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Abstract: The world has seen an increase in the number of wildland fires in recent years due to
various factors. Experts warn that the number of wildland fires will continue to increase in the
coming years, mainly because of climate change. Numerous safety mechanisms such as remote fire
detection systems based on deep learning models and vision transformers have been developed
recently, showing promising solutions for these tasks. To the best of our knowledge, there are a
limited number of published studies in the literature, which address the implementation of deep
learning models for wildland fire classification, detection, and segmentation tasks. As such, in this
paper, we present an up-to-date and comprehensive review and analysis of these vision methods
and their performances. First, previous works related to wildland fire classification, detection, and
segmentation based on deep learning including vision transformers are reviewed. Then, the most
popular and public datasets used for these tasks are presented. Finally, this review discusses the
challenges present in existing works. Our analysis shows how deep learning approaches outperform
traditional machine learning methods and can significantly improve the performance in detecting,
segmenting, and classifying wildfires. In addition, we present the main research gaps and future
directions for researchers to develop more accurate models in these fields.

Keywords: wildland fire detection; wildland fire segmentation; wildland fire classification; forest
fire; wildfire; drone

1. Introduction

Fires are one of the most dangerous natural risks that present a big threat to the safety
of humans, properties, and the environment. They can occur in various environments such
as forests, grasslands, bushes, and deserts. They can rapidly spread in the presence of
strong wind. If they are not detected early, these fires may cause devastation to forests and
other areas of vegetation. For that, permanent monitoring of the situation is required to
avoid such disasters. Fires should be detected in the quick and accurate manner possible.

Generally, fires are detected using sensors such as temperature detectors, gas detectors,
smoke detectors, and flame detectors. Nevertheless, these detectors have a number of
limitations like small coverage areas, delayed response, and availability issues for the
general public [1]. Fortunately, the advancement in image processing and computer vision
techniques has made it possible to detect fire with no equipment required other than
cameras. Traditional ground fire detection tools, such as flame and smoke sensors, are
being replaced by vision-based models that have many advantages like accuracy, less
prone to errors, robustness towards the environment, lower cost, and large coverage areas
compared to these sensors [1].

Through the years, researchers attempted to propose many innovative techniques
based on image processing and computer vision in order to set up a fire detection system as
accurately as possible. As fire is distinguished by its color, the color analysis technique has
been widely used. This technique transforms the image into another color space such as
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YCbCr [2,3], Y component is the luminance or luma (brightness) of the color, Cb and Cr are
the blue component and red component, respectively, related to the chroma (the color itself),
YUV [3–5], which determines the luma of the color using the Y components and the chroma
using U and V components, and then classifies its pixels into fire or non-fire based on
comparing pixel values to some thresholds. Efficient Forest Fire Detection Index (EFFDI) [6]
was also used to detect the tonalities of fires based on the color index. It distinguishes fire
areas from the forest background more quickly and efficiently than color space methods
using the thresholding process [6]. To model fire, many techniques extracted high-level
features like optical flow [7] or dynamic texture [8] and used them either independently or
combined [9]. Feature-based techniques presented decent performances in the task of fire
detection but they are outperformed by machine learning (ML) techniques [10,11]. Popular
methods of fire classification, which predict the presence of a wildfire in an input image
include SVM (Support Vector Machine) [12], Markov models [13], Instance-Based Learning
classifiers [14], and Bayesian classifiers [15].

The major difficulty of the above-mentioned techniques is the extraction of relevant
features that best represent the problem we are dealing with. Instead, it is possible to
use a network that learns relevant features on its own. Deep learning (DL) networks
have been successfully used in countless areas across all industries such as automatic
machine translation [16], image/video classification [17,18], speech recognition [19], video
captioning [20], face recognition [21], self-driving cars [22], health diseases detection [23],
medical image segmentation [24], and drug discovery [25]. For all of the aforementioned
applications, deep learning proved its efficiency in object detection, segmentation, and
classification thanks to both automatic extraction and classification of features from data
within the same network. In fact, with the availability of huge amounts of data and
higher computational power, deep learning has been employed for wildfire classification,
detection, and segmentation tasks. It showed its potential to tackle these problems faced
by classical ML methods for both ground and aerial images [10]. In addition, automated
detection systems using deep learning can be extremely beneficial for the development
of fire detection AI agents. Utilizing these models can help detect and track fires quickly
and accurately within the view of the camera. If the DL system detects a fire in one view
of a camera, it can alert other cameras in the network to adapt their angle and zoom to
get a second or third perspective on the fire, which can help more accurately geolocate
the fire and its propagation, expediting the dispatch of resources to begin suppression
operations. As far as we know, only a few reviews have been introduced in the literature
presenting deep learning models used for forest fire classification and detection tasks.
Among them, Bouguettaya et al. [26] reviewed DL techniques used for early forest fire
detection from UAVs (Unmanned Aerial Vehicles). Akhloufi et al. [27] provided a review
of the development of UAV systems in the forest fire context, highlighting existing fire
perception models, sensing instruments, cooperative autonomous systems for forest fires,
and different coordination strategies. Barmpoutis et al. [28] reviewed fire detection systems
(terrestrial, spaceborne, and airborne systems) as well as the smoke and flame detection
models used on each system. Geetha et al. [29] presented a survey of smoke and fire
detection methodologies, including classical ML and DL models. In contrast, recognizing,
detecting, and segmenting wildfires in aerial and terrestrial images are less explored
research areas. Bot et al. [30] reviewed recent machine learning methods (published
between 2019 and 2022) for forest fire management decision support, presenting the used
datasets and evaluation metrics, as well as the main application of these methods, such
as pre-fire prevention, active wildfires, and post-fire. In addition, many studies in the
literature addressed the detection of wildland fire smoke [31,32]. For such, we provide,
in this paper, a comprehensive and up-to-date review only of wildland fire (not wildland
smoke) classification, detection, and segmentation tasks based on deep learning techniques
as well as the popularly used datasets of each task.

In the process of reviewing the literature, we searched on Google Scholar databases using
the keywords: “forest fire detection”, “forest fire classification”, “forest fire segmentation”,
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“wildfire”, “deep learning” and “vision Transformer”. Then, we selected the most relevant
articles for the topics of wildland fire classification, detection, and segmentation from 2017 to
2022, where we obtained a total number of 48 articles (23 wildland fire classification articles,
13 wildland fire detection articles, and 22 wildland fire segmentation articles).

The main contributions of this paper are:

• We explore and analyze recent advanced methods (between 2017 and 2022) for wildfire
recognition, detection, and segmentation based on deep learning including vision
transformers using aerial and ground images.

• We present the most widely used public datasets for forest fire classification, detection,
and segmentation tasks.

• We discuss various challenges related to these tasks, highlighting the interpretability
of deep learning models, data labeling, and preprocessing.

The rest of the paper is organized as follows: Sections 2–4 review, respectively, the
previous research based on deep learning including vision transformers for wildland fire
classification, detection, and segmentation. Section 5 presents the most used and public
datasets for these tasks. In Section 6, their main challenges are discussed. Finally, Section 7
summarizes the paper.

2. Deep Learning Approaches for Wildland Fire Classification

Convolutional neural networks (CNN) are the most employed and successful image
classification models [25]. In general, a CNN takes an input image and predicts the presence
of objects (wildland fire in our case) as output as depicted in Figure 1. CNN is composed
of two stages: feature extraction and feature classification which are achieved using three
types of layers [33]:

• Convolutional layers extract the features from the input data. Activation functions are
then applied in order to add the nonlinear transformation to the network and increase
its complexity. Numerous activation functions are used in the literature such as ReLU
(Rectified Linear Unit) [34], PReLU (parametric ReLU) [35], LReLU (Leaky ReLU) [36],
Sigmoid, etc. The resulting output of this layer is called a feature map or activation map.

• The feature maps feed the pooling layer to reduce its size. Among them, max-pooling
and average pooling are the most used pooling methods [37].

• Fully connected layers convert the results of the feature extraction stage to 1-D vec-
tor and predict the suitable labels for objects in the input image by computing a
confidence score.

Figure 1. Wildland fire classification based on CNN.

