observations in NC and SC when compared to MSWEP. Furthermore, the
CWD values obtained from the four SPPs exhibit the worst spatial correlation in NWC.
Among the four SPPs, IMERG shows the weakest performance in NC and SC.

Table 4. The global BMI of persistent indices in four sub-regions.

Index Sub-Region GSMaP_Gauge GSMaP_NRT IMERG MSWEP

CDD

NC 0.20 0.18 0.59 0.85
SC 0.56 0.56 0.54 0.71

NWC 0.44 0.41 0.60 0.63
TP 0.58 0.58 0.56 0.67

CWD

NC 0.60 0.60 0.32 0.56
SC 0.51 0.54 0.49 0.62

NWC 0.35 0.33 0.39 0.40
TP 0.49 0.45 0.47 0.59
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3.2.3. Extreme Indices
BMI in China

The results of the global BMI and its scatter plots for R95 and Rmax between SPPs and
gauge observations are presented in Figures 10 and 11. The results reveal that the global
BMI values of R95 for GSMaP_Gauge, GSMaP_NRT, IMERG, and MSWEP are 0.83, 0.73,
0.84, and 0.87, respectively. Similarly, the global BMI values of Rmax for the four products
are 0.83, 0.46, 0.91, and 0.88, respectively.
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Figure 10. The global BMI scatter plot of R95 between the gauge observations and the four SPPs:
(a) GSMaP_Gauge, (b) GSMaP_NRT, (c) IMERG and (d) MSWEP.

The results indicate that the GSMaP_Gauge, IMERG, and MSWEP accurately rep-
resent the spatial distribution of extreme events. Among these, MSWEP shows the best
performance in R95, while IMERG is best in Rmax. In contrast, GSMaP_NRT demonstrates
the weakest performance among the four SPPs.

The LISA cluster maps of R95 and Rmax are shown in Figures 12 and 13. The results
indicate that the R95 and Rmax obtained from the four SPPs display significant positive
spatial correlations with the gauge observations, as evidenced by the presence of L-L
clusters in the NWC and TP. Furthermore, GSMaP_Gauge, IMERG, and MSWEP exhibit
significant H-H clusters in the central and southern SC. However, GSMaP_NRT only
exhibits significant H-H clusters in the coastal areas of SC. The worst performing product,
GSMaP_NRT, shows significant negative spatial correlation with H-L clusters in central SC
and L-H clusters in the western NC and eastern NWC.
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BMI in Four Sub-Regions

The results of the BMI of extreme indices in the four sub-regions are shown in Table 5.
The analysis shows that IMERG has the highest positive spatial correlation with gauge
observations in all four sub-regions, as reflected in the highest values of the global BMI.
Meanwhile, the global BMI of GSMaP_NRT was significantly lower in comparison to the
other precipitation products, particularly in NWC, where the values of global BMI were
only 0.12 and −0.12 for R95 and Rmax, respectively. The results also indicate that the
spatial correlation of extreme indices is weaker in TP compared to other regions.

Table 5. The global BMI of extreme indices in four sub-regions.

Index Sub-Region GSMaP_Gauge GSMaP_NRT IMERG MSWEP

R95

NC 0.67 0.59 0.83 0.83
SC 0.80 0.70 0.73 0.74

NWC 0.67 0.12 0.83 0.71
TP 0.53 0.43 0.69 0.57

Rmax

NC 0.69 0.15 0.83 0.81
SC 0.71 0.47 0.80 0.74

NWC 0.25 −0.12 0.84 0.73
TP 0.52 0.38 0.57 0.47
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(b) GSMaP_NRT, (c) IMERG, and (d) MSWEP.

3.2.4. Frequency Indices
BMI in China

The results of the global BMI and its scatter plots for R25 and R50 between SPPs and
gauge observations are presented in Figures 14 and 15. The results reveal that the global
BMI values of R25 for GSMaP_Gauge, GSMaP_NRT, IMERG, and MSWEP are 0.92, 0.77,
0.96, and 0.94, respectively. Similarly, the global BMI values of R50 for the four products
are 0.89, 0.73, 0.92, and 0.88, respectively.

The results suggest that IMERG performs the best among the four selected prod-
ucts, indicating a robust ability to detect extreme precipitation events. GSMaP_Gauge
and MSWEP also demonstrate a strong ability in detecting extreme precipitation events.
However, GSMaP_NRT shows the weakest performance among the four products. It
is important to note that R50 is temporally non-stationary in some regions due to high
thresholds, which will lead to the uncertainties in BMI results.