Motivated by the great success of deep learning, the number of contributions dealing
with CNN for wildland fire classification in the literature is growing exponentially. Several
contributions have been proposed to explore these methods and compare them (see Table 1).
Lee et al. [38] reviewed deep neural networks for wildfire detection with UAVs. Their
comparative study showed that GoogleNet [39] and the modified GoogleNet [38] present
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better performances than AlexNet [40], modified VGG13 [38], and VGG13 [41]. In the same
direction, Zhao et al. [42] proposed a 15-layered self-learning DCNN (Deep Convolutional
Neural Network) architecture named ‘Fire_Net’. It is working as a fire feature extractor and
classifier. It has the advantage of using data augmentation techniques that guarantee feature
loss avoidance caused by direct resizing. Furthermore, their proposed framework shows a
good trade-off between performance and computational cost on the standard aerial fire im-
age dataset ‘UAV_Fire’. Srinivas et al. [43] also proposed a forest fire recognition method to
identify fires with a drone. This method employed fog computing and a deep CNN, which
is based on AlexNet. It was tested using 2964 wildfire images and deployed on a fog device.
Results showed a higher accuracy of 95.7% and an accurate response time. Wang et al. [44]
used the AlexNet model with an adaptive pooling method, which is integrated with color
features for the wildfire recognition task. This method achieved a high recognition rate
with an accuracy of 93.75% using the CorsicanFire dataset [45]. Chen et al. [46] proposed
a hybrid method to detect both smoke and fire at an early stage. For such, they first
combined Local Binary Patterns (LBP) extraction and SVM classifier for smoke detection.
Then, two CNN models were designed to detect fire. Shamsoshoara et al. [47] also adopted
Xception model [48] to identify flame on aerial images. Using a large dataset (FLAME [47]:
47,992 aerial images) collected by drones in an Arizona pine forest, this model achieved
an accuracy of 76.23%. ResNet and VGG models were also evaluated in Arteaga et al. [49]
to identify fires. The used dataset includes 1800 images downloaded from the web. The
obtained results demonstrated the ability of ResNet models (ResNet18-34-50-101-152) in
classifying wildfires using a Raspberry Pi nano-computer. Rahul et al. [50] utilized a modi-
fied ResNet50 by adding a convolutional layer, batch normalization, ReLU activation, and
a softmax function to classify fires. Dropout and transfer learning techniques were adopted
to evaluate this model. An accuracy of 92.27% was achieved, surpassing DenseNet121 and
VGG16 by 3.23% and 7.06%, respectively. Sousa et al. [51] used Inception v3 [52] to solve
the fire misclassification problem. Data augmentation techniques (cropping and resizing)
were employed to remove the logo in the wildfire images and balance the learning dataset.
Inception V3 achieved a promising accuracy of 98.6% using the CorsicanFire dataset. Park
et al. [53] proposed a deep learning-based forest fire detection method, which adopted
the DenseNet model [54] to detect wildfires from surveillance cameras. The CycleGAN
(Cycle-consistent Generative Adversarial Network) data augmentation technique [55] was
utilized to solve the imbalanced data problem, giving a total of 1395 fire images and
4959 non-fire images. DenseNet showed the best accuracy with 98.27% in comparison to
VGG16 and ResNet50. To overcome the problem of lack of data and high computation time,
Wu et al. [56] used a pretrained MobilNet v2 [57] in detecting forest fires on aerial images.
MobileNet v2 is a lightweight CNN framework designed to operate on embedded or mobile
devices. It uses depth-separable convolution, which reduces the computational time for
training. It also requires a small dataset for training. The proposed model showed superior
performance, achieving the best accuracy with 99.7% compared to Fire_Net and AlexNet.
ResNet50 was also used by Tang et al. [58] to develop a deep learning method, called Fore-
stResNet, for forest fire image classification. ForestResNet was trained and evaluated with
learning data (175 images) collected from the web and two data augmentation techniques
(crop and horizontal flip), obtaining an accuracy of 92%. Dutta et al. [59] combined a
simple CNN with an image processing technique to identify wildfires on aerial images. The
simple CNN contains six convolutional layers, ReLU activations, max-pooling layers, and
three regularization techniques (L2 regularization, batch normalization, and dropout). The
image processing technique uses the multi-channel binary thresholding method and the
HSV color space thresholding method. Using the FLAME dataset [47], a high sensitivity of
98.10% was achieved, even in the presence of fog and smoke. Ghali et al. [60] developed
an ensemble learning using DenseNet201 [54] and EfficientNet-B5 [61] models to identify
wildfires on aerial images. Interesting results (accuracy of 85.12%, F1-score of 84.77%,
and test time of 0.018 s) were reached using the FLAME dataset and data augmentation
techniques (shift with random values, rotation, zoom, and shear). Treneska et al. [62] ex-
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plored a deep learning method for the wildfire classification task. Five Finetuned CNNs
(VGG16, VGG19, Inception, ResNet50 and Xception) were trained and evaluated on the
FLAME dataset. ResNet50 showed the best accuracy of 88.01% and a faster test time of
0.12 s. Zhang et al. [63] proposed a deep learning method, FT-ResNet50, for recognizing
wildfires in drone images. FT-ResNet50 is a modified ResNet50 by adding a Mish activation
function instead of the ReLU function and a focal loss in place of a binary cross entropy
loss. Using the mix-up data augmentation technique, this model revealed an accuracy of
79.48%, surpassing the accuracy of VGG16 and ResNet50 by 6.22% and 3.87%, respectively.
Khan et al. [64] studied the VGG19 model in recognizing wildfires on aerial images. VGG19
was trained based on transfer learning using the DeepFire dataset [64], which comprises
950 fire images and 950 non-fire images. It achieved an accuracy of 95%, outperforming
existing models, Inception v3 [51] and ForestResNet [58] by 1.40% and 3.0%, respectively,
as well as traditional machine learning models, naive Bayes, KNN (k-Nearest Neighbors),
SVM, and random forest by 15.53%, 8.95%, 3.69%, and 6.58%, respectively. Dogan et al. [65]
developed an ensemble learning method based on pretrained residual networks to identify
wildfires. First, four pretrained networks (ResNet19, ResNet50, ResNet101, and Incep-
tionResNet v2) extracted the wildfire features using their last pooling and fully connected
layers. Next, the NCA (Neighborhood Component Analysis) was used as a feature selec-
tor to choose the best 256 features generated by these models. Finally, the SVM model
was adopted to produce the output of the wildfire classification. The proposed method
achieved an accuracy of 99.15% using the 10-fold cross-validation strategy and 1650 images.
Yandouzi et al. [66] studied eleven deep CNNs (VGG16, ResNet50, MobileNet, VGG19,
NASNetMobile, InceptionResNet v2, Xception, Inception v3, ResNet50 v2, DenseNet, and
MobileNet v2) in detecting forest fires. ResNet50 showed the best accuracy of 99.94% using
numerous data augmentation techniques that are random rotation, gaussian blur, pixel level
augmentation, and horizontal and vertical mirroring. Ghosh and Kumar [67] proposed
a hybrid deep learning method, which combines a simple CNN and an RNN (Recurrent
Neural Network) to identify forest fires. First, the proposed CNN, which consists of six
convolutional layers and three maxpooling layers, extracts the low- and high-level features.
Second, the proposed RNN generates sequential and continuous features. Finally, two fully
connected layers detect wildfires as output. Various data augmentation techniques, such
as random zooming, and horizontal and vertical flipping, were applied to augment the
training data. An accuracy of 99.62% and 99.10% was achieved using the Mivia [68] and
FIRE [69] datasets, respectively. Zheng et al. [70] proposed a dynamic CNN, DCN_Fire, to
identify wildfire risk. DCN_Fire consists of 15 layers, including eight convolution layers,
four max-pooling layers, and two fully connected layers. The analysis of the performance
demonstrated that DCN_Fire had an excellent accuracy of 98.3%, thereby confirming its
potential in the recognition of wildfire risks. Mohammed [71] used a pretrained Inception-
ResNet v2 for wildfire recognition on the images collected from the Raspberry Pi camera.
The result showed that the InceptionResNet v2 obtained a high accuracy of 99.9% utilizing
data augmentation techniques (scaling, horizontal and vertical flip). Chen et al. [72] evalu-
ated five deep learning models (Xception, LeNet5, VGG16, MobileNet v2, and ResNet18)
in identifying wildfires in aerial images. These models were tested on a large learning
dataset (53,451 RGB images: 25,434 Fire/Smoke images, 14,317 Fire/non-smoke images,
and 13,700 non-fire/non-smoke images) [73], obtaining F1-score values of 99.92%, 99.36%,
98.46%, 94.53%, and 95.39% for VGG16, MobileNet v2, ResNet18, Xception, and LeNet5,
respectively. Guan et al. [74] proposed DSA-ResNet (Dual Semantic attention ResNet)
method for wildfire image classification tasks on aerial images. An attention module was
added in the ResNet method to dynamically select and merge wildfire characteristics from
different scales of convolutional layers. DSA-ResNet obtained an accuracy of 93.65%, thus
better than the results of VGGNet, GoogLeNet, ResNet, SE-ResNet [75] models by 8.79%,
5.42%, 2.37%, and 1.19%, respectively.
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Table 1. CNN models for wildland fire classification.

Ref. Methodology Object Detected Dataset Results (%)

[38] AlexNet, GoogleNet, VGG13 Flame Private: 23,053 images Accuracy = 99.00
[42] Fire_Net Flame/Smoke UAV_Fire: 3561 images Accuracy = 98.00
[43] Deep CNN Flame Private: 2964 images Accuracy = 95.70
[44] AlexNet with an adaptive pooling method Flame CorsicanFire: 500 images Accuracy = 93.75
[47] XCeption Flame FLAME: 47,992 images Accuracy = 76.23
[49] ResNet152 Flame Private: 1800 images Accuracy = 99.56
[50] Modified ResNet50 Flame Private: numerous images Accuracy = 92.27
[51] Inception v3 Flame CorsicanFire: 500 images Accuracy = 98.60
[53] DenseNet Flame Private: 6345 images Accuracy = 98.27
[56] MobileNet v2 Flame Private: 2096 images Accuracy = 99.70
[58] ForestResNet Flame Private: 175 images Accuracy = 92.00
[59] Simple CNN and image processing technique Flame FLAME: 8481 images Sensitivity = 98.10
[60] EfficientNet-B5, DenseNet-201 Flame FLAME: 48,010 images Accuracy = 85.12
[62] ResNet50 Flame FLAME: 47,992 images Accuracy = 88.01
[63] FT-ResNet50 Flame FLAME: 31,501 images Accuracy = 79.48
[64] VGG19 Flame DeepFire: 1900 images Accuracy = 95.00
[65] ResNet19, ResNet50, ResNet101, InceptionResNet

v2, NCA, SVM
Flame DeepFire & Fire:1650 images Accuracy = 99.15

[66] VGG16, ResNet50, MobileNet ,VGG19, NASNet-
Mobile , InceptionResNet v2, Xception, Inception
v3, ResNet50 v2, DenseNet, MobileNet v2

Flame Private: 4661 images Accuracy = 99.94

[67] CNN,RNN Flame FIRE: 1000 images
Mivia: 15,750 images

Accuracy = 99.10
Accuracy = 99.62

[70] DCN_Fire Flame/Smoke Private: 1860 images Accuracy = 98.30
[71] InceptionResNet v2 Flame/Smoke Private: 1102 images Accuracy = 99.90
[72] Xception, LeNet5, VGG16, MobileNet v2, ResNet18 Flame FLAME2: 53,451 images F1-score = 99.92
[74] DSA-ResNet Flame FLAME: 8000 images Accuracy = 93.65

3. Deep Learning Approaches for Wildland Fire Detection

While an object classification model can predict if an input image contains an object
(wildland fires in our case) or not, it cannot determine where the fire is located. Object
detection-based DL models determine both the class of objects detected in the input image
and its bounding box that localizes this detected object, as illustrated in Figure 2.

Figure 2. Wildland fire detection based on DL models.

There exist two categories of region-based CNNs: single-stage (also called one-stage)
and two-stage object detectors [76]. One-stage detectors treat object detection as a simple
regression problem by taking an input image and learning the class probabilities and
bounding box coordinates. Two-stage detectors generate, first, region proposals using
fully convolution architectures, which are then used for object classification and bounding
boxes regression. As a result of their tremendous success, researchers introduced various
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region-based CNN contributions to wildfire detection in the literature, as summarized in
Table 2.

Table 2. Deep learning based wildland fire detection methods.

Ref. Methodology Object Detected Dataset Results (%)

[77] Modified Yolo v3 Flame/Smoke Private: various images & videos Accuracy = 83.00
[78] Faster R-CNN, Yolo v1,2,3, SSD Flame/Smoke Private: 1000 images Accuracy = 99.88
[79] Yolo v3 Flame Private UAV data Precision = 84.00
[80] ARSB, zoom, Yolo v3 Flame Private: 1400 4k images mAP = 67.00
[81] Yolo v5, EfficientDet, EfficientNet Flame BowFire, FD-dataset, ForestryImages,

VisiFire
AP = 79.00

[82] Yolo v4 with MobileNet v3 Flame/Smoke Private: 1844 images Accuracy = 99.35
[83] Yolo v4 tiny Flame Private: more than 100 images Accuracy = 91.00
[84] Yolo v5, U-Net Flame CorsicanFire and fire-like objects images:

1300 images
Accuracy = 99.60

[85] Fire-YOLO Flame/Smoke Private: 19,819 images F1-score = 91.50
[86] Yolo v5, CBAM, BiFPN, SPPFP Flame Private: 3320 images mAP = 70.30
[87] FCDM Flame Private: 544 images mAP = 86.90
[88] Faster R-CNN with multidimen-

sional texture analysis method
Flame CorsicanFire, Pascal VOC: 1050 images F1-score = 99.70

[89] STPM_SAHI Flame Private: 3167 images AP = 89.40

3.1. One Stage Detectors

Various one-stage detectors such as Yolo (You only look once) v1, 2, 3,4, & 5 [90–94],
EfficientDet [95], and Single Shot MultiBox Detector (SSD) [96] have been proposed. Yolo
models were proposed for the object detection task as a regression method in place of
a classification method. They used advanced CNN frameworks such as DarkNet and
CSPDarkNet to focus on the most interesting regions of the images and improved the
classification performance as well as the accuracy of two-stage detectors. They also showed
fast processing time, which is suitable for real-time applications [97]. The first version of
Yolo used a pretrained backbone on ImageNet-1000 database [98] and was able to achieve a
reliable result suitable for real-time detection. However, this model had multiple errors
when localizing neighboring objects. It also misclassified small objects and ones with
various sizes in input. To solve this problem, Yolo v2 applied the following process to
detect objects:

• Batch normalization.
• Image size change: 448 × 448 instead of 224 × 224 used by Yolo v1.
• Use of anchor boxes to visualize numerous predicted objects.
• Use of multi-scale training image ranging from 320 × 320 to 608 × 608.