The LISA cluster maps of R25 and R50 are shown in Figures 16 and 17. The results
suggest that the R25 and R50 derived from the four SPPs exhibit considerable positive
spatial correlations with the gauge observations, with the H-H cluster located in the
eastern SC and L-L clusters located in the NWC. Conversely, the GSMaP_NRT results
show noteworthy negative spatial correlations with L-H clusters in the eastern TP and
H-L clusters in southwest SC. The GSMaP_Gauge also indicates a slight presence of L-H
clusters in eastern TP.
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Remote Sens. 2023, 15, 1823 18 of 25

Remote Sens. 2023, 15, x FOR PEER REVIEW 22 of 27 
 

 

 

  
(a) (b) 

  
(c) (d) 

Figure 17. The LISA cluster maps of R50 between the gauge observations and the four SPPs and the 
number in the bracket represent the corresponding number of gauges: (a) GSMaP_Gauge, (b) 
GSMaP_NRT, (c) IMERG, and (d) MSWEP. 

  

Figure 17. The LISA cluster maps of R50 between the gauge observations and the four SPPs and
the number in the bracket represent the corresponding number of gauges: (a) GSMaP_Gauge,
(b) GSMaP_NRT, (c) IMERG, and (d) MSWEP.

BMI in Four Sub-Regions

The results of the BMI of frequency indices in four sub-regions are shown in Table 6.
The results demonstrate that IMERG exhibits the strongest positive spatial correlation
with gauge observations across all four sub-regions, as indicated by its highest global BMI
values. In contrast, GSMaP_NRT yields significantly lower global BMI values compared to
the other precipitation products, particularly in NWC where the R50 global BMI values are
a mere −0.12. Additionally, the analysis reveals weaker spatial correlation of frequency
indices in NWC relative to the other regions.

Table 6. The global BMI of frequency indices in four sub-regions.

Index Sub-Region GSMaP_Gauge GSMaP_NRT IMERG MSWEP

R25

NC 0.78 0.71 0.88 0.83
SC 0.81 0.53 0.88 0.82

NWC 0.57 0.28 0.81 0.51
TP 0.52 0.46 0.68 0.49

R50

NC 0.72 0.58 0.87 0.80
SC 0.79 0.57 0.84 0.77

NWC 0.06 −0.12 0.68 0.29
TP 0.38 0.30 0.49 0.26



Remote Sens. 2023, 15, 1823 19 of 25

4. Discussion

Spatial scatter plots of absolute and relative bias are commonly used to evaluate the
spatial characteristics of SPPs [61,62]. These plots provide preliminary spatial correlation
information. However, BMI has several advantages over spatial scatter plots.

Firstly, BMI provides a value that quantifies the spatial correlation between SPPs and
gauge observations. Unlike the correlation coefficient, BMI is not site to site, but accounts
for the distribution of neighbor observations by considering the special weights illustrated
in Equation (5).

Secondly, the LISA cluster map not only displays the bias, but also provides infor-
mation on its significance. By employing a permutation test, the significance of local BMI
values can be determined, thereby indicating areas where there is a high degree of cor-
relation or discrepancies, including underestimation or overestimation. Figure 14 shows
the spatial scatter plots of the relative bias of CDD for four SPPs and gauge observations.
When compared to Figure 18, the LISA cluster map (Figure 8) provides a clearer picture of
exceptional sites and their special correlation relations, which is difficult to discern from
the spatial scatter plots of relative bias.
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Finally, the LISA cluster map is capable of identifying the spatial correlation rela-
tionships between SPP products and gauge observations at different scales based on their
regional spatial distributions. Figure 19 illustrates the LISA cluster map of CDD between
four SPP products and gauge observations in SC. Compared to Figure 14, the LISA cluster
map highlights significant correlation clusters based on the regional spatial distributions
of SPP products and gauge observations. However, the spatial scatter plot of absolute
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bias will remain unchanged across different scales. It is important to note that BMI is
similar to the correlation coefficient in that it only describes the spatial correlation between
two spatial variables. However, BMI can’t take into account the absolute value difference
between the variables. Therefore, it is recommended to use BMI in conjunction with con-
ventional indices that describe the absolute value difference, such as absolute deviation or
relative deviation.
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5. Limitations