This model used DarkNet19 as the backbone which contains five max-pooling layers
and nineteen convolutional layers. Yolo v2 proved to be better, faster and stronger than
its previous version as well as several state-of-the-art approaches. Yolo v3 came later to
improve the performance of Yolo v2 by adding three prediction scales for each input image
and bounding box predictions to determine the score for each of the detected bounding
boxes. This model employed DarkNet53 containing 53 convolutional layers, as a feature
extractor. Thanks to its performances, Yolo v3 was employed in [77] to detect forest fires
in real-time using UAV. Jiao et al. [79] also adopted Yolo v3 as a forest fire detector in the
UAV-FFD (UAV-based forest fire detection) platform. This model showed a high precision
of 84% and a low time cost on the data collected by the UAV. Tang et al. [80] proposed a
method for wildfire detection using 4K aerial images. First, an ARSB (adaptive sub-region
select block) was applied in extracting a rough area, which includes the objects. Next, a
zoom technique was used to find the small objects. Then, Yolo v3 was adopted to detect
forest fires. Finally, the result of Yolo v3 was merged with the input 4k images. The
proposed method improved the mAP (mean Average Precision) of Yolo v3 from 29% to
67% using 1400 4k aerial images. Yolo v4 [93] is a modified version of Yolo v3 by adding
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CSPDarkNet53 as a backbone and PANet (Path Aggregation Network) instead of FPNs
(Feature Pyramid Network). It improved the Yolo v3 performance by 10% and its speed
by 12%. In [82], a modified version of Yolo v4 was used to identify and locate wildfires.
MobileNet v3 [99] was adopted as a backbone to extract forest fire features and decrease
the number of parameters. A fast inference speed, low memory requirement, and accuracy
of 99.35% were obtained compared to the original version of Yolo v4. Kasyap et al. [83]
introduced a mixed learning method based on Yolo v4 tiny and LiDAR techniques to
recognize and locate wildfires. Yolo v4 tiny was trained on a desktop computer utilizing
more than 100 images and two data augmentation techniques (mix-up and mosaic). It was
also tested on a UAV-CPU, achieving an accuracy of 91%. Yolo v5 [94] achieved higher
performance using Microsoft COCO [100] and Pascal VOC [101] datasets outperforming all
previous versions of Yolo. It improved its performance by using CSPDarkNet as a backbone,
PANet as its neck, and Yolo layer as its head. CSPDarkNet integrates CSPNet (Cross Stage
Partial Network) [102] into DarkNet. CSPNet minimizes model parameters and size by
incorporating gradient information into the feature map and solving the problems of
repeating gradient information in large-scale backbones. PANet [103] adopts a new FPN to
improve the low-level features’ propagation. Xu et al. [81] proposed an ensemble learning
approach that combines two detectors (Yolo v5 and EfficientDet [95]) and the classifier
EfficientNet [61]. EfficientDet adopts Bi-FPN (Bi-directional Feature Pyramid Network)
to extract multi-scale features. EfficientNet employs a novel compound scaling method
based on the balance between model width, model depth, and input image resolution.
Experimental results showed the potential of this ensemble learning to detect wildfires in
different scenarios. Zhao et al. [85] developed a one-stage detection method, Fire-YOLO, for
wildfire detection. Fire-YOLO employs EfficientNet as a feature extractor. A large dataset
consisting of 19,819 images collected from the web was used to train Fire-YOLO, achieving
an F1-score of 91.50% better than Yolo v3 and Faster R-CNN [104]. Mseddi et al. [84]
proposed a novel ensemble learning to sequentially comb U-Net [105] and Yolo v5 to detect
forest fire and localize the pixels in the image that represent the fire. A reliable detection
(accuracy of 99.6%) for wildfire and small fire areas without false alarms of fire-like objects
was shown using learning data combined CorsicanFire [45] and fire-like object images
collected from the web. Xue et al. [86] proposed an improved wildfire detection method
based on Yolo v5. The modified Yolo v5 used SPPFP (Spatial Pyramid Pooling-Fast-Plus)
instead of SPPF (Spatial Pyramid Pooling-Fast), CBAM (Convolutional Block Attention
Module) to improve the identification of small wildfire targets and BiFPN (Bi-directional
Feature Pyramid Network) in place of the PANet (Path Aggregation Network). Based on a
transfer learning strategy, this model showed high performance (mAP of 70.3%) in detecting
small fires, outperforming the original Yolo v5 model by 10.1%. Xue et al. [87] introduced a
wildfire detection method (named FCDM) based on improved Yolo v5. The PANet layer
and bounding box loss function were replaced by BiFPN and SIoU loss, respectively. The
CBAM attention module was also applied. The experimental results showed that the FCDM
method achieved an mAP of 86.9% higher than Yolo v5. The SSD detector [96] applied a
multi-resolution feature map to detect and recognize objects at various scales. In [78], SSD
was compared to many region-based CNN architectures (Faster R-CNN, Yolo v2, Tiny Yolo
v3, and Yolo v3), when applied to solve the problem of forest fire detection at an early stage.
Based on the trade-off between accuracy and speed, SSD showed that it is the most suitable
for this task.

3.2. Two Stage Detectors

In recent research studies [25,76] object detectors having the highest accuracies are
based on a two-stage approach popularized by R-CNN, where a classifier was applied to
a sparse set of candidate object locations. A plethora of region-based CNNs models with
competitive performances has been proposed in recent years. R-CNN framework [106]
was first applied to solve the problem of extracting a large number of regions and selecting
2000 regions using selective search methods. However, R-CNN is slow since it performs a
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ConvNet forward pass for each object proposal, without sharing computation. To solve
this limitation, Girshick et al. [107] proposed Fast R-CNN, a network that produces a
convolutional feature map by processing the whole image with several convolutional and
max-pooling layers. Afterward, the Faster R-CNN model [104] was proposed to apply the
region proposal network (RPN) in order to generate the regions on the feature map. This
last network was employed in [88] with a multidimensional texture analysis method to
detect and localize wildfires. An efficient F1-score of 99.7% was obtained using ResNet101
as a backbone and wildfire and non-fire images. It outperformed existing works such
as Yolo v3 and SSD. It showed the reliability of Faster R-CNN in detecting forest fires
with negligible classification errors. Lin et al. [89] proposed an improved small target
wildfire detection method, STPM_SAHI, integrating attention mechanism to model global
features of wildfires. STPM_SAHI is composed of a modified Mask R-CNN by adding Swin
Transformer [108] as its backbone and PAFPN [109] in place of its feature-fusion network
as well as SAHI (Slicing Aided Hyper Inference) technology to overcome the difficulty in
detecting small wildfire areas. STPM_SAHI reached an average precision (AP) of 89.4%,
outperforming Yolo v5 and EfficientDet.

4. Deep Learning Approaches for Forest Fire Segmentation

Image segmentation or pixel-level classification is one of the main operations in
computer vision tasks. It aims to group or cluster similar parts of images or videos together
under their respective object class [110]. Wildland fire segmentation is the process of
grouping the parts of an input image that belong to the fire class to generate a binary mask
as output highlighting the location and shape of the fire (the visible surface of fire), as
shown in Figure 3.

Figure 3. Wildland fire segmentation.

Recently, deep learning-based forest fire segmentation methods showed interesting
results in detecting the boundaries of fire as well as its geometrical features such as height,
angle, width, and shape. These important results are employed as inputs to develop metrol-
ogy tools and wildfire propagation models [3,111]. Many studies tackled the wildland fire
segmentation problem using deep learning techniques including vision transformers, as
shown in Table 3.

For example, Gonzalez et al. [112] proposed an FCN architecture, SFEwAN-SD
(Simple Feature Extraction with FCN AlexNet, Single Deconvolution), to detect forest fires.
SFEwAN-SD includes two CNNs that are AlexNet and a simple CNN. AlexNet detects
the texture and the shape to determine the fire regions. The simple CNN, which consists
of numerous 3 × 3 convolutional layers followed by ReLU activation extract fire features
(color and texture). Based on the F1-score and processing time, good results are obtained
outperforming the state-of-the-art method proposed by Frizzi et al. [113]. Wang et al. [114]
developed a deep learning model, which consists of SqueezeNet [115] as a backbone and
a multi-scale context aggregation module to detect and segment wildfires. This model
was tested with numerous videos of real forest fires. It showed great potential with a false
positive rate (FP) of 5% to identify the region of forest fires at an early stage. Choi et al. [116]
presented a novel semantic fire image segmentation method based on FusionNet [117].
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An accuracy of 97.46% was attained on CorsicanFire and FiSmo [118] datasets surpassing
existing fire and object segmentation deep learning models. Akhloufi et al. [119] employed
the encoder-decoder, U-Net, in segmenting wildfires and detecting their regions. The
encoder extracts the wildfire features from fire input images. It contains convolutional
layers of size 3 × 3, a max-pooling layer, and a ReLU activation. The decoder decodes
the produced feature maps to generate the fire mask. It includes convolutional layers
of size 3 × 3, Upsampling layer, up-convolution layer, and ReLU activation. Finally,
a convolutional layer of size 1 × 1 generates the binary mask of input images. U-Net
obtained an F1-score value of 97.09% and showed its ability in segmenting forest fire using
the CorsicanFire dataset (419 images) and Dice loss [120]. Shamsoshoara et al. [47] also
employed U-Net to detect and segment wildfires on aerial images. An F1-score of 87.75%
was reached using the FLAME dataset and showed the U-Net efficiency in determining the
fire regions on UAV images. Bochkov et al. [121] proposed a novel encoder-decoder, wide-
UUNet concatenative (wUUNet), to determine the region of the fire. wUUNet includes
the modernization of U-Net, UUNet, which comprises two U-Net architectures with a
skip connection between the decoder of the first U-Net and the encoder of the second
U-Net. The first determines the binary segmentation of fire areas. The second detects
the specific fire colors (yellow, red, and orange) as a multi-class segmentation. Excellent
performance was achieved outperforming the U-Net model in both binary and multi-
class segmentation. Ghali et al. [122] explored three deep models that are U2-Net [123],
U-Net, and EfficientSeg [124] in segmenting fire pixels and detecting fire regions thanks
to their excellent results in medical image task. EfficientSeg with Dice loss showed the
best F1-score of 95% surpassing deep learning models (U-Net and U2-Net) and classical
method (color space fusion method [125]). It confirmed its reliability to overcome the
false detection of wildfire pixels. Song et al. [126] developed a deep learning-based
binary segmentation method (SFBSNet) to segment fire areas. SFBSN adopted a modified
version of FusionNet [117] by replacing the residual block with the confusion block and the
conventional convolution with a depth separable convolution. The obtained results showed
that SFBSNet performed better on the CorsicanFire dataset, reaching an IoU of 90.76%.
Ghali et al. [127] introduced a forest fire segmentation method based on deep learning
(Deep-RegSeg). First, they used the RegNet model as a backbone to encode the wildfire
characteristics, followed by three Deconv blocks, Conv block, and 1 × 1 convolutional to
determine the output fire mask. Each Deconv block includes a transposed convolution
layer, a batch normalization layer, and a ReLU activation. The Conv block comprises a 3 × 3
convolutional layer, a batch normalization, and a ReLU function. Deep-RegSeg achieved
an F1-score of 94.46%, allowing accurate identification of wildfire zones very close to the
input mask.

Table 3. Deep learning based wildland fire segmentation methods.

Ref. Methodology Object Segmented Dataset Results (%)

[112] SFEwAN-SD Flame Private: 560 images F1-score = 90.31
[116] Encoder-decoder based on FusionNet Flame CorsicanFire, FiSmo: 212 images Accuracy = 97.46
[114] CNN based on SqueezeNet Flame Private: various videos FP = 5.00
[119] U-Net Flame CorsicanFire: 419 images Accuracy = 97.09
[47] U-Net Flame FLAME: 5137 images F1-score = 87.70

[121] wUUNet Flame Private: 6250 images Accuracy = 95.34
[122] U-Net, U2-Net, EfficientSeg Flame CorsicanFire: 1135 images F1-score = 95.00
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Table 3. Cont.

Ref. Methodology Object Segmented Dataset Results (%)

[126] SFBSNet Flame CorsicanFire: 1135 images IoU = 90.76
[127] Deep-RegSeg Flame CorsicanFire: 1135 images F1-score = 94.46
[128] DeepLab v3+ Flame CorsicanFire: 1775 images Accuracy = 97.67
[129] DeepLab v3+ + validation ap-

proach
Flame/Smoke Fire detection 360-degree dataset: 150 360-

degree images
F1-score = 94.60

[130] DeepLab v3+ with Xception Flame CorsicanFire: 1775 images Accuracy = 98.48
[131] DeepLab v3+ Flame CorsicanFire, FLAME, private: 4241 images Accuracy = 98.70
[132] SqueeZeNet, U-Net, Quad-

Tree search
Flame CorsicanFire, private: 2470 images Accuracy = 95.80

[133] FireDGWF Flame/Smoke Private: 4856 images Accuracy = 99.60
[134] U-Net, DeepLab v3+, FCN,

PSPNet
Flame FLAME: 4200 images Accuracy = 99.91

[135] ATT Squeeze U-Net Flame CorsicanFire& Private: 6135 images Accuracy = 90.67
[136] Encoder-decoder with atten-

tion mechanism
Flame CorsicanFire: 1135 images+ various non-

fire images
Accuracy = 98.02

[137] TransUNet, MedT Flame CorsicanFire: 1135 images F1-score = 97.70
[60] TransUNet, TransFire Flame FLAME: 2003 images F1-score = 99.90
[74] MaskSU R-CNN Flame FLAME: 8000 images F1-score = 90.30

[138] Improved DeepLab v3+ with
MobileNet v3

Flame FLAME: 2003 images Accuracy = 92.46

DeepLab models (DeepLab v3 [139] and DeepLab v3+[140]) are proposed to address
the problem of reducing the spatial resolution of the generated feature maps. The two
detectors showed important performance in the object segmentation task owing to the
rich and multi-scale extracted features. DeepLab v3 [139] encodes multi-scale information
using atrous convolution as pooling operations and ASPP (atrous spatial pyramid pool-
ing) as multiple effective fields-of-view. DeepLab v3+ [139] adds a simple and efficient
parameter, atrous rate, into DeepLab v3 decoder to improve segmentation results and
enlarge the field of views without increasing the parameters number and computation
time. Harkat et al. [128] employed DeepLab v3+ in segmenting forest fire and detecting
fire regions. The capability of DeepLab v3+ was evaluated with various loss functions
(Tversky and Dice loss) and two backbones (ResNet50 and ResNet18) using infrared and
RGB images. The obtained results (accuracy of 97.67%) are very promising and demon-
strated the efficiency of DeepLab v3+ in forest fire segmenting tasks. Harkat et al. [130]
also applied DeepLab v3+ with an Xception model as a backbone to detect fire on RGB and
Infrared (IR) images. Three loss functions (Dice, Cross entropy, and Tversky loss), three
learning rates (10−1, 10−2, and 10−3), and the CorsicanFire dataset (1135 RGB images and
640 IR images) were used to train and evaluate this model. Experiment results showed
a promising performance (accuracy of 98.48%) for the deployment of this architecture in
wildland fire segmentation. Harket et al. [131] also adopted DeepLab v3+ to segment fire on
aerial images. Using multimodal data (RGB, IR, Near-Infrared) learning data, Dice loss, and
ResNet50 as a backbone, DeepLab v3+ achieved an accuracy of 98.70%. It showed a high
capacity for detecting and localizing fire zones in aerial images. Barmpoutis et al. [129] pro-
posed a novel fire detection remote sensing system, which uses two DeepLab v3+ models
with a novel validation method to improve wildfire segmentation on RGB images collected
from a 360-degree camera mounted on a UAV. DeepLab v3+ models were employed to
detect the fire areas, while the validation method was adopted to reject the false-positive
regions of smoke or flame. Using 150 images of urban and forest areas (real and synthetic
fire images), this system reduced the false-positive rate and showed great potential for
wildfire segmentation tasks. Pan et al. [133] proposed a method, named FireDGWF, which
consists of Faster R-CNN and weakly supervised segmentation method (WSFS) for for-
est fire detection tasks. FireDGWF consists of two steps: the detection process and the
grading process. In the detection process, three methods (ShuffleNet [141], WSFS as a
region segmentation method, and Faster R-CNN as a region detection method) were used
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to identify, segment, and locate wildfire areas in input images. In the grading process, a
fuzzy evaluation mechanism was adopted to evaluate the severity level of wildfires based
on the three outputs of the detection process. FireDGWF reached a competitive result
(an accuracy of 99.6%) compared to existing methods such as U-Net and DeepLab v3.
Wang et al. [134] presented a comparative analysis of wildland fire image segmentation
methods using aerial images. Four semantic segmentation methods (U-Net, DeepLab v3+,
FCN [142], and PSPNet [143]) were evaluated with two backbones (VGG16 and ResNet50).
Using 4200 aerial images, U-Net with ResNet 50 showed the best accuracy with 99.91%.
Perrolas et al. [132] proposed a multi-task method for detecting fire regions based on
the quad-tree search method. The input images were divided into fixed sizes of patches.
For each patch, a classification model (SqueezeNet) was employed to determine which
patch includes a fire instance. If a fire was detected, a segmentation model (U-Net) was
used to segment the fire areas. If the segmented fire areas are small, the patch was split
into four portions, and each portion was zoomed in to locate the precise shape of the
fire. The patches were finally combined to create the complete fire mask. The proposed
method achieved an accuracy of 95.8%, demonstrating its ability to locate small fire areas.
Guan et al. [74] developed a wildfire detection segmentation (called MaskSU R-CNN) based
on MS R-CNN method [144], which is an improved version of Mask R-CNN model [145].
A higher F1-score of 90.30% was obtained, surpassing the popular semantic segmentation
methods such as SegNet [146], U-Net, PSPNet, and DeepLab v3. Li et al. [138] introduced a
real-time forest fire segmentation method based on an improved version of DeepLab v3+.
The MobileNet v3 model was adopted as the encoder to reduce the inference time and
model parameters. The improved DeepLab v3+ showed an accuracy of 92.46% higher than
the original DeepLab v3+ and an inference time of 59 frames per second (FPS), reducing the
time of DeepLab v3+ by 35 FPS. Encoder-decoder models showed impressive performance
on various tasks, in particular fire detection and segmentation task. They are based on a
convolution layer, which extracts only local features. However, they are still limited by
high computational costs and global feature modeling.