The significance test of BMI is based on the normal distribution assumption. If the data
clearly deviates from the normal distribution, it may affect the results of the significance
test. Given the uneven distribution of precipitation across the Chinese mainland, the
precipitation index distribution can be impacted by outliers, making it difficult to follow a
normal distribution. Although some researchers also state that the test results are robust to
the nonnormality of data [62], we conducted an experiment to test whether non-normality
significantly affects the test results. We applied the Box-Cox method to transform the
precipitation index into a normal distribution and calculated the BMI of the transformed
index, and then compared the BMI of the transformed index with the original index. All
precipitation indices were examined with the method, and the results for ATP are presented
in Figures 20 and 21.

Compared with Figure 2 to 20, we observed that there were only slight differences
in the global BMI between the Box-cox transferred precipitation indices and the original
precipitation indices, which will not influence the comparative results. Compared with
Figure 4 to 21, the LISA cluster map also remained unaltered. Therefore, the non-normality
of the data did not affect the conclusion of our research. However, in future applications of
BMI in SPPs evaluation, it will be important to examine data normality, and the influence
of data non-normality should be addressed before conducting significant tests.
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It should also be noted that the LISA cluster map is highly sensitive to spatial scale. As
shown in Figures 8 and 19, spatial correlation clusters in SC change significantly between
the two figures due to differences in spatial scale, which could lead to confusion among
the public and the decision makers. Additionally, the distance threshold is a critical
consideration in Bivariate Moran’s I. It represents the maximum distance at which spatial
relationships are expected to occur and is necessary in some circumstances to exclude non-
spatially correlated factors from analysis. However, the selection of the distance threshold
can significantly affect the analysis results, making it important to carefully consider an
appropriate threshold. Bivariate Moran’s I is also sensitive to outliers, which may lead to
misjudging spatial autocorrelation when extreme values are present in the data.

6. Conclusions

This research aimed to evaluate the performance of four SPPs, including GSMaP_Gauge,
GSMaP_NRT, IMERG V06, and MSWEP V2, over mainland China by comparing their re-
sults with daily observations from 2344 gauges. A novel evaluation method, BMI, was
employed to assess the spatial correlation between precipitation indices achieved by SPPs
and those obtained from gauge observations, and the results were further analyzed using
LISA cluster maps. The main findings are as follows:

(1) Conventional index evaluations showed that MSWEP performed the best among the
four products, with the highest correlation coefficient (0.78) and the lowest absolute
deviation (1.6), relative bias (−5%), and root mean square error (5). IMERG was ranked
second, while GSMaP_NRT performed the worst. In terms of different sub-regions,
the performance of MSWEP and IMERG also performed better, especially in the TP
and NWC. Notably, IMERG showed positive deviations in all four regions, while
MSWEP showed negative deviations in NC, SC, and NWC, and a positive deviation
in the TP.

(2) The spatial correlation of the four SPP products with gauge observations was evaluated
using BMI for total, persistent, extreme, and frequency indices. MSWEP showed the
best spatial correlation relationship with the gauge observations in terms of total and
persistent indices, with BMI values of 0.95, 0.89, 0.78, and 0.78, respectively. IMERG
and MSWEP also showed the best spatial correlation among the extreme indices,
with R95 and Rmax having BMI values of 0.84 and 0.91 for IMERG, and 0.87 and
0.88 for MSWEP, respectively. IMERG show the best performance in frequency indices,
with BMI values of 0.96 and 0.92. Conversely, GSMaP_NRT had the worst spatial
correlation in extreme and frequency indices.

(3) The BMI between the four SPP products and gauge observations in different regions
was also calculated. The spatial correlation characteristics of SPP products differed
in different regions. Generally, MSWEP showed the highest spatial correlation with
gauge observations in terms of total and persistent indices in the four regions, while
IMERG had the highest BMI for extreme and frequency indices. Among the four
regions, the four SPPs performed high spatial correlation in NC and SC and low in TP
and NWC.

In conclusion, BMI was found to be an effective tool for evaluating SPPs as it can
quantitatively describe their spatial correlation with gauge observations and provide insight
into the spatial trend characteristics of precipitation indices values. The LISA cluster maps
were particularly useful in identifying significant overestimation or underestimation areas.
These findings have the potential to advance the application of SPP products. However,
the limitations of BMI should also be mentioned, such as the distribution assumption, scale
effects, etc.
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