Recently, transformers were developed to address encoder-decoder limitations. They
model long-range dependencies between patches as input using the attention module,
which removes irrelevant information while focusing on some relevant information. Trans-
formers were first used in natural language processing (NLP), where they performed very
well owing to their generalization and simplicity [147,148]. Then, they were adopted in
computer vision tasks such as image super-resolution [149] and object segmentation [150].
The obtained results are very impressive compared to convolutional models. Vision trans-
formers are also used in fire segmentation. For instance, Ghali et al. [60,137] studied the
potential of transformers in the context of forest fire segmentation using ground and aerial
images. Two vision transformers (TransUNet [151] and Medical Transformer (MedT) [152])
were explored in segmenting and detecting wildfire areas in ground images. Various
settings (varying backbone and input size) were employed to evaluate these models. Tran-
sUNet and MedT revealed an F1-score value of 97.70% and 96.00% outperforming deep
CNNs models (EfficientSeg, U2-Net, and U-Net) [137] and traditional methods (fusion
color space method [125]). TransUNet and Transfire, which are modified MedT, were also
adopted for fire segmentation tasks using aerial images [60]. TransUNet and TransFire
achieved an F1-score value of 99.90% and 99.82%, respectively. They also proved their relia-
bility in extracting the finer details of forest fire on aerial images and in overcoming many
challenges such as small wildfire areas and background complexity [60]. Zhang et al. [135]
also proposed an encoder-decoder U-shape method with an attention module, called ATT
Squeeze U-Net (Attention U-Net and SqueezeNet) to detect wildfire on RGB images. The
encoder uses SqueezeNet with eight Fire modules as a backbone to extract wildfire features.
Each Fire module includes a 1 × 1 convolutional layer, a 3 × 3 depthwise convolutional
layer, and channel Shuffle operations. The decoder employs 3 × 3 and 1 × 1 convolutional
layers, a ReLU activation function, and three DeFire modules, each one consisting of ReLU
functions and 1 × 1 and 3 × 3 convolutional layers. Three attention modules were also
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adopted in skip connections to rely on the encoder and the decoder. ATT Squeeze U-Net
achieved an accuracy of 90.67% better than popular methods such as Attention U-Net
and U-Net using the CorsicanFire dataset. Niknejad and Bernardino [136] also developed
an encoder-decoder segmentation method with an attention mechanism to identify and
segment wildfire regions. First, the encoder of DeepLab v3+ was employed as a backbone
to extract wildfire characteristics. Then, two attention modules, the decoder of DeepLab
v3+, and a Sigmoid function were used as a decoder, before generating the binary mask as
output using a convolutional layer. This proposed network improved the accuracy of the
original DeepLab v3+ and U-Net models by 0.84% and 1.14%, respectively.

5. Datasets

Similarly to all problems based on deep learning models, a large learning dataset is
required. In the literature, many large databases have been put available for researchers
in order to make a comparison to other techniques dealing with the same problem easier.
However, this is not the case for fire detection problems which makes their evaluation a
bit challenging. The number of available fire datasets is very limited. In this section, we
present the popular datasets used for wildfire recognition, detection, and segmentation
tasks (see Table 4).

Table 4. Wildland fire datasets overview. RGB (visible spectrum) covers a wavelength range of 0.4
to 0.75 µm. NIR (Near Infrared) ranges from 0.7 to 1.4 µm. LWIR (Long Wave Infrared)) includes a
wavelength range of 8 to 15 µm.

Ref. Data Name RGB/IR Image Type Fire Area Number of Images/Videos Labeling Type

[153,154] BowFire RGB Terrestrial Urban/Forest 226 images: 119 fire images and 107
non-fire images
226 binary mask

Classification
Segmentation

[47,155] FLAME RGB/LWIR Aerial Forest 48,010 images: 17,855 fire images
and 30,155 non-fire images
2003 binary mask

Classification
Segmentation

[45,156] CorsicanFire RGB/NIR Terrestrial Forest 1135 images and their correspond-
ing binary mask

Segmentation

[157,158] FD-dataset RGB Terrestrial Urban/Forest 31 videos: 14 fire videos and 17
non-fire videos
50,000 images: 25,000 fire images
and 25,000 non-fire images

Classification

[159] ForestryImages RGB Terrestrial Forest 317,921 images Classifcation
[160] VisiFire RGB Terrestrial Urban/Forest 12 videos Classification
[161] Firesense RGB Terrestrial Urban/Forest 29 videos: 11 fire videos, 13 smoke

videos, and 25 non-fire/smoke
videos

Classification

[68] MIVIA RGB Terrestrial Urban/Forest 31 videos: 17 fire videos and 14
non-fire videos

Classification

[118] FiSmo RGB Terrestrial Urban/Forest 9448 images and 158 videos Classification
[64,162] DeepFire RGB Terrestrial Forest 1900 images: 950 fire images and

950 non-fire images
Classification

[69] FIRE RGB Terrestrial Forest 999 images: 755 fire images and 244
non-fire images

Classification

[72,73] FLAME2 RGB/LWIR Aerial Forest 53,451 images: 25,434 fire images,
14,317 fire/non-smoke images, and
13,700 non-fire

Classification

• BowFire (Best of both worlds Fire detection) [153,154] dataset is a public data of fire.
It consists of 226 images (119 fire images and 107 non-fire images) with different
resolutions, as shown in Figure 4. Fire images represent emergencies with various fire
situations (forest, burning buildings, car accidents, industrial fires, etc.) and fire-like
objects such as yellow or red objects and sunsets. It includes both forest and non-
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forest images. Nevertheless, it is important to note that the non-forest images were
filtered out to ensure the performance and reliability of the trained wildfire models.
BowFire also contains the corresponding masks of fire/non-fire images for the fire
segmentation task, as shown in Figure 5.

Figure 4. Examples from the BowFire dataset. (Top): Fire images; (Bottom): non-fire images.

Figure 5. Samples of the BowFire dataset. (Top): RGB images; (Bottom): their corresponding
binary masks.

• FLAME (Fire Luminosity Airborne-Based Machine Learning Evaluation) dataset [47,155]
consists of aerial images and raw heat-map footage collected by thermal cameras and
visible spectrum onboard two drones (Phantom 3 Professional and Matrice 200). It
contains four types of videos that are a green-hot palette, normal spectrum, fusion, and
white-hot. It includes 48,010 RGB aerial images (with a resolution of 254 × 254 pix.),
which are divided into 17,855 images without fire and 30,155 images with fire for the
wildfire classification task, as illustrated in Figure 6. It also comprises 2003 RGB images
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with a resolution of 3480 × 2160 pix. and their corresponding masks for fire segmentation
task, as depicted in Figure 7.

Figure 6. Examples from the FLAME dataset. (Top): Fire images; (Bottom): non-fire images.

Figure 7. Samples of the FLAME dataset. (Top): RGB aerial images; (Bottom): their corresponding
binary masks.

• CorsicanFire dataset [45,156] consists of NIR (near infrared) and RGB images. The
NIR images are collected with a longer exposure/integration time. CorsicanFire
includes a larger number of fire images with many resolutions (1135 RGB images and
their corresponding masks) that are widely used in the context of fire segmentation.
It describes the visual information of the fire such as color (orange, white-yellow,
and red), fire distance, brightness, smoke presence, and different weather conditions.
Figure 8 shows CorsicanFire dataset samples and their corresponding binary masks.
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Figure 8. Examples from the CorsicanFire dataset. (Top): RGB images; (Bottom): their correspond-
ing masks.

• FD-dataset [157,158] is composed of two datasets, BowFire and dataset-1 [9], which
contains 31 videos (14 fire videos and 17 non-fire videos) and fire/non-fire images
collected from the internet. It contains 50,000 images with numerous resolutions
(25,000 images with fire and 25,000 images without fire) describing various fire inci-
dents such as red elements, burning clouds, and glare lights. It also includes fire-like
objects such as sunset and sunrise, as illustrated in Figure 9. This dataset consists
of both forest and non-forest images, but it is important to mention that only the
forest images were selected for training the forest fire models in order to improve
their performance.

Figure 9. Examples from the FD-dataset. (Top): Fire images; (Bottom): non-fire images.
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• ForestryImages [159] is a public dataset proposed by the University of Georgia’s
Center for Invasive Species and Ecosystem Health. It contains a large number of im-
ages (317,921 images with numerous resolutions) covering different image categories
such as forest fire (44,606 images), forest pests (57,844 images), insects (103,472 im-
ages), diseases (30,858 images), trees (45,921 images), plants (149,806 images), wildlife
(18,298 images), etc. as shown in Figure 10.

Figure 10. Examples from the ForestryImages dataset. (Top): Fire images; (Bottom): non-fire images.

• VisiFire [160] is one of the widely used datasets. It contains twelve videos of different
fire scenes collected by a frame grabber and an ordinary surveillance camera. Figure 11
shows VisiFire dataset samples.

Figure 11. Examples from the VisiFire dataset.
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• Firesense dataset [161] is a public dataset developed within the “FIRESENSE - Fire
Detection and Management through a Multi-Sensor Network for the Protection of
Cultural Heritage Areas from the Risk of Fire and Extreme Weather (FP7-ENV-244088)”
project to train and test smoke/fire detection algorithms. It contains eleven fire videos,
thirteen smoke videos, and twenty-five non-fire/smoke videos. Figure 12 depicts
Firesense dataset samples.

Figure 12. Examples from the Firesense dataset. (Top): Fire images; (Bottom): non-fire images.

• MIVIA dataset [68] is a collection of videos used for various tasks. It contains 31 videos
(17 fire videos and 14 non-fire videos) collected in a real environment and from the
Firesense dataset. Figure 13 depicts MIVIA fire detection dataset samples.

Figure 13. Examples from the MIVIA dataset. (Top): Fire images; (Bottom) line: non-fire images.

• FiSmo is public data for fire detection developed by Cazzolato et al. [118] in 2017. It
contains images and video data with their annotation. It contains 9448 images with
multiple resolutions and 158 videos acquired from the web. Each video data presents
three labels that are fire, non-fire, and ignore. The image data is collected from four
datasets: Flickr-FireSmoke [163] (5556 images: 527 fire/smoke images, 1077 fire images,
369 smoke images, and 3583 non-fire/smoke images), Flickr-Fire [163] (2000 images:
1000 fire images and 1000 non-fire images), BowFire, and SmokeBlock [164,165] (1666 im-
ages: 832 smoke images and 834 non-smoke images). Figure 14 presents FiSmo fire
detection dataset samples. FiSmo is comprised of forest and non-forest images, but
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it should be noted that the non-forest images are generally removed to improve the
efficiency of the wildfire classification models.

Figure 14. Examples from the FiSmo dataset. (Top): Fire images; (Bottom): non-fire images.

• DeepFire dataset [64,162] was developed to address the problem of wildland fire
recognition. It comprises RGB aerial images with a resolution of 250 × 250 pix.
downloaded from various research sites using many keywords such as forest, forest
fires, mountain, and mountain fires, as depicted in Figure 15. It includes a total of
1900 images, where 950 images belong to the fire incident and 950 images remain to
the non-fire incident.

Figure 15. DeepFire dataset example. (Top): Fire images; (Bottom): non-fire images.

• The FIRE dataset is a public dataset developed by Saeid et al. [69] during the NASA
Space Apps Challenge in 2018 for the fire recognition task. It comprises two folders
(fireimages and non-fireimages). The first folder consists of 755 fire images with
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various resolutions, some of which include dense smoke. The second consists of
244 non-fire images such as animals, trees, waterfalls, rivers, grasses, people, roads,
lakes and forests. Figure 16 presents some examples of FIRE dataset.

Figure 16. FIRE dataset example. (Top): Fire images; (Bottom): non-fire images.

• FLAME2 dataset [72,73] represents public wildfire data collected in November 2021 during
a prescribed fire in an open canopy pine forest in Northern Arizona. It contains IR/RGB
images and videos recorded with a Mavic 2 Enterprise Advanced dual RGB/IR camera.
It is labeled by two human experts. It contains 53,451 RGB images (25,434 Fire/Smoke
images, 14,317 Fire/non-smoke images, and 13,700 non-fire/non-smoke images) with a
resolution of 254 × 254 pix. extracted from seven pairs of RGB videos with a resolution of
1920 × 1080 pix. or 3840 × 2160 pix. It also includes seven IR videos with a resolution of
640 × 512 pix. Figure 17 shows some examples of FLAME2 dataset.

Figure 17. FLAME2 dataset example. (Top): Fire images; (Bottom): non-fire images.
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6. Discussion

In this section, we discuss two main parts related specifically to wildland fire (not forest
smoke) classification, detection, and segmentation tasks: data preprocessing and model
results. The first section deals with the problem of collecting and preprocessing wildfire
data, in which we discuss the challenges faced by researchers. The second section is related
to the interpretation of the performance achieved by DL including vision transformers.

6.1. Data Collection and Preprocessing

Large datasets are required to train deep learning algorithms. Several datasets are
available to researchers to facilitate the technical evaluation of deep learning models. For
forest fire recognition, detection, and segmentation problems, the lack of public datasets
makes their training and their evaluation a challenging task. Table 4 presents the popularly
used datasets for wildland fire classification, detection, and segmentation tasks. In [45,47,72],
authors collected images and videos to build FLAME [47], FLAME2 [72], and CorsicanFire [45]
datasets, which are designed specifically for forest fires. CorsicanFire contains 1135 images
with their binary mask representing the segmented wildfire areas. FLAME and FLAME2
contain aerial images and videos collected via drones. FLAME consists of 48,010 images for
the wildfire classification task. It also includes 2003 images with their corresponding fire mask.
FLAME2 includes 53,451 images for the forest fire classification task. To address the lack of
public wildland fire datasets, authors in [38,43,50,70,77,81,85,88,135] used images very close to
real wildland fires as well as images downloaded from the web or combined multiple datasets,
including examples of fires unrelated to the forest context such as fires in urban scenarios,
industrial fires, and fires in an indoor environment to train their proposed models.

On the other hand, data augmentation techniques are widely used to increase the di-
versity of the learning data and improve the performance of deep learning models. It allows
applying transformations on images such as mosaic data augmentation, image occlusion
methods (cutout, grid mask, and mix-up), photometric transformation (contrast, brightness,
and shear), and geometric transformations (flip, rotation, and cropping). For the forest fire
problem, the adopted data augmentation methods are chosen based on the characteristics of
the fire images. For example, color space-based data augmentation methods are not suitable
for the wildfire problem because they may result in the loss of some wildfire information.
Table 5 presents an overview of data augmentation techniques employed in the wildfire
classification, segmentation, and detection tasks. Geometric transformations (cropping,
horizontal/vertical flipping, rotation, translation, scaling, symmetry, horizontal/vertical
reflection, left/right reflection, and zooming) are the most commonly used in these tasks.
For instance, Ghosh and Kumar [67] used three data augmentation techniques (horizontal
flipping, vertical flipping, and zooming) to augment the training data, resulting in three
times more images than the original learning image set. Zhang et al. [63] used different
data augmentation techniques (mix-up, rotation, and flip) for generating 184,499 new im-
ages. Park et al. [53] utilized horizontal flipping, rotation, zoom and brightness, as well as
CycleGAN to generate new wildfire data while respecting its diversity and particularities.
CycleGAN involves the automatic learning of image-to-image translation models without
requiring paired samples. It applies cycle coherence, where generative networks learn to
translate images between domains, ensuring that the translated images still keep coherence
with the original images. These techniques resulted in a total of 3585 new generated images.
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Table 5. Overview of data augmentation techniques

Task Ref Data Augmentation Techniques

Wildfire Classification

[38] Crop, horizontal/vertical flip
[49] Crop, rotation
[51] Crop
[53] Horizontal flip, rotation, zoom rotation, brightness, CycleGAN
[56] Shift, rotation, flip, blur, varying illumination intensity
[58] Crop, horizontal flip
[60] Rotation, shear, zoom, shift
[62] Horizontal flip, rotation
[63] Mix-up, rotation, flip
[66] Rotation,horizontal/vertical mirroring, Gaussian blur, pixel level augmentation
[67] Horizontal/vertical flip, zoom

Wildfire Detection [84] Translation, image scale, mosaic, mix-up, horizontal flip

Wildfire segmentation

[60,122,127,137] Horizontal flip, rotation
[116,126] Left/right symmetry
[131] Translation, rotation, horizontal/vertical reflection, left/right reflection
[134] Flip, rotation, crop, noise

6.2. Model Results Discussion

The performance of deep learning models evaluates the ability of these models to
correctly classify, detect, or segment objects. In a wildland fire classification task, the
performance of the model can be evaluated based on its ability to classify wildfires. In
a wildland fire segmentation task, the accuracy of the DL models can be evaluated on
their effectiveness in identifying and detecting the visible surface of fire in the input
images. In the wildland fire detection task, the performance of the wildfire detection
models can be discussed based on their potential to detect and localize wildfires in the
input images. Different metrics and datasets are used to evaluate wildfire models, making
their comparison a bit challenging. Vison-based ML models are among the first methods
used for the recognition, detection, and segmentation of forest fires. They obtained a
great performance. However, some limitations still exist, such as slow time response
and false alarms, especially when the distance to the wildfire is large or the area of the
wildfire is small. To overcome these drawbacks, deep learning models are proposed. They
automatically learn high and low-level features. These models showed higher performances
than ML methods in wildfire classification, detection, and segmentation tasks on aerial
and terrestrial images. As an example, MobileNet v2 [56], InceptionResNet v2 [71], and
ResNet50 [66] showed excellent performance in wildland fire classification, reaching an
accuracy of 99.70%, 99.90%, and 99.94%, respectively. In the wildland fire detection task,
excellent results were obtained with SSD [78], Yolo v4 [82], and ensemble learning [84],
which integrates Yolo v5 and U-Net by achieving an accuracy of 99.88%, 99.35%, 99.60%,
respectively. Vision Transformer,TransUNet, [60,137] obtained excellent performance in the
wildland fire segmentation task, achieving F1 scores of 97.70% and 99.90% using ground
and aerial images, respectively. However, a large number of labeled images are required for
their training. Transfer learning technique is used to repurpose a pretrained model on very
large data, such as the COCO dataset, to solve a new task (forest fires in our case). The main
idea is to finetune the parameters of the pretrained model to avoid overfitting caused by the
small amount of training data. These pretrained DL models showed excellent potential in
wildfire tasks. For example, Lee et al. [38] used pretrained AlexNet, GoogleNet, and VGG13
to identify forest fires on aerial images, achieving an interesting accuracy of 99%. Yandouzi
et al. [66] presented a forest fire classification benchmark using eleven pretrained models
(VGG16, ResNet50, MobileNet, VGG19, NASNetMobile, InceptionResNet v2, Xception,
Inception v3, ResNet50 v2, DenseNet, and MobileNet v2). Experimental results showed
that ResNet50 and VGG16 are more suitable for wildfire recognition, with accuracies higher
than 99.9%.
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Wildfire classification, detection, and segmentation models based on the convolution
operator showed higher performance. However, they remain limited in modeling the
global context. Several studies applied the attention mechanism, which determines global
dependencies to solve the forest fires problem. As an example, Lin et al. [89] proposed
a forest fire detection method, STPM_SAHI, which incorporates the attention module.
STPM_SAHI achieved an average accuracy of 89.4%, outperforming existing one-stage
detectors (Yolo v5 and EfficientDet). Zhang et al. [135] incorporated the attention gate
module into the Wildfire semantic segmentation method, ATT Squeeze U-Net, to remove
irrelevant and noisy characteristics transmitted by skip connections. ATT Squeeze U-Net
improved the accuracy of U-Net by 2.15%. Guan et al. [74] designed a novel method,
DSA-ResNet, by adding an attention module to the ResNet method for identifying wildfire
on aerial images. Testing results showed an interesting accuracy of 93.65% improving the
performance of popular CNNs, VGGNet, GoogLeNet, ResNet, and SE-ResNet by 8.79%,
5.42%, 2.37%, and 1.19%, respectively. In [60,137], the vision Transformer, TransUNet,
which adopted the self-attention module is used in segmenting forest fire regions on
aerial and ground images. It achieved excellent performance, surpassing existing wildfire
segmentation models such as EfficientSeg [60,137].

Early forest fire detection is very important to detect wildfires and reduce their damage.
The inference time of fire detection is also employed to receive real-time information about
the occurrence of fires and reduce the area burned. Table 6 presents the overview of
the inference time used in the wildfire classification, detection, and segmentation tasks.
Different GPUs are used to calculate the inference time, which makes their comparison
difficult. As an example, the one-stage detector shows fast detection time for wildland fire
detection. Yolo v4 with MobileNet V3 showed a faster inference time of 19.76 FPS, which
is suitable for real-time wildfire detection [82]. In [77], a new forest fire detection method
based on Yolo v3 achieved high accuracy and a detection rate of 3.2 FPS, confirming its
ability and feasibility for fire monitoring tasks in a UAV platform. In [135], ATT Squeeze
U-Net also obtained a reliable segmentation time of 0.65 FPS slightly slower than the binary
segmentation model, U-Net due to the addition of an attention module.

Table 6. Overview of inference time

Task Ref Methodolgy Configuration Time (FPS)

Wildfire Classification
[38] GoogLeNet 3 NVIDIA GTX Titan X GPUs 24.79
[60] EfficientNet-B5, DenseNet201 NVIDIA Geforce RTX 2080Ti GPU 55.55
[63] FT-ResNet50 NVIDIA GeForce RTX 2080Ti GPU 18.10

Wildfire Detection

[77] Modified Yolo v3 Drone with NVIDIA 4-Plus-1 ARM Cortex-A15 3.20
[81] Yolo v5, EfficientDet, EfficientNet NVIDIA GTX 2080Ti GPU 14.97
[82] Yolo v4 with MobileNet v3 NVIDIA Jetson Xavier NX GPU 19.76
[86] Yolo v5, CBAM, BiFPN, SPPFP NVIDIA GeForce GTX 1070 GPU 44.10
[87] FCDM NVIDIA GeForce RTX 3060 GPU 64.00
[89] STPM_SAHI NVIDIA RTX 3050Ti GPU 19.22

Wildfire Segmentation

[60] TransUNet
TransFire

NVIDIA V100-SXM2 GPU 1.96
1.00

[137] TransUNet
MedT

NVIDIA Geforce RTX 2080Ti GPU 0.83
0.37

[112] SFEwAN-SD NVIDIA GTX 970 MSI GPU 25.64
[121] wUUNet NVIDIA RTX 2070 GPU 63.00
[127] Deep-RegSeg NVIDIA Tesla T4 GPU 6.25
[131] DeepLab v3+ NVIDIA GeForce RTX 3090 GPU 0.98
[133] FireDGWF 2 NVIDIA GTX 1080Ti GPUs 6.62
[134] U-Net

DeepLab v3+
FCN
PSPNet

NVIDIA GeForce RTX 2080Ti GPU 1.22
1.47
2.33
2.04

[135] ATT Squeeze U-Net NVIDIA GeForce GTX 1070 GPU 0.65
[138] Improved DeepLab v3+ with Mo-

bileNet v3
NVIDIA RTX 2080 Ti GPU 24.00
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7. Conclusions

In this paper, a comprehensive literature review only of wildland fire (not wildland
smoke) classification, detection, and segmentation techniques based on recent deep learning
models including vision transformers has been presented. The latter proved their potential
in recognizing and detecting wildfires, especially small fire areas, as well as in segmenting
fire regions overcoming challenging problems such as the presence of smoke and the
background complexity using aerial and ground images. We also presented the popularly
used datasets for these tasks. Finally, We discussed the data preprocessing and model
interpretation ability related to wildfire recognition, detection, and segmentation tasks.
Our discussion highlights how deep learning approaches including vision transformers
perform better than traditional methods, showing their reliability and potential in these
tasks, as well as their main research limitations such as data collection and labeling.

Deep learning including vision transformers models showed excellent performance
in the classification, detection, and segmentation of wildfire areas, even in the presence
of smoke and wildfire-like objects. However, some challenges remain for future research,
such as real-time monitoring and the scarcity of labeled datasets. Using a virtual simulation
platform to process the extent of wildfires and predict their spread can be an excellent
solution to the challenge of limited labeled data. In addition, using drones with lightweight
DL models as well as integrating distance and telemetry sensors into ground fire camera
systems can provide real-time information to monitor wildfires, by giving the location and
distance of the fire.

Author Contributions: Conceptualization, M.A.A. and R.G.; methodology, R.G. and M.A.A.; valida-
tion, R.G. and M.A.A.; formal analysis, R.G. and M.A.A.; writing—original draft preparation, R.G.;
writing—review and editing, M.A.A.; funding acquisition, M.A.A. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was enabled in part by support provided by the Natural Sciences and
Engineering Research Council of Canada (NSERC), funding reference number RGPIN-2018-06233.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicles
DL Deep Learning
ML Machine Learning
CNN Convolutional Neural Network
ReLU Rectified Linear Unit
PReLU Parametric ReLU
LReLU Leaky ReLU
DCNN Deep Convolutional Neural Network
LBP Local Binary Patterns
CycleGAN Cycle-consistent Generative Adversarial Network
KNN K-Nearest Neighbors
SVM Support Vector Machine
NCA Neighborhood Component Analysis
RNN Recurrent Neural Network
Yolo You only look once
AP Average Precision
SSD Single Shot MultiBox Detector
mAP mean Average Precision
PANet Path Aggregation Network
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FPN Feature Pyramid Network
CSPNet Cross Stage Partial Network
BiFPN Bi-directional Feature Pyramid Network
RPN Region Proposal Network
FP False Positive rate
ASPP Atrous Spatial Pyramid Pooling
IR Infrared
FPS Frames per second
MedT Medical Transformer
BowFire Best of both worlds Fire detection
FLAME Fire Luminosity Airborne-based Machine learning Evaluation
NIR Near infrared
